文档视界 最新最全的文档下载
当前位置:文档视界 › 自考04184线性代数(经管类)讲义

自考04184线性代数(经管类)讲义

自考04184线性代数(经管类)讲义
自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记

第一章行列式

线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1行列式的定义

(一)一阶、二阶、三阶行列式的定义

)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;

符号叫二阶行列式,其大小规定为:

例如

号叫为

例如=0

三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角

线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:

(1)

=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0

(2)

(3)

(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如

例1a为何值时,

[答疑编号10010101:针对该题提问]

解因为

所以8-3a=0,时

例2当x取何值时,

[答疑编号10010102:针对该题提问]

解:

解得0

所以当0

(二)n阶行列式

符号:

它由n行、n列元素(共个元素)组成,称之为n阶行列式。其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数

在第j列上。所以在行列式的第i行和第j列的交叉位置上。为叙述方便起见,我们用(i,j)表示这个位置。n阶行列式通常也简记作。

n阶行列式也是一个数,至于它的值的计算方法需要引入下面两个概念。

阶行列式中,划去它的第

元素的余子式,记作

例如,在三阶行列式

中,的余子式表示将三阶行列式划去第1行和第1列后,余下的数按照相对位置组成的二阶行列式,所以

相似地,的余子式表示将三阶行列式划去第二行和第三列后,余下的数组成的二阶行列式。所以

例1若,求:

(1)

[答疑编号10010103:针对该题提问]

(2)

[答疑编号10010104:针对该题提问]

(3)

[答疑编号10010105:针对该题提问]

(4)

[答疑编号10010106:针对该题提问]

解(1)

(2)

(3)

(4)

)符号叫元素的

定义:(系数其实是个正负符号)

例2求例1中的代数余子式

(1)

[答疑编号10010107:针对该题提问]

(2)

[答疑编号10010108:针对该题提问]

(3)

[答疑编号10010109:针对该题提问]

(4)

[答疑编号10010110:针对该题提问]

解:(1)

(2)

(3)

(4)

(如果符号是奇数,等于相反数;如果是偶数,等于原数)

例3若

计算(以上两组数相等)[答疑编号10010111:针对该题提问]

解:

由于

与例3的结果比较,发现

这一结果说明:三阶行列式等于它的第一列的元素与对应的代数余子式的积的和,这一结果可以推广到n阶行列式作为定义。

阶行列式的值为它的第一列的元素与相应代数余子式的积的和,上面结果中因为

即规定n

所以有

特别情形

(1)

[答疑编号10010112:针对该题提问]

由本例可见四阶上三角形行列式的值也等于它的主对角线各数之积

(2)

[答疑编号10010113:针对该题提问]

可见五阶上三角形行列式的值仍等于它的主对角线各数之积

一般地可推得

即任意n阶上三角形行列式的值等于它的主对角线各数之积

同理有

1.2行列式按行(列)展开

在1.1节讲n阶行列式的展开时,是把按其第一列展开而逐步把行列式的阶数降低以后,再求出其值。实际上,行列式可以按其任意一行或按其任意一列展开来求出它的值。

现在给出下面的重要定理,其证明从略。

阶行列式等于它的任意一行(列)的各元素与其对应的代数

其中,是元素在

定理1.2.1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即

(i=1,2,…,n)(1.8)

或(j=1,2,…,n)(1.9)

其中,是元素在D中的代数余子式。

(1.8)式称为D按第i行的展开式,(1.9)式称为D按第j列的展开式,这里i,j=1,2,…

上述展开定理也可以表示成

(i=1,2,…,n)

(j=1,2,…,n)这两个展开式中的每一项都由三部分组成:元素和它前面的符号以及它后面的余子式,

三者缺一不可!特别容易忘掉的是把元素(特别是)抄写下来。

根据定理1.2.1知道,凡是含零行(行中元素全为零)或零列(列中元素全为零)的行列式,其值必为零。

特别情形

(1)

(2)

例5计算

[答疑编号10010201:针对该题提问]

解:由于第一行或第四列所含零最多,故可按第一行展开(解题技巧)

可见四阶下三角形行列式的值也等于它的主对角线各数之积

例5的结果可推广为

我们称这种行列式为下三角行列式(可任意取值的元素在主对角线的下面)。

例6计算

[答疑编号10010202:针对该题提问]

解:由于第2行含0最多,所以应按第二行展开

例7计算

[答疑编号10010203:针对该题提问]

解:将按第6行展开得

例8计算

(1)

[答疑编号10010204:针对该题提问]

解:按第4行展开

(2)

[答疑编号10010205:针对该题提问]

解:将D按第一行展开

(重新分组后得出)

1.3行列式的性质与计算

因为n阶行列式是n!项求和,而且每一项都是n个数的乘积,当n比较大时,计算量会非常大,例如,10!=3628800。所以对于阶数较大的行列式很难直接用定义去求它的值,这时利用行列式的性质可以有效地

解决行列式的求值问题。下面我们来研究行列式的性质,并利用行列式的性质来简化行列式的计算。

1.3.1行列式的性质

将行列式D的第一行改为第一列,第二行改为第二列……第n行改为第n列,仍得到一个n阶行列式,

这个新的行列式称为D的转置行列式,记为或。即如果

性质1行列式和它的转置行列式相等,即或

根据这个性质可知,在任意一个行列式中,行与列是处于平等地位的。凡是对“行”成立的性质,对“列”

也成立;反之,凡是对“列”成立的性质,对“行”也成立。所以只需研究行列式有关行的性质,其所有结论

对列也是自然成立的。

(运用最多)性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD。这也就是说,行列式可以按某一行和某一按列提出公因数:

证将左边的行列式按其第i行展开以后,再提出公因数k,即得右边的值:

注意如果行列式有多行或多列有公因数,必须按行或按列逐次提出公因数。

例1计算行列式:

[答疑编号10010206:针对该题提问]

=30(4+6+5-2-4-15)

=30(-6)=-180

在例1的计算过程中,我们先提出第二行的公因数2和第三行的公因数3,得到第一个等号右边的式子,然后提出这个行列式中第三列的公因数5,把行列式中各元素的绝对值化小以后,再求出原行列式的值。

例2

[答疑编号10010207:针对该题提问]

因为

所以原式=4abcdef

这里是把上式第一个等号左边的行列式的第一、二、三行分别提出了公因子a,d,f,第二个等号左边的行列式的第一、二、三列分别提出了公因子b,c,e,化简后再求出其值。

例3计算行列式:

在行列式D的每一行中都提出公因数(-1)并用行列式性质1可以得到

[答疑编号10010208:针对该题提问]

因为行列式D是一个数,所以由D= -D,可知行列式D=0。

用这种方法可以证明:任意一个奇数阶反对称行列式必为零。所谓反对称行列式指的是,其中主对角线上的元素全为0,而以主对角线为轴,两边处于对称位置上的元素异号。即若是反对称行列式,则它满足条件

(运用最多)性质3互换行列式的任意两行(列),行列式的值改变符号。即对于如下两个行列式

根据这个性质可以得到下面的重要推论:

推论如果行列式中有两行(列)相同,则此行列式的值等于零。

因为互换行列式D中的两个相同的行(列),其结果仍是D,但由性质3可知其结果为-D,因此D=-D,所以D=0。

性质4如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零。

证设行列式D的第i行与第j行的对应元素成比例,不妨设第j行元素是第i行元素乘以k得到的,则

由于将行列式D中第j行的比例系数k提到行列式的外面来以后,余下的行列式有两行对应元素相同,因此该行列式的值为零,从而原行列式的值等于零。行列式中某两列元素对应成比例的情形可以类似地证明。

例4验算x=3是否是方程的根。

[答疑编号10010209:针对该题提问]

解:因为(第二行与第四行成倍数)

∴x=3是方程f(x)=0的根。

性质5行列式可以按行(列)拆开,即

证将左边的行列式按其第i行展开即得

这就是右边两个行列式之和。

(运用最多)性质6把行列式D的某一行(列)的所有元素都乘以同一数k以后加到另一行(列)的对应元素上去,所得的行列式仍为D。

即:

例5证明:

的充要条件是k=1或k=±2

[答疑编号10010301:针对该题提问]

证因为

(第一行的数乘与(-1)加到第二行上去)

所以,D=0的充要条件是k=1或k=±2。

此题中,为了叙述方便,我们引入了新的记号,将每一步的行变换写在等号上面(若有列变换则写在

等号下面,本题没有列变换),即第一步中的②+(-1)×①表示将第一行的-1倍加到第二行上,第二步是第

一列展开。

根据行列式的展开定理与行列式的性质,我们有下面的定理:

定理1.3.1n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即

,(1.10)

,(1.11)

1.3.2行列式的计算

行列式的计算主要采用以下两种基本方法。

(1)利用行列式的性质,把原行列式化为容易求值的行列式,常用的方法是把原行列式化为上三角(或

下三角)行列式再求值。此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在

按行或按列提取公因子k时,必须在新的行列式前面乘上k。

(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性

质6在某一行或某一列中产生很多个“0”元素,再按包含0最多的行或列展开。

例6计算行列式

[答疑编号10010302:针对该题提问]

解由于上三角行列式的值等于其主对角线上元素的乘积,所以我们只要设法利用行列式的性质将行

列式化为上三角行列式,即可求出行列式的值。

我们在计算例6中的行列式时,是利用行列式的性质先将它化成上三角行列式后,再求出它的值,事实上在计算行列式的值时,未必都要化成上三角或下三角行列式,若将行列式的性质与展开定理结合起来使用,往往可以更快地求出结果。

例7计算行列式:

[答疑编号10010303:针对该题提问]

解观察到行列式的第一行第一列位置的元素a11=1,利用这个(1,1)位置的元素1把行列式中第一列的其他元素全都化为0,然后按第一列展开,可将这个四阶行列式降为三阶行列式来计算,具体步骤如下:

按第一列展开,得

=(-1)×2×

例8计算行列式(把最简单的调到第一列或是第一旬)

[答疑编号10010304:针对该题提问]

在本例中,记号①②写在等号下面,表示交换行列式的第一列和第二列,②+5×①写在等号下面,表示将行列式的第一列乘以5后加到第二列。

例9计算行列式:(例子很特殊)

[答疑编号10010305:针对该题提问]

解这个行列式有特殊的形状,其特点是它的每一行元素之和为6,我们可以采用简易方法求其值,先把后三列都加到第一列上去,提出第一列的公因数6,再将后三行都减去第一行:

(32)?

例10计算行列式:a2-b2=(a+b)(a-b)

[答疑编号10010306:针对该题提问]

例11计算n阶行列式(n>1):

[答疑编号10010307:针对该题提问]

解将行列式按第一列展开,得

(简化的过程就是消阶,次方也应减少,为(N-1)等

例12计算范德蒙德(VanderMonde)行列式:

[答疑编号10010308:针对该题提问](第一行乘(-X1)加到第二行上;第二行乘(-X1)加到第三行上)

例13 计算

[答疑编号10010309:针对该题提问]

(这是个定律)

例14 计算 (解题规律:每行或是每列中的和是一样的,故每行或是每

列都乘“1”加到第一行或是第一列上去,再把这个数当公因数提取,形成有一行或是列全为“1”的行列式,然后再化简)

[答疑编号10010310:针对该题提问]

=(x+4a )(x-a )4

1.4 克拉默法则

线性代数B复习资料

一 一、选择题 1.下列4个矩阵中是行最简形的矩阵有【 】 101100101101(1)000(2)001(3)011(4)012010000000001--???????? ???????????????? ???????????????? (A )(1)、(2);(B )(2)、(3); (C )(3)、(4);(D )(2)、(3)、(4). 2.设A 是m n ?矩阵,0Ax =是非齐次线性方程组Ax b =的导出方程组,则下列4个命题不正确的有【 】 (1)若有唯一解,则仅有零解。 (2)若有非零解,则有无穷多解。 (3)若无解,则仅有零解。 (4)若有无穷多解,则有非零解; (A )(1)、(3); (B )(1)、(4) ;(C )(2)、(3) ;(D )(2)、(4). 3.设1212101 0,,,24000021B C P A ?? ?? ?? ?? ===???????? -???????? =,则变A 为C 的初等变换过程2121121210(2)(2)240000r r c c ??????+-+-???????????? 可用矩阵乘法表示为【 】 (A )PAP BP C == ; (B )T T T P AP BP C == ; (C )T T PAP BP C == ; (D )T P AP BP C ==. 4.设,,A B C 矩阵均为3阶可逆矩阵,则下列6个等式中成立的有【 】 111(1)()(); (2)()(3)()T T T AB C A BC AB A B AB B A ---=== (4)(5)(6)(2)2T A A AB A B A A =-=?-=- (A )(1)、(3)、(5) ;(B )(2)、(3)、(6);(C )(4)(5)(6);(D )(2)、(4)、(6). 5.设[]1,0,2T ξ=是线性方程组0Ax =的解,则下列4个矩阵中,A 有可能是【 】 [] 011102201(1) 2,1,1;(2) ;(3); (4)422.011010011?? --???? ??---?????? -???? ???? (A )(1)、(2) ; (B )(1)、(3); (C )(2)、(3); (D )(2)、(4).

线性代数(经管类)-阶段测评1,2,3,4

线性代数(经管类)-阶段测评1 1.单选题 1.1 5.0 设矩阵 $A=((a_11,a_12),(a_21,a_22)),B=((a_21+a_11,a_22+a_12),(a_11 ,a_12)),P_1=((0,1),(1,0)),P_2=((1,0),(1,1))$,则必有() 您答对了a a $P_1P_2A=B$ b $P_2P_1A=B$ c $AP_1P_2=B$ d $AP_2P_1=B$ 考点:矩阵的行列变换,左乘行变,右乘列变。 1.2 5.0 设$A$为四阶矩阵,且$|A|=-3$,则$|A^(**)|$=() 您答对了 c ? a $-3$ ?

?b $9$ ? ?c $-27$ ? ?d $81$ ? $|A^(**)|=|A|^(n-1)=-3^3=-27$. 1.3 5.0 设$A,B$为$n$阶方阵,满足$A^2=B^2$,则必有() 您答对了 d ?a $A=B$ ? ?b $A=-B$ ? ?c $|A|=|B|$ ? ?d $|A|^2=|B|^2$ ? 方阵行列式的性质,特别是$|AB|=|A||B|$ 解1:因为$A^2=B^2$,故$|A^2|=|B^2|$,而因为$|AB|=|A||B|$,故$|A^2|=|A|^2,|B^2|=|B|^2$,所以$|A|^2=|B|^2$ 解2:取

$A=((1,0,0),(0,-1,0),(0,0,-1)),B=((1,0,0),(0,-1,0),(0,0,1))$,显然$A^2=B^2=E$,但选项A,B,C都不对,应用排除法知正确答案为D。 1.4 5.0 设3阶矩阵$A$的行列式$|A|=(1)/(3)$,则$|-3A^T|=$() 您答对了 d ?a 9 ? ?b 1 ? ?c -1 ? ?d -9 ? $|-3A^T|=(-3)^3|A^T|=-27|A|=-9$. 1.5 5.0 设矩阵$A=[[a,b],[c,d]]$,且已知$|A|=-1$,则$A^-1$=() 您答对了 b ?a $[[d,-b],[-c,a]]$ ? ?b $[[-d,b],[c,-a]]$ ? ?c $[[d,-c],[-b,a]]$

考研数学线性代数讲义

1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按 行(列)展开定理以及AA*=A*A=|A|E. 2.若涉及到A.B是否可交换,即AB=BA,则立即联想到用逆矩阵的定 义去分析。 3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出 因子aA+bE再说。 4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。 5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。 8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 2010考研基础班线性代数 主讲:尤承业 第一讲基本概念 线性代数的主要的基本内容:线性方程组矩阵向量行列式等一.线性方程组的基本概念 线性方程组的一般形式为: 其中未知数的个数n和方程式的个数m不必相等. 线性方程组的解是一个n个数 C,2C, …, n C构成,它满足:当每个方程中 1 的未知数1x都用1C替代时都成为等式. 对线性方程组讨论的主要问题两个:

(1)判断解的情况. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷多个解;如果两条直线平行且不重合则无解。 (2)求解,特别是在有无穷多解时求通解. 齐次线性方程组: 021====n b b b 的线性方程组.0,0,…,0 总是齐次线性方程组的解,称为零解. 因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 二.矩阵和向量 1.基本概念 矩阵和向量都是描写事物形态的数量形式的发展. 矩阵由数排列成的矩形表格, 两边界以圆括号或方括号, m 行n 列的表格称为m ?n 矩阵. 这些数称为他的元素,位于第i 行j 列的元素称为(i,j)位元素. 5401 23-是一个2?3矩阵. 对于上面的线性方程组,称矩阵 mn m m n n a a a a a a a a a A 212222111211=和m mn m m n n b b b a a a a a a a a a A 21212222111211)(=β

经济数学基础线性代数讲义

经济数学线性代数学习讲义 合川电大兰冬生 1, 矩阵: A =?? ?? ? ?????-012411210, 称为矩阵。认识矩阵第一步: 行与列, 横为行, 竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2 这是一个三行三列矩阵, 再给出一个三行四列矩阵 ?? ?? ? ?????-----=12614231213252A 教材概念的m 行n 列矩阵。 ? ???? ???????mn m m n n a a a a a a a a a 2 1 2222111211, 这个矩阵记作n m A ?, 表明这个矩阵有m 行, n 列, 注意行m 写在前面,列n 写在后面, 括号里面的称为元素, 记为ij a , i 是行, j 是列, 例如: ???? ??????-----12614231213252是三行四列矩阵, 也说成43?矩阵, 注意行3在

前面, 列4在后面, 这里211=a ( 就是指的第一行第一列那个数) 123-=a ( 就是指的第二行第三列那个数) 2, 矩阵加法 矩阵加法, 满足行列相同的矩阵才能相加, 对应位置的数相加。 例如: ??????????--011101010 +??????????-012411210=?????? ? ???-021512220 减法是对应位置的数相减。, 3, 矩阵的乘法 矩阵乘法参看以下法则: 注意字母对应 ???? ? ?????3332 31 232221131211 a a a a a a a a a ????? ? ?????3332 312322211312 11b b b b b b b b b ???? ? ??????+?+??+?+??+?+??+?+??+?+??+?+??+?+??+?+??+?+?=33332332133132 332232123131 332132113133232322132132232222122131232122112133132312131132132212121131 1321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明: ???? ? ?????3332 31 232221131211a a a a a a a a a ???????????3332 312322211312 11b b b b b b b b b =?? ? ?????3332 31 232221 1211 c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b , 注意是对应元素相乘, 再求和。 乘积的结果矩阵21c 等于第一个矩阵的第二行元素21a 22a 23a 乘以第二个矩阵的第一列元素11b 21b 31b 。

(完整版)自考本科线性代数(经管类)知识汇总

自考高数线性代数笔记 第一章行列式 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减 次对角线的乘积) 例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如

例1a为何值时, [答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解:. 解得0

自学考试线性代数经管类资料重点考点

线性代数(经管类)考点逐个击破 第一章 行列式 (一)行列式的定义 行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数. 1.二阶行列式 由4个数)2,1,(=j i a ij 得到下列式子: 11122122 a a a a 称为一个二阶行列式,其运算规则为 2112221122 211211a a a a a a a a -= 2.三阶行列式 由9个数)3,2,1,(=j i a ij 得到下列式子:33 323123222113 1211a a a a a a a a a 称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念. 3.余子式及代数余子式 设有三阶行列式 33 323123222113 12113a a a a a a a a a D = 对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M 例如 33 32232211a a a a M = ,33 32131221a a a a M = ,23 22131231a a a a M = 再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式. 例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为 我们把它称为3D 按第一列的展开式,经常 31 312121111133 323123222113 12113A a A a A a a a a a a a a a a D ++==

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

线性代数讲义

线性代数讲义 线性代数攻略 线性代数由两部分组成: 第一部分:用矩阵解方程组(判断解的存在性,用有限个解表示所有的解)第二部分:用方程组解矩阵(求特征值,特征向量,对角化,化简实二次型)主观题对策 1. 计算题精解 计算题较之选择题与填空题难度几乎没有增加,但计算量大大增加,故出错的机会大幅增长,因此应力求用简便方法解决问题. 一.行列式的计算: 单纯计算行列式的题目大概永远不会出现.所以需要结合其它的知识点. l 核心内容 范德蒙行列式/余子式/代数余子式/Cramer法则: l 典型方法 降阶法(利用Gauss消元法化为三角矩阵:常常是将所有的行或列加到一起)/特征值法(矩阵的行列式等于其特征值之积)/行列式的其它性质(转置矩阵/逆矩阵/伴随矩阵/矩阵之积) 例1 计算下述三个n阶矩阵的行列式: . 解先算|B|=xn;再算|A|: 故|C|= |A|(-1)(1+?+n)+[(n+1)+…+(2n)] |B-1| =(-1)(1+2n)n(n+x)/x. 例2(2004-4) 设矩阵 ,矩阵B满足ABA*=2BA*+E,则|B|=[ ]. 分析化简可得(A-2E)BA*=E;于是|A-2E||B||A*|=1. 又|A*|=9,|A-2E|=1,所以|B|=1/9. (切忌算B=(A-2E)-1(A*)-1.) 例3 设4×4矩阵A=(x,a,b,g), B=(h,b,g,a). 若|A|=1, |B|=2,则行列式|A+B|=[ ].

正解:|A+B|=|x+h, a+b, b+g, g+a|=|x+h, 2(a+b+g), b+g, g+a|=2|x+h, a+b+g, b+g, g+a| =2|x+h, a, b+g, g+a|=2|x+h, a, b+g, g|=2|x+h, a, b, g|=2(|x, a, b, g|+|h, a, b, g|)=2(|A|+|B|)=6. 巧解:正解令人羡慕,但可能想不起来.于是令A=E,则.但|B|=2,所以取最简单的 .于是 ,故|A+B|=6. 例4 若四阶方阵A的特征值分别为-1,1,2,3,则行列式|A-1+2A*|=[ ]. 解此题考查对特征值的理解.特征值的性质中最重要(也是最简单的)的有两条,即所有特征值的和等于矩阵的迹(=对角线元素之和),而所有特征值的积等于矩阵的行列式.因此|A|= -6!剩余的就是简单的变形了: A-1+2A* = A-1 (E+2A A*) = A-1 (E+2|A|E)=-11A-1. 故|A-1+2A*|=|-11A-1|=(-11)4|A-1|=-114/6. 本题有巧解,你想到了吗?对!就让A是那个满足条件的最简单的矩阵! 例2(上海交大2002) 计算行列式 其中,. 本题只要对特征多项式有一定认识,则易如反掌.所求行列式对应的矩阵A=xE+B, 其中B=(aibj)的任意两行均成比例,故其秩为1(最重要的矩阵类型之一)或0,但由题中所给条件,B10,于是,B至少有n-1个特征值为0,另有一特征值等于trB= a1b1+ a2b2+…+ anbn10. 从而,A有n-1个特征值x,另有一个特征值x+trB.OK 例3(2001) 设A为三阶矩阵,X为三维向量,X,AX, A2X线性无关,A3X=4AX-3A2X.试计算行列式|2A2+3E|. 很多人觉得此题无从下手,实在冤枉了出题人.由A3X=2AX-3A2X可知, A(A2+3A-4E)X=0.由此知, |A|=0:否则,A可逆,X,AX, A2X将线性相关,矛盾!从而(A2+3A-4E)X=0:故X是齐次线性方程组(A2+3A-4E)Y=0的非零解.于是|A2+3A-4E|=0.故A的三个特征值为0,1,-4.于是2A2+3E的三个特征值为3,5,35.所以, |2A2+3E|=3′5′35=525. 例4(1995) 设n阶矩阵A满足AA¢=I,|A|<0,求|A+I|. 解首先, 1=|AA¢|=|A|2,所以|A|=-1. 其次, |A+I|=|A+AA¢|=|A||I+A¢|=|A||I+A|=-|I+A|, 故|A+I|=0. (涉及的知识点: |A|=|A¢|, (A+B)¢=A¢+B¢.) 例5(1999)设A是m′n矩阵,B是n′m矩阵,则

自学考试试卷 线性代数(经管类)

2015年10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 本试卷共3页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间。超出答题区域无效。 说明:在本卷中。A T表示矩阵A的转置矩阵。A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性表出,则下列结论中 正确的是 A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则 下列结论中正确的是 A.若r1=m,则Ax=O有非零解 B.若r1=n,则Ax=0仅有零解 C.若r2=m,则Ax=b有无穷多解 D.若r2=n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值=

第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij的代数余子式为A ij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________. 8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________. 12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________. 15.二次型f(x1,x2)=-2x12+x22+4x1x2的规范形为__________. 三、计算题(本大题共7小题,每小题9分,共63分) 请在答题卡上作答。 16. 计算行列式的值. 17. 已知矩阵,若矩阵x满足等式AX=B+X,求X.

线性代数 英文讲义

Chapter 4 Linear Transformations In this chapter, we introduce the general concept of linear transformation from a vector space into a vector space. But, we mainly focus on linear transformations from n R to m R. §1 Definition and Examples New words and phrases Mapping 映射 Linear transformation 线性变换 Linear operator 线性算子 Dilation 扩张 Contraction 收缩 Projection 投影 Reflection 反射 Counterclockwise direction 反时针方向 Clockwise direction 顺时针方向 Image 像 Kernel 核 1.1 Definition ★Definition A mapping(映射) L: V W is a rule that produces a correspondence between two sets of elements such that to each element in the first set there corresponds one and only one element in the second set. ★Definition A mapping L from a vector space V into a vector space W is said to be a linear transformation(线性变换)if

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

自考线性代数(经管类)试题及答案解析2020年1月

1 全国2018年1月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A*表示A 的伴随矩阵;秩(A )表示矩 阵A 的秩;|A|表示A 的行列式;E 表示单位矩阵。 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A 为三阶方阵且,2-=A 则=A A T 3( ) A.-108 B.-12 C.12 D.108 2.如果方程组?? ???=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.-2 B.-1 C.1 D.2 3.设A 、B 为同阶方阵,下列等式中恒正确的是( ) A.AB=BA B.()111---+=+B A B A C.B A B A +=+ D.()T T T B A B A +=+ 4.设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8 D.12 5.设β可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量中β只能是 A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0) 6.向量组α1 ,α2 ,…,αs 的秩不为s(s 2≥)的充分必要条件是( ) A. α1 ,α2 ,…,αs 全是非零向量

2 B. α1 ,α2, …,αs 全是零向量 C. α1 ,α2, …,αs 中至少有一个向量可由其它向量线性表出 D. α1 ,α2, …,αs 中至少有一个零向量 7.设A 为m n ?矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 8.设A 与B 是两个相似n 阶矩阵,则下列说法错误.. 的是( ) A.B A = B.秩(A )=秩(B ) C.存在可逆阵P ,使P -1AP=B D.λE-A =λE-B 9.与矩阵A =???? ??????200010001相似的是( ) A.???? ??????100020001 B.??????????200010011 C.??????????200011001 D.???? ??????100020101 10.设有二次型,x x x )x ,x ,x (f 232221321+-=则)x ,x ,x (f 321( ) A.正定 B.负定 C.不定 D.半正定 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.若,02 11=k 则k=___________. 12.设A=???? ??????411023,B=,010201??????则AB=___________.

2014汤家凤线性代数辅导讲义

文都教育2014年考研数学春季基础班线性代数辅导讲义 主讲:汤家凤 第一讲 行列式 一、基本概念 定义1 逆序—设j i ,是一对不等的正整数,若j i >,则称),(j i 为一对逆序。 定义2 逆序数—设n i i i 21是n ,,2,1 的一个排列,该排列所含逆序总数称为该排列的逆序数,记为)(21n i i i τ,逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。 定义3 行列式—称 nn n n n n a a a a a a a a a D 21 22221 11211 =称为n 阶行列式,规定 n n n nj j j j j j j j j a a a D 21212121) ()1(∑-= τ 。 定义 4 余子式与代数余子式—把行列式nn n n n n a a a a a a a a a D 21 2222111211 = 中元素ij a 所在的i 行元 素和j 列元素去掉,剩下的1-n 行和1-n 列元素按照元素原来的排列次序构成的1-n 阶行列式,称为元素ij a 的余子式,记为ij M ,称ij j i ij M A +-=)1(为元素ij a 的代数余子式。 二、几个特殊的高阶行列式 1、对角行列式—形如n a a a 0 000021称为对角行列式,n n a a a a a a 2121000 00 0=。 2、上(下)三角行列式—称 nn n n a a a a a a 222112 11及 nn n n a a a a a a 2 1 22 21 110 0为上(下)三角行列式, nn nn n n a a a a a a a a a 221122211211 0=, nn nn n n a a a a a a a a a 22112 1222111 0=。

自考04184线性代数(经管类)讲义

自考高数线性代数课堂笔记 第一章行列式 线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减次对角线的乘积)例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆 方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角

线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如 例1a为何值时,

[答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解: 解得0

线性代数(经管类)综合习题集(精心整理)

线性代数(经管类)综合试题一 (课程代码 4184) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设D==M≠0,则D1== ( B ). A.-2M B.2M C.-6M D.6M 2.设 A、B、C为同阶方阵,若由AB = AC必能推出B = C,则A 应满足 ( D ). A. A≠O B. A = O C.|A|= 0 D. |A|≠0 3.设A,B均为n阶方阵,则 ( A ). A.|A+AB|=0,则|A|=0或|E+B|=0 B.(A+B)2=A2+2AB+B2 C.当AB=O时,有A=O或B=O D.(AB)-1=B-1A-1 4.二阶矩阵A,|A|=1,则A-1= ( B ). A. B. C. D. ,则下列说法正确的是( B ). A.若两向量组等价,则s = t .

B.若两向量组等价,则r()= r() C.若s = t,则两向量组等价. D.若r()=r(),则两向量组等价. 6.向量组线性相关的充分必要条件是( C ). A. 中至少有一个零向量 B. 中至少有两个向量对应分量成比例 C. 中至少有一个向量可由其余向量线性表示 D. 可由线性表示 7.设向量组有两个极大无关组与 ,则下列成立的是( C ). A. r与s未必相等 B. r + s = m C. r = s D. r + s > m 8.对方程组Ax = b与其导出组Ax = o,下列命题正确的是( D ). A. Ax = o有解时,Ax = b必有解. B. Ax = o有无穷多解时,Ax = b有无穷多解. C. Ax = b无解时,Ax = o也无解. D. Ax = b有惟一解时,Ax = o只有零解. 9.设方程组有非零解,则k = ( D ). A. 2 B. 3 C. -1 D. 1 10.n阶对称矩阵A正定的充分必要条件是( D ).

自学考试线性代数经管类试卷及答案

自学考试线性代数经管 类试卷及答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2015年4月高等教育自学考试全国统一命题考试 04184 线性代数(经管类)试卷 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设行列式D 1= 22 11 b a b a ,D 2=2 22 111 3232a b a a b a --,则D 2= 【 】 2、若A=???? ??1x 1021,B =??? ? ??y 24202,且2A =B ,则 【 】 =1,y=2 =2,y=1 =1,y=1 =2,y=2 3、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】 A.????? ??000000001 B.????? ??000010001 C.????? ??100000001 D.???? ? ??100010001

4、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组 (E +A )x =0的基础 解系所含解向量的个数为 【 】 5、矩阵??? ? ??--3113有一个特征值为 【 】 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6、设A 为3阶矩阵,且A =3,则13-A = . 7、设A =??? ? ??5312,则A * = . 8、已知A =???? ??1201,B =??? ? ??-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数 k= .

自考线性代数(经管类)公式汇总(精髓版)

第一章 行列式 一.行列式的定义和性质 1. 余子式ij M 和代数余子式ij A 的定义 2.行列式按一行或一列展开的公式 1)1 1 ,1,2, ;(,1,2, )n n ij ij ij ij ij ij n n i j A a a A j n A a a A i n ========∑∑ 2)11 ; 00 n n ij ik ij kj i j k j k i A A a A a A k j k i ====??==??≠≠??∑∑ 测试点 行列式的任意一行(列)与另一行(列)元素的代数余子式的乘积之和为零. 3.行列式的性质 1).T A A = 2)用数k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍.推论 3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论 4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开. 6)行列式的某一行(列)的k 倍加到另一行(列)上,所得新行列式与原行列式的值相等. 例 设行列式22 11 b a b a =1,22 11 c a c a =2,则2 22 1 11 c b a c b a ++=( 3 ) 二.行列式的计算 1.二阶行列式和三角形行列式的计算. 2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算. 3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开. 4.行列式中各行元素之和为一个常数的类型. 5. 范德蒙行列式的计算公式 例(性质4) (1)(1)(2) (2)(1)(3) 123233 100 233 100203249 4992004992004090.367677 300677 300607 +-+-= = = 例(各行元素之和为常数的行列式的计算技巧)

自考线性代数(经管类)笔记-重点解析

《线性代数(经管类)》考试笔记,重点解析 武汉大学出版社 2006年版 第一章行列式 1.1 行列式的定义 1.2 行列式行(列)展开 1.3 行列式的性质与计算 1.3 克拉默法则 第二章矩阵 2.1 线性方程组与矩阵的定义 2.2 矩阵运算 2.3 分阵的逆矩阵 2.4 分块矩阵 2.5 矩阵的初等变换与初等方阵 2.6 矩阵的秩 2.7 矩阵与线性方程组 第三章向量空间 3.1 n维向量概念及其线性运算 3.2 线性相关与线性无关 3.3 向量组的秩 3.4 向量空间 第四章线性方程组 4.1 齐次线性方程组 4.2 非齐次线性方程组 第五章特征值与特征向量 5.1 特征值与特征向量 5.2 方阵的相似变换 5.3 向量内积和正交矩阵 5.4 实对称矩阵的相似标准形 第六章实二次型 6.1 实二次型及其标准形 6.2 正这二次型和正定矩阵 第一部分行列式 本章概述 行列式在线性代数的考试中占很大的比例。从考试大纲来看。虽然只占13%左右。但在其他章。的试题中都有必须用到行列式计算的内容。故这部分试题在试卷中所占比例远大于13%。 1.1 行列式的定义 1.1.1 二阶行列式与三阶行列式的定义 一、二元一次方程组和二阶行列式

例1.求二元一次方程组 的解。 解:应用消元法得 当时。得 同理得 定义称为二阶行列式。称为二阶行列式的值。 记为。 于是 由此可知。若。则二元一次方程组的解可表示为: 例2 二阶行列式的结果是一个数。我们称它为该二阶行列式的值。 二、三元一次方程组和三阶行列式 考虑三元一次方程组 希望适当选择。使得当后将消去。得一元一次方程 若,能解出

相关文档
相关文档 最新文档