文档视界 最新最全的文档下载
当前位置:文档视界 › 1806_激光原理 (第六版) 第五章课后答案

1806_激光原理 (第六版) 第五章课后答案

1806_激光原理 (第六版) 第五章课后答案
1806_激光原理 (第六版) 第五章课后答案

激光原理及技术习题答案

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -= ?=λ ν λ h c h == ?*E (1)

(2) 10 * 425 .121 48 300 * 10 * 38 .1 10 10 *3 * 10 * 63 .6 1 223 6 8 34 ≈ = = = =- - - - - - - e e e n n T k c h b λ (3) K n n k c h b 3 6 23 8 34 1 2 10 * 26 .6 )1.0( ln * 10 * 10 * 8 .3 1 10 *3 * 10 * 63 .6 ln * T= - = - = - - - λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数1 01 .0- =mm α (2) 0 1 01 100 366 0I . e I e I e I I. z= = = =- ? - α 即经过厚度为0.1m时光能通过36.6% 10.解:

激光原理第一章答案

第一章 激光的基本原理 1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλΔ应是多少? 提示: He-Ne 激光 器输出中心波长632.8o nm λ= 解: 根据c λν=得 2 c d d d d ν νλνλλ =? ?=? λ 则 o o ν λ νλΔΔ= 再有 c c c L c τν == Δ得106.32810o o o c o c c L L λλνλνν?ΔΔ====× 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: c P nh nh νλ==由此可得: P P n h hc λ ν= = 其中为普朗克常数,为真空中光速。 34 6.62610 J s h ?=×?8310m/s c =×所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ×=500nm λ时: 18-1=2.510s n ×=3000MHz ν时: 23-1=510s n ×3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为),能级上的粒子数密度分别为n 和,求 λ21n (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当,T=300K 时,λ=1μm 21/?n n = (c) 当,n n 时,温度T=? λ=1μm 21/0.1=解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则 2 211()exp exp exp b b n E E h h n k T k T k νb c T λ??????=?=?=?????? ???????? (a) 当ν=3000MHz ,T=300K 时: 3492 231 6.62610310exp 11.3810300n n ????×××=?≈??××? ? (b) 当,T=300K 时: λ=1μm 3482 2361 6.62610310exp 01.381010300n n ?????×××=?≈??×××??

激光原理第二章答案解析

第二章开放式光腔与高斯光束 1.证明如图 2.1所示傍轴光线进入平面介质界面的光线变换矩阵为 1 2 1 0 η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,根据几何关系可知211122 ,sin sin r rηθηθ ==傍轴光线sinθθ B则 1122 ηθηθ =,写成矩阵形式 21 21 1 2 1 0 r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证 2.证明光线通过图2.2所示厚度为d的平行平面介质的光线变换矩阵为 1 2 1 0 1 d η η ?? ?? ?? ?? ?? 。 证明:设入射光线坐标参数为 11 ,rθ,出射光线坐标参数为 22 ,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。根据1题的结论和自由传播的光线变换矩阵可得 21 21 21 12 1 0 1 0 1 0 0 0 1 r r d θθ ηη ηη ???? ???? ?? ???? = ???? ?? ???? ?? ???? ???? ???? 化简后21 21 1 2 1 0 1 d r r θθ η η ?? ???? ?? = ???? ?? ???? ?? ?? 得证。 3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。 证:设光线在球面镜腔内的往返情况如下图所示:

其往返矩阵为: 由于是共焦腔,则有 12R R L == 将上式代入计算得往返矩阵 () ()()1 2 101 0110101n n n n n n r L r L ??????===-=-???????????? A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。 于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。 4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 解:共轴球面腔稳定性条件1201g g <<其中1212 11,1L L g g R R =-- =- 对平凹共轴球面镜腔有12,0R R =∞>。则122 1,1L g g R ==- ,再根据稳定性条件 1201g g <<可得2 2011L R R L <- <>?。 对双凹共轴球面腔有,120,0R R >>则1212 1,1L L g g R R =- =-,根据稳定性条件1201g g << 可得11221 212010 01 1R L R L R L R L R R L L R R L <?? <????<-- ?????? 或。 对凹凸共轴球面镜腔有,120,0R R ><则1212 1,1,0L L g g R R =- =>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ???? <--

激光原理第七章答案

第七章 激光特性的控制与改善 习题 1.有一平凹氦氖激光器,腔长0.5m ,凹镜曲率半径为2m ,现欲用小孔光阑选出TEM 00模,试求光阑放于紧靠平面镜和紧靠凹面镜处的两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基模。) 解:腔长用L 表示,凹镜曲率半径用1R 表示,平面镜曲率半径用2R 表示,则 120.5m ,2m ,L R R ===∞ 由稳定腔求解的理论可以知道,腔内高斯光束光腰落在平面镜上,光腰半径为 0121 4 1 ()] 0.42m m w L R L = = -≈ 共焦参量为2 207 0.420.87m 632810 w f ππλ -?= = ≈? 凹面镜光斑半径为 10.484m m w w w ==≈ 所以平面镜端光阑直径为 03.3 1.386m m D w =?=平 凹面镜端光阑直径为 13.3 1.597m m D w =?=凹 2.图7.1所示激光器的M 1是平面输出镜,M 2是曲率半径为8cm 的凹面镜,透镜P 的焦距F =10cm ,用小孔光阑选TEM 00模。试标出P 、M 2和小孔光阑间的距离。若工作物质直径是5mm ,试问小孔光阑的直径应选多大? 图 7.1 1 2

解:如下图所示: 1 2 P 小孔光阑的直径为: 3 1.0610100 2 2mm 0.027mm 2.5 f d a λππ-??==? ≈? 其中的a 为工作物质的半径。 3.激光工作物质是钕玻璃,其荧光线宽F ν?=24.0nm ,折射率η=1.50,能用短腔选单纵模吗? 解:谐振腔纵模间隔 2 22q q c L L νηλ λη?=?= 所以若能用短腔选单纵模,则最大腔长应该为 2 15.6μm 2L λ ηλ = ≈? 所以说,这个时候用短腔选单纵模是不可能的。 6.若调Q 激光器的腔长L 大于工作物质长l ,η及' η分别为工作物质及腔中其余部分的折射率,试求峰值输出功率P m 表示式。 解:列出三能级系统速率方程如下: 2121 (1) 2 (2) R dN l N cN n dt L d n N n dt στσυ=?-'?=-? 式中,()L l L l ηη''=+-,η及' η分别为工作物质及腔中其余部分的折射率,N 为工作物质中的平均光子数密度,/,/R c L c υητδ'==。 由式(1)求得阈值反转粒子数密度为:

激光原理MOOC答案

1.2 1 谁提出的理论奠定了激光的理论基础? ?A、汤斯 ?B、肖洛 ?C、爱因斯坦 ?D、梅曼 正确答案:C 我的答案:C得分: 10.0分 2 氢原子3p态的简并度为? ?A、2 ?B、10 ?C、6 正确答案:C 我的答案:C得分: 10.0分 3 热平衡状态下粒子数的正常分布为: ?A、处于低能级上的粒子数总是等于高能级上的粒子数?B、处于低能级上的粒子数总是少于高能级上的粒子数?C、处于低能级上的粒子数总是多于高能级上的粒子数正确答案:C 我的答案:C得分: 10.0分 4 原子最低的能量状态叫什么? ?A、激发态 ?B、基态 ?C、.亚稳态 正确答案:B 我的答案:B得分: 10.0分 5 对热辐射实验现象的研究导致了? ?A、德布罗意的物质波假说 ?B、爱因斯坦的光电效应

?C、普朗克的辐射的量子论 正确答案:C 我的答案:A得分: 0.0分 6 以下关于黑体辐射正确的说法是: ?A、辐射的能量是连续的 ?B、黑体一定是黑色的 ?C、 辐射能量以hν为单位 正确答案:C 我的答案:C得分: 10.0分 7 热平衡状态下各能级粒子数服从: ?A、A. 高斯分布 ?B、玻尔兹曼分布 ?C、正弦分布 ?D、余弦分布 正确答案:B 我的答案:B得分: 10.0分 8 以下说法正确的是: ?A、受激辐射光和自发辐射光都是相干的 ?B、受激辐射光和自发辐射光都是非相干的 ?C、受激辐射光是非相干的,自发辐射光是相干的 ?D、受激辐射光是相干的,自发辐射光是非相干的正确答案:D 我的答案:D得分: 10.0分 9 下列哪个物理量不仅与原子的性质有关,还与场的性质有关??A、自发跃迁几率 ?B、受激吸收跃迁几率 ?C、受激辐射跃迁爱因斯坦系数 正确答案:B 我的答案:B得分: 10.0分 10

哈工大 激光原理 第三、四章作业答案

第三章 2.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν?=1.5?l09Hz 。今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少? 答:Hz L c q 88 105.11121032?=???==?μν,10105.1105.189=??=??=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则: m c L L c q 2.010 5.1103298=??=?<∴=?

周炳坤版激光原理习题答案第六章

第六章 激光放大特性 习题 1. 在增益工作物质两端设置二反射率为r 的反射镜,形成一个法布里-珀罗再生式放大器,如图6.1.1所示。入射光频率为ν,谐振腔频率为c ν。工作物质被均匀激励,其小信号增益系数为0 g ,损耗系数为α。试求: (1)用多光束干涉方法求再生放大器的小信号增益0 0()/G I l I =; (2)c νν=时再生放大器的增益0 m G ; (3)再生放大器的带宽δν; (4)若无反射镜时放大器的增益为3,试作0 m G —r 及δν—r 的曲线; (5)再生放大器正常工作时r 的范围。 解:(1) 若设入射光场为0E ,若忽略色散效应,则电场的传播情况如图所示,图中2k πν υ =, 在输出端将各分波相加可得总的输出电场。(这里的R 即为反射镜的反射率r ) l g ikl e e E 2 ) (00)α--l g kl i e e E R )(2 3300 )α-- 这样就有: 1()2()2 0(1)[1e ]g l ikl i kl g l l E R E e e R e αα----=-++L 其中中括号的内部是一个无穷等比数列,这样上式就可以写为: 1()2 2()(1)1g l ikl l i kl g l R e e E E Re e αα-----=- 放大器的小信号增益为: 00 00 *2()0 *22()()0002()()2()2()(1)12e cos 2(1) [1e ]4sin g l l l g l g l g l g l g l E E I l R e G I E E R e R kl R e R Re kl αααααα-------===+--= -+ (2) c νν=的时候,c 2m l υ νν==(m 为正整数)

激光原理第四章习题解答..

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答: 根据公式(激光原理P136) c c υυ νν-+=110 υλν= 由以上两个式子联立可得: 0λυ υλ?+-=C C 代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ 解答完毕(验证过) 2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化λL 2次。 证明: 对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下: 无多普勒效应的光场:()t E E ?=πνν2cos 0 产生多普勒效应光场:()t E E ?=''02cos ''πνν 在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:?? ? ?? +=c υνν1' 第二次多普勒效应:?? ? ??+≈??? ??+=??? ??+=c c c υνυνυνν21112'''

周炳琨激光原理第一章习题解答(完整版)

周炳琨<激光原理>第一章习题解答(完整版) 1.为使氦氖激光器的相干长度达到1km ,它的单色性 λλ ?应是多少? 解:相干长度 υ υυ -=?=12c c L c 将 λυ1 1c =, λυ22c =代入上式,得: λ λλλλλ?≈-=0 2 2 121L c ,因此 c λλλ 00=?,将 nm 8.6320=λ,km L c 1=代入得: 10*328.68.632100-==?nm λλ 2.如果激光器和微波激射器分别在 m μλ10=, nm 500=λ和 MHz 3000=υ输出1W 连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是 多少? 解:ch p h p n λ υ== (1) 个10*03.510*3*10*626.610*1191 8 34 ≈= --ms Js m W n μ (2)个10*52.210*3*10*626.6500*1181834≈=--ms Js nm W n (3)个10*03.53000*10*626.612334 ≈=-MHz Js W n 3.设一对激光能级为 E 2和E 1(f f =12) ,相应频率为υ(波长为 λ ),能级上的粒

子数密度分别为 n 2和n 1,求: (a )当 MHz 3000=υ,T=300K 时,=n n 12? (b )当 m μλ1=,T=300K 时,=n n 1 2? (c )当 m μλ1=,1.01 2=n n 时,温度T=? 解: e e f n h E E ==---υ121 212 (a )110 *8.4300 *10*38.110*300010*626.64 23 6 *341 2≈≈= -----e e n n (b )10 *4.121 6238 34 1 2 10*8.410*1*300*10*38.110*3*10*626.6≈≈==--- ----e e e n n kT hc λ (c )1.010*1*10*38.110*3*10*626.68 341 2===---e e n n T hc λ 得: K T 10*3.63 ≈ 4.在红宝石Q 调制激光器中,有可能将几乎全部Cr + 3离子激发到激光上能级并产生激光 巨脉冲。设红宝石棒直径1cm,长度7.5cm , Cr + 3浓度为 cm 3 1910*2-,巨脉冲宽度为 10ns ,求输出激光的最大能量和脉冲功率。 解:由于红宝石为三能级激光系统,最多有一般的粒子能产生激光: J nhc nh E 1710*3.69410 *3*10*626.6*10*2*5.7*)5.0(2 19 8 34 19 2 max 2 121====--πλυW E P R 10*7.19 max ==τ 5.试证明,由于自发辐射,原子在 E 2 能级的平均寿命 A s 21 1=τ 证明:自发辐射,一个原子由高能级 E 2自发跃迁到E 1,单位时间内能级E 2减少的粒子

激光原理(陈鹤鸣版)部分习题答案整理

第二章 5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。 【参考例2-1,例2-2】 解: (1)J hc E E E 206834121098.310 510310626.6---?=????==-=?λ (2)5 2320121075.63001038.11098.3exp ---?-?=??? ? ?????-==T k E b e N N 10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。 1 04.0*)(0 )(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I m e I I G z G Z z G Z ααα即且解:

第三章 2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解: 衍射损耗: 1880107501106102 262.).(.a L =???=λ=δ-- s ..c L c 8 81075110 318801-?=??=δ= τ 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ= τ

激光原理第一章答案.

第一章激光的基本原理 1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλ?应是多少? 提示: He-Ne 激光 器输出中心波长632.8o nm λ= 解: 根据c λν=得 2 c d d d d ννλνλλ λ =- ?=- 则 o o ν λ νλ??= 再有 c c c L c τν == ?得 10

6.32810 o o o c o c c L L λλ ν λνν-??= = = =? 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000M H z ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中34 6.62610 J s h -=??为普朗克常数,8

310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1 =510s n ?=500nm λ时: 18-1 =2.510s n ?=3000M H z ν时: 23-1=510s n ? 3.设一对激光能级为2E 和1E (21f f =,相应的频率为ν(波长为λ,能级上的粒子数密度分别为2n 和1n ,求 (a 当ν=3000M H z ,T=300K 时,21/?n n = (b 当λ=1μm ,T=300K 时,21/?n n = (c 当λ=1μm ,21/0.1n n =时,温度T=? 解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则 (a 当ν=3000M H z ,T=300K 时: (b 当λ=1μm ,T=300K 时: c P nh nh νλ ==P P n h hc λν =

EE125_HW1激光原理第一章作业答案

EE125Principles of Lasers Prof.Cheng Wang ShanghaiTech University Homework1 Note: ?Please try to?nish the homework on your own.Discussion is permissible,but identical submissions are unacceptable! ?Please prepare your submission in English only.No Chinese submission will be accepted. ?Please submit your homework in PDF?le to yanht@https://www.docsj.com/doc/d213654024.html, with subject EE125HW1ID NAME. ?Please submit on time.NO late submission will be accepted. 1.1If the laser have a continuous output power of1W when(a)λ=10μm,(b)λ=500nm and(c)ν=3000MHz,what is the population each second N that are transition from E2to E1? 1.2If levels1and2of Fig.1.2are separated by an energy E2?E1such that the corresponding frequency isν(the wavelength isλ),the carrier density of each level is N2and N1.Assume that the two level have the same degeneracy. (a)Whenν=3000MHz,T=300K,calculate the ratio N2/N1. (b)Whenλ=1μm,T=300K,calculate the ratio N2/N1. (c)Whenλ=1μm,N2/N1=0.1,calculate T. Figure1.2 1/2

激光原理第六版思考题资料

3受激辐射过程:特点:非自发的, 全相同。受激辐射跃迁几率 W 21 dn 12、 1 対2-( 「)st dt R| dn 21 dt st 1 n 2 《激光原理》复习思考题 第一章: 1、 LASER 英文名称的含义是什么?激光是何时发明的? 受激发射实现光放大(激光)。I960年梅曼世界上第一台红宝石激光器 2、 激光的基本特性是什么? 单色性: 指光强按频率的分布状况,激光的频谱宽度非常窄。相干性:时间相干性和空间 相干性都很好。方向性:普通光向四面八方辐射, 而激光基本沿某一直线传播,激光束的发 散角很小。高亮度:在单位面积、单位立体角内的输出功率特别大 3、 激光器主要由哪些部分组成?各部分的作用是什么? 激光器基本组成包括:工作物质、谐振腔和泵浦系统三大部分。工作物质是激光器的核心。 谐振腔的作用:模式选择、提供轴向光波模的反馈。泵浦系统为实现粒子数反转提供外界能 量 4、什么是黑体辐射?写出 Planek 公式,并说明它的物理意义。 黑体辐射是黑体温度 T 和辐射场频率的函数,用单色能量密度 二v 来描述:在单位体积内, 频率处于附近的单位频率间隔中的电磁辐射能量 J m-3 s )。黑体辐射的普朗克公式 8h 3 1 吨 k b T 5、 什么是光波模式和光子态? 在自由空间,具有任意波矢的单色平面波都可以存在。但在一个有边界条件限制的空间 V 内,只能存在一系列独立的具有特定波矢 k 的平面单色驻波。这种能够存在于腔内的驻波 (以 某一波矢k 为标志)称为电磁波的模式或光波模。一个光波模在相空间也占有一个相格。 因 此,一个光波模等效于一个光子态 6、 如何理解光的相干性?何谓相干时间、相干长度、相干面积和相干体积? 光的相干性(在不同的空间点上、在不同时刻的光波场的某些特性的相关性。 光场的相干函 数来度量)。如果在空间体积Vc 内各点的光波场都具有明显的相干性, 则Vc 称为相干体积。 Vc=AcLc , Ac--相干面积,Lc--相干长度,相干时间 c 是光沿传播方向通过相干长度 Lc 所 需的时间。Lc=c c 7、 什么是光子简并度? 处于同一光子态的光子数称为光子简并度 。具有以下几种相同的含义:同态光子数、同一 模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。 8、激光的基本物理基础是什么? 光与物质的共振相互作用,特别是其中的受激辐射是激光器的物理基础 9、描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。 光跃迁中将同时存在着光的自发辐射、 受激吸收和受激辐射三个过程。 1自发辐射过程: 特 点:1)自发产生;2)辐射是独立的。自发跃迁几率 八 ,dn 21、 1 人21 =(-;;-)sp — dt n 2 2受激吸收过程:特点:非自发的,有外来光照射;减弱光的强度。受激吸收跃迁几 率 卩宀厂c 3 e kbT -1

【激光原理】第四章作业答案

1 1.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。) 解: 已知条件R 1=∞, R 2=2 m, L =0.5 m ∵等价的对称共焦腔参数 L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( L R R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f 对于基横模 ∵22001???? ??+=πωλωωz z )(, π λωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=220 2ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m 2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗? 解: 相邻两个纵模频率差 L c μν2=? 短腔法选单纵模的条件是

2 F v ?>?ν2 ∵F F c λλν?=?2≈6.4×1012 Hz F v c L ?<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。因此不能用短腔法选单纵模。 3.解: mm s f 01.02.060 300=?=='ωω 5.解: ∵L 1紧靠腔的输出镜面 ∴入射在L 1上的光斑半径ω满足: ∴31.1125.220012=?== 'ωωf f M 7.解: 当声频改变ν?时,衍射光偏转的角度为:νμυλφ?=?s ; 而高斯光束的远场发散角为:0 μπωλθ=; 可分辨光斑数为:15710310501030033 60 =?????=???=?=-.πυωπνθφs n 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。具体的调Q 技术有那些? 答:由于激光上能级最大粒子反转数受到激光器阈值的限制,那么,要使上能级积累大量的粒子,可以设法通过改变(增加)激光器的阈值来实现,就是当激光器开始泵浦初期,设法将激光器的振荡阈值调得很高,抑制激光振荡的产生,这样激光上能级的反转粒子数便可积

激光原理复习题重点难点

《激光原理》复习 第一部分知识点 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 8、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 9、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 10、高斯光束的特征参数?q参数的定义? 11、如何用ABCD方法来变换高斯光束? 12、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程。 5、说明均匀加宽和非均匀加宽工作物质中增益饱和的机理。 6、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明它们的原理。

激光原理及应用(第二版)课后习题答案(全)

思考练习题1 1. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒 从上能级跃迁到下能级的粒子数各为多少? 答:粒子数分别为:18 8 34634110 5138.21031063.6105.01063.61?=????=? ?= =---λ ν c h q n 23 9 342100277.510 31063.61?=???==-νh q n 2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高? 答:(1)(//m n E E m m kT n n n g e n g --=)则有:1]300 1038.110 31063.6exp[2393412≈?????-==---kT h e n n ν (2)K T T e n n kT h 36238 34121026.61.0]1011038.11031063.6exp[?=?=???????-==----ν 3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0- 18J ,设火焰(T =2700K)中含有1020个氢原子。设原子按玻尔兹曼分布,且4g 1=g 2。求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦? 答:(1)1923 181221121011.3]2700 1038.11064.1exp[4----?=???-?=?=??n n e g n g n kT h ν 且20 2110=+n n 可求出312≈n (2)功率=W 918 8 10084.51064.13110--?=??? 4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比 q q 激自 1 = 2000 ,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ??=-νρ,λ为0.6328μm ,设μ=1,求 q q 激自 为若干? 答:(1)

激光原理第四章答案1

第四章 电磁场与物质的共振相互作用 1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少? 解:根据公式νν=c λν= 可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ 2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。 证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和 1M 均为固定镜,所以I 光的频率不变, 仍为ν。将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为: 因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为 这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为: S 2 M (1) v c νν'=+2(1)(1)(12) v v v c c c νννν'''=+=+≈+00cos(2)cos 2(12)I II E E t v E E t πνπν=? ?=+

因而光屏P 上的总光场为 光强正比于电场振幅的平方,所以P 上面的光强为 它是t 的周期函数,单位时间内的变化次数为 由上式可得在dt 时间内屏上光强亮暗变化的次数为 (2/)mdt c dL ν= 因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S 式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的 2M 镜的空间坐标,并且有21L L L -=。 得证。 3.在激光出现以前,86 Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性8 /10λλ-?=的氦氖激光器比较。 解:这里讨论的是气体光源,对于气体光源,其多普勒加宽为 1 12 2 7 002 22ln 27.1610D KT T mc M ννν-?????==? ? ????? 式中,M 为原子(分子)量,27 1.6610 (kg)m M -=?。对86Kr 来说,M =86,相干长度为 02cos(22)cos(2) I II v v E E E E t t t c c πνπνπν=+=+021cos 22v I I t c πν?? ????=+?? ???????? ?22v dL m c c dt νν== 2 2 1 1 212222()t L t L L S mdt dL L L L c c c νννλ== =-==??

【精品】激光原理第四章答案1

第四章电磁场与物质的共振相互作用 1静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0。4c 、0。8c 的速度向着观察者运动,问其表观中心波长分别变为多少? 解:根据公式νν=c λν= 可得:λλ=,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ 2.设有一台迈克尔逊干涉仪,其光源波长为λ。试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。 证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为 I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν.将 2M 看作光接收器,由于它以速度v S 2 M (1) v c νν'=+

运动,故它感受到的光的频率为: 因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为 这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。在屏P 上面,I 光和II 光的广场可以分别表示为: 2(1)(1)(12) v v v c c c νννν'''=+=+≈+

因而光屏P 上的总光场为 光强正比于电场振幅的平方,所以P 上面的光强为 它是t 的周期函数,单位时间内的变化次数为 由上式可得在dt 时间内屏上光强亮暗变化的次数为 (2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。对上式两边积分,即可以得到镜2M 移 动L 距离时,屏上面光强周期性变化的次数S 式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2 t 相对应的2M 镜的空间坐标,并且有21L L L -=。 得证。 3。在激光出现以前,86Kr 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K 温度下它的605.7nm 谱线的相干长度是多少,并与一个单色性 8/10λλ-?=的氦氖激光器比较。 02cos(22)cos(2) I II v v E E E E t t t c c πνπνπν=+=+021cos 22v I I t c πν?? ????=+?? ???????? ?22v dL m c c dt νν== 22 1 1 212222()t L t L L S mdt dL L L L c c c νννλ== =-==??

激光原理 周炳琨版课后习题答案

激光原理 周炳琨 (长按ctrl键点击鼠标即可到相应章节) 第一章激光的基本原理 (2) 第二章开放式光腔与高斯光束 (4) 第三章空心介质波导光谐振腔 (14) 第四章电磁场和物质的共振相互作用 (17) 第五章激光振荡特性 (31) 注:考华科者如需激光原理历年真题与答案可联系 E-mail:745147608@https://www.docsj.com/doc/d213654024.html,

第一章激光的基本原理 习题 2.如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中34 6.62610 J s h -=??为普朗克常数,8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 解:当物质处于热平衡状态时,各能级上的粒子数服从波尔兹曼统计分布: (a) 当ν=3000MHz ,T=300K 时: (b) 当λ=1μm ,T=300K 时: c P nh nh νλ ==P P n h hc λν= =2211()exp exp exp n E E h hc n KT KT K T νλ-??????=-=-=- ? ???????? ?3492 231 6.62610310exp 11.3810300n n --?????=-≈ ????? 3482 2361 6.62610310exp 01.381010300n n ---?????=-≈ ??????

相关文档
相关文档 最新文档