文档视界 最新最全的文档下载
当前位置:文档视界 › 第一型曲面积分转为第一型曲线积分的算法

第一型曲面积分转为第一型曲线积分的算法

第一型曲面积分转为第一型曲线积分的算法
第一型曲面积分转为第一型曲线积分的算法

第一型曲面积分.

例5? 设有空间闭区域仏={(x 』,z )|L 十b + z* 炉,z"}, 。2 ={(*』,Z )|x2 + y' + z* 炉,xno 』no,zno},则有(「) (A) Jff = 4fJf xdv a \ 口 2 (C) JjJ 皿=4jJJz 加 2 n 2 解:由对称性, JJj xdv = 0, JJJ xdv JJf ydv = 0, JJf ydv 工? n. ?2 Jjj xyzdv = 0, JJJ xyzdv □ 门2 3.含绝对值函数的二重积分的计算 例1计算血-兀2|db ?其中6-1 W0"" 解 先去掉绝对值符号,如图 川y_p|db D =jj (x 2-j)da + JJ(y-x 2 )da Di 4-D J D 、 訂:时:(宀刃与+匸时:0-兀湎=*? (B) |JJ ydv = 4jjj ydv

4、交换积分次序的方法 1.计算fdxfxb - dy 解由于卜一心堤无法积出类型,则需交 换积分次序, y \ /歹=x V D: O^x

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

第一型曲线积分与曲面积分的一些问题

第一型曲线积分与曲面积分的一些问题 第1型曲线积分与曲面积分的1些问 题摘要本文归纳研究了第1型曲线积分与曲面积分的物理背景,定义,性质及计算方法,并在此基础上给出了它们在特殊坐标变换下的计算公式及证明。并且利用这个公式,推导出了当第1型曲线积分或曲面积分的被积函数为奇函数或偶函数,积分曲线或曲面是对称的时的几个重要的推论及证明。关键字:第1型曲线积分与曲面积分;坐标变换;奇偶性;对称性。 Some questions about curve integral and surface integral of the first kind A bstract In this article we induce and study the physical background ,definition, quality ,and calculating method of the curve and surface integral of the first kind ,and at the base of these , calculate formula and providence was proposed in the special coordinate transformation. Using this formula ,we get several important inference and prove that when the curve and surface integral of the first kin d’s integrand is odd function or even function and the integral curve or surface is symmetry.Key word: Curve integral and surface integral of the first kind; coordinate transformation; odevity; symmetry

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

第二十章曲线积分

第二十章曲线积分 教学目的:1.理解第一、二型曲线积分的有关概念;2.掌握两种类型曲线积分的计算方法,同时明确它们的联系。 教学重点难点:本章的重点是曲线积分的概念、计算;难点是曲线积分的计算。 教学时数:6学时 § 1 第一型曲线积分 一. 第一型线积分的定义: 1.几何体的质量: 已知密度函数 , 分析线段的质量 2.曲线的质量: 3.第一型曲线积分的定义: 定义及记法.线积分,. 4.第一型线积分的性质: P198 二. 第一型线积分的计算: 1.第一型曲线积分的计算: 回顾“光滑曲线”概念 . Th20.1 设有光滑曲线, . 是定义在上的连续函数 . 则 . ( 证 ) P199 若曲线方程为: , 则 .

的方程为时有类似的公式. 例1 设是半圆周, . . P200例1 例2 设是曲线上从点到点的一段. 计算第一型曲线积分. P200例2 空间曲线上的第一型曲线积分: 设空间曲线 ,. 函数连续可导, 则对上的连续函数, 有 . 例3计算积分, 其中是球面被平面 截得的圆周 . P201例3 解由对称性知 , , =. ( 注意是大圆 ) § 2 第二型曲线积分 一.第二型曲线积分的定义: 1.力场沿平面曲线从点A到点B所作的功: 先用微元法 , 再用定义积分的方法讨论这一问题 , 得

, 即. 2. 稳流场通过曲线( 从一侧到另一侧 ) 的流量: 解释稳流场. ( 以磁场为例 ). 设有流速场. 求在单位时间内通过曲线AB从左侧到右侧的流量E . 设曲线AB上点处的切向量为, ( 是切向量方向与X轴正向的夹角. 切向量方向按如下方法确定: 法线方 向是指从曲线的哪一侧到哪一侧, 在我们现在的问题中是指从左侧到右侧的方向. 切向量方向与法线向按右手法则确定, 即以右手拇指所指为法线方向, 则食指所指为切线方向 .) .在弧段上的流量. , 因此 , . 由, 得 . 于是通过曲线AB从左侧到右侧的总流量E为 . 3. 第二型曲线积分的定义: 闭路积分的记法. 按这一定义 , 有 力场沿平面曲线从点A到点B所作的功为

数学分析20.1第一型曲线积分(含习题及参考答案)

第二十章 曲线积分 1第一型曲线积分 一、第一型曲线积分的定义 引例:设某物体的密度函数f(P)是定义在Ω上的连续函数. 当Ω是直线段时,应用定积分就能计算得该物体的质量. 当Ω是平面或空间中某一可求长度的曲线段时,可以对Ω作分割,把Ω分成n 个可求长度的小曲线段Ωi (i=1,2,…,n),并在每一个Ωi 上任取一点P i . 由f(P)为Ω上的连续函数知,当Ωi 的弧长都很小时,每一小段Ωi 的质量可近似地等于f(P i )△Ωi , 其中△Ωi 为小曲线段Ωi 的长度. 于是在整个Ω上的质量就近似地等于和式i n i i P f ?Ω∑=1)(. 当对Ω有分割越来越细密(即d=i n i ?Ω≤≤1max →0)时,上述和式的极限就是 该物体的质量. 定义1:设L 为平面上可求长度的曲线段,f(x,y)为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i=1,2,…,n),L i 的弧长记为△s i ,分割T 的细度为T =i n i s ?≤≤1max ,在L i 上任取一点 (ξi ,ηi ),( i=1,2,…,n). 若有极限i n i i i T s f ?∑=→1 ),(lim ηξ=J ,且J 的值与分割T 与点(ξi ,ηi )的取法无关,则称此极限为f(x,y)在L 上的第一型曲线积分,记作:?L ds y x f ),(. 注:若L 为空间可求长曲线段,f(x,y,z)为定义在L 上的函数,则可类

似地定义f(x,y,z)在空间曲线L 上的第一型曲线积分?L ds z y x f ),,(. 性质:1、若?L i ds y x f ),((i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则 ?∑=L k i i i ds y x f c 1 ),(=∑?=k i L i i ds y x f c 1 ),(. 2、若曲线L 由曲线L 1,L 2,…,L k 首尾相接而成,且?i L ds y x f ),((i=1,2,…,k) 都存在,则?L ds y x f ),(也存在,且?L ds y x f ),(=∑?=k i L i i ds y x f 1 ),(. 3、若?L ds y x f ),(与?L ds y x g ),(都存在,且f(x,y)≤g(x,y),则 ? L ds y x f ),(≤?L ds y x g ),(. 4、若?L ds y x f ),(存在,则?L ds y x f ),(也存在,且?L ds y x f ),(≤?L ds y x f ),(. 5、若?L ds y x f ),(存在,L 的弧长为s ,则存在常数c ,使得?L ds y x f ),(=cs, 这里),(inf y x f L ≤c ≤),(sup y x f L . 6、第一型曲线积分的几何意义:(如图)若L 为平面Oxy 上分段光滑曲线,f(x,y)为定义在L 上非负连续函数. 由第一型曲面积分的定义,以L 为准线,母线平行于z 轴的柱面上截取0≤z ≤f(x,y)的部分面积就是 ? L ds y x f ),(. 二、第一型曲线积分的计算 定理20.1:设有光滑曲线L:?? ?==) () (t y t x ψ?, t ∈[α,β],函数f(x,y)为定义在L 上的连续函数,则?L ds y x f ),(=?'+'β αψ?ψ?dt t t t t f )()())(),((22. 证:由弧长公式知,L 上由t=t i-1到t=t i 的弧长为△s i =?='+'i i t t dt t t 1 )()(22ψ?. 由)()(22t t ψ?'+'的连续性与积分中值定理,有

第一类曲线积分的计算

第一类曲线积分的计算 1、定义 定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i n i 1s max T ,在i L 上任取一点(i , ).n ,,2,1i )(i 若存在极限J s ),(f lim i i n 1 i i 0T 且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地 定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为J s ),,(f lim i i i n 1 i i 0T , (此处i s 为i L 的弧长,i n i 1s max T , J 为一常数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义 (1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i 由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i ) i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和式 i n 1 i i )P (f

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线y=22ax x -到点o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()11sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

曲线积分与曲面积分复习

第8章 曲线积分与曲面积分 向量值函数在有向曲线上的积分 第二型曲线积分 概念与形式 恒力沿直线方向做功 → →→ → ?=?=l F l F w θcos |||| 变力沿曲线运动?取微元 Qdy Pdx ds F dw +=?=→ ||,则?+ += L Qdy Pdx W 。 平面曲线?+ +L Qdy Pdx ,空间曲线?+ ++L Rdz Qdy Pdx ,性质??- +=L L 一、计算方法 1.设参数,化定积分 ?L dx y x P ),(+dy y x Q ),(=dt t y t y t x Q t x t y t x P t t })()](),([)()](),([{10 ? '+' 2.平面闭曲线上积分-用格林公式 ???+=???? ? ???-??L D Qdy Pdx dxdy y P x Q ,其中L 是D 的取正向的边界曲线,D 为单连通区域,P ,Q 与L D ?上有连续一阶偏导数。 ~ 3.对于积分与路径无关的可自选路径 4.积分与路径无关 ),(),,(y x Q y x P 及偏导数于L D ?上连续。下列四个命题等价 (1)? +C Qdy Pdx =0,对D 内任意闭曲线C . (2) ?+L Qdy Pdx 积分与路径无关 (3)存在),(y x u 使du =dy y x Q dx y x P ),(),(+B A L L u du Qdy Pdx |==+??? (4)x Q y P ??=?? 在D 内恒成立. 常以(4)为条件,(2)作为结论,自选路径积分 二、例题 1.基础题目,设参数,化定积分 , (1) 计算? -=L ydx xdy I ,: L 如图ABCDEA 解 (1)设参数法 ?∑? ==L i L i 5 1 于1L 上 设t x cos =,t y sin = ?? -= +=-0 2 222 )sin (cos 1 ππ dt t t ydx xdy L 于2L 上 设t x cos =,t y sin 2= ?? =?+?=-20 )sin sin 2cos 2(cos 2 π πdt t t t t ydx xdy L 于3L 上 以x 为参数,xdx dy 2-=

第二类曲面积分的计算方法

第二类曲面积分的计算 方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过 程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧. 由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知 识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在 求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种 方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分, 并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重 积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第 二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为

(,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 定义 .S S i i 的面积,他们的符号由的方向来确定若的法线正向与轴正向成锐角时, z .S xy i i i S xoy S z ?在平面的投影区域的面积为正反之,若法线正向与轴正向成钝角时, .S xy i i xoy S ?他在平面的投影区域的面积为负在各个小曲面上任取一点,(,) i i i ξηζ. 若 lim 1 T n i P →=∑,(,)i i i ξηζyz i S ?0 lim 1 T n i Q →=+ ∑,(,)i i i ξηζzx i S ?0 lim 1 T n i R →=+ ∑,(,)i i i ξηζxy i S ?存在, 或者

第二型曲面积分的计算方法

龙源期刊网 https://www.docsj.com/doc/f411985446.html, 第二型曲面积分的计算方法 作者:周三章赵大方 来源:《科教导刊》2014年第24期 摘要本文从化归的角度,介绍利用高斯公式和合一投影法简化第二型曲面积分的计算,并结合实例予以说明。 关键词第二型曲面积分高斯公式合一投影法 中图分类号:O172.2 文献标识码:A Methods of Computing the Second Surface Integral ZHOU Sanzhang[1], ZHAO Dafang[2] ([1]College of Mechatronics and Control Engineering, Hubei Normal University,Huangshi, Hubei 435002; [2] College of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002) Abstract This paper introduces how to simplify the caculation of the Second Surface Integral by utilizing the Gauss formula and Projection method, there application are illustrated by some typical example. Key words the second surface integral; Gauss formula; projection 高等数学的学习中,第二型曲面积分的计算是一个难点。计算第二型曲面积分方法比较多,计算的难易程度也不同。如果运用化归的思想,通常可以达到事半功倍的效果。化归的思想具体表现在运用合一投影法,高斯公式简化求解过程。本文以几例具体来说明以上两种 计算方法。 1 利用高斯公式转化为三重积分计算 引理[1]:设空间闭区域是由分片光滑的闭曲面所围成,函数(),(),()在具有一定阶连续偏导数,则有 ( + + ) = + + , 或

第一型曲线积分

第一型曲线积分 标准式: dt t r t r f ds f ??'=Γ β α )()( 算法:参数法 1.求出Γ的一个向量参数方程)(t r r = 2.计算弧元dt t r ds )( '= 3.计算定积分dt t r t r f ?'β α )()( 特别地: 显示方程 )(x y ?= xoy 平面的圆的参数方程???==θ θ cos sin a y a x 为参数θ 第二型曲线积分 标准式: dt t r t r F p d p F ?? '?= ?Γ β α )()()(

其中),,(R Q P F = 符号按参数增加的方向积分为正 算法: 一.参数法 dt t z t y t x t r R t r Q t r P dz R Qdy Pdx p d p F ))(),(),(())(),(),(()('''?= ++= ???? Γ Γ β α 二.Green 公式(二维) (封闭曲线的积分 转化到 所围成曲面的积分即二重积分) dxdy y P x Q Qdy Pdx ???Ω ?Ω ??- ??= +)( (定向:一个人沿着Ω?走的正方向行进时,区域Ω总在这个人的左边) 三.Stokes 公式(三维) (封闭曲线的积分 转化到 封闭的曲面的积分 封闭的曲面即有所围区域体即二重积分之和) ?? ?∑ ∑ ??????= ++R Q P z y x dxdy dzdx dydz dz R Qdy Pdx 应用:求曲面面积 ??????= - =-= D D D xdy dx y ydx xdy D 2 1)(σ 第一型曲面积分 标准式:(1)dudv r r r f fd v u ? ?? ∑ ? ?= σ

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中, 必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二 型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌 握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题 型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说 明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第 一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系, 让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的 应用. 2 预备知识 2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++v v v v , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++v v v v 则 若∑为曲面,流速v v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =v v 和单位法向量i n v 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 2.1.2 定义

第5讲 曲面积分习题

第一型曲面积分 简化计算 1.2222:(0)S x y z R R ++=>,则 (1)S xdS =òò (2 )S = (3) 2S x dS =òò 利用二重积分计算 1.(BHP272)计算2()S I ax by cz d dS = +++òò,其中2222:(0)S x y z R R ++=> 2.设22 2:122 x y S z ++=的上半部分,点(,,)P x y z S ?,P 为S 在点P 处的切平面, (,,)x y z r 为点(0,0,0)O 到平面P 的距离,求(,,)S z I dS x y z r =òò。 第二型曲面积分 (一)积分曲面不封闭 方法一:直接化为二重积分 方法二:化为对面积的曲面积分(积分曲面为平面) 方法三:添加曲面使之封闭,用高斯公式 1.计算[(,,)][2(,,)][(,,)]S I f x y z x dydz f x y z y dzdx f x y z z dxdy =+++++òò,其中f 为连续函数, S 为平面1x y z -+=在第四卦限部分的上侧。

2.计算332223(1)S I x dydz y dzdx z dxdy =++-òò,其中S 是曲面221(0)z x y z =--3的上侧。[]p - (二)曲面积分封闭 方法一:直接化为二重积分计算(不能用高斯公式时) 方法二:借助高斯公式化为三重积分(注意高斯公式的条件) 1.[BHP275] 计算z S I = ,其中S 为锥面z =与平面1,2z z ==所围立体表面外侧。 2.计算32222()S xdydz ydzdx zdxdy I x y z ++= ++òòò,其中S 为不穿过坐标原点的光滑闭曲面,方向取外侧。 练习: 计算:32222()S xdydz ydzdx zdxdy I x y z ++= ++òòò,222:224S x y z ++=取外侧。

习题十八 第一型曲线积分

习题十八 第一型曲线积分 一、填空题 1、 设曲线L 是由) 10(1:),10(0:),10(0:321≤≤=+≤≤=≤≤=x y x L x y L y x L 所围成的平面图形的边界,函数),(y x f 在上连续,则将ds y x f L ),(? 化为定积分 计算时, = ? 1 ),(L ds y x f ? 1 ),0(dy y f , = ? 2 ),(L ds y x f ? 1 )0,(dx x f , =? 3 ),(L ds y x f ? -1 2)1,(dx x x f , =? L ds y x f ),( ??? -++1 1 1 2)1,()0,(),0(dx x x f dx x f dy y f 。 2、 设曲线L 的方程为21x y -=,函数),(y x f 在L 上连续,现将曲线积分 ? L ds y x f ),(化为定积分进行计算,则当取x 为参数时, ? = L ds y x f ),(? ---1 1 2 21) 1,(x dx x x f ,而当取y 为参数时, ? =L ds y x f ),( ?--+--1 2 2 21)],1(),1([y dy y y f y y f 3、设曲线L 的方程为24x y -= ()20≤≤x ,则曲线L 以极角为参数的参数方程 ? ? ?≤≤==20,sin 2,cos 2π t t y t x ,用极坐标计算弧长的曲线积分时,? = L ds y x f ),(? 2 )s i n 2,c o s 2(2π dt t t f 。 (其中),(y x f 在L 上连续)。 4、设曲线Γ的直角坐标方程是???==++13 222z z y x ,则Γ用柱面坐标中的θ为参数的参 数方程为π20,1,sin 2, cos 2≤≤?? ? ??===t z t y t x ,并利用它计算曲线积分 ? Γ =ds z y x f ),,( ? ?π 20 2)1,sin 2,cos 2(dt t t f ,(其中f 在Γ上连续)。 二、计算曲线积分? L xds ,其中L 为由直线x y =及抛物线2 x y =所围成的区域的边界。

21.1第一类曲线积分的计算

§21.1 第一类曲线积分的计算 1.定义 定积分研究的是定义在直线段上函数的积分.本节将研究定义在平面曲线或空间曲线段上函数的积分. 定义 1 设L 为平面上可求长度的曲线段,),(y x f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段),,2,1(n i L i =,i L 的弧长记为i s ?,分割T 的细度为i n i s T ?=≤≤1max ,在i L 上任取一点(i ξ,).,,2,1)(n i i =η若存在极限 J s f i i n i i T =?∑=→),(lim 1 ηξ 且J 的值与分割T 及点),(i i ηξ的取法无关,则称此极限为),(y x f 在L 上的第一型曲线积分,记作 .),(ds y x f L ? (1) 定义 2 若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似地定义 ),,(z y x f 在空间曲线L 上的第一型曲线积分为J s f i i i n i i T =?∑=→),,(lim 1 ζηξ,(此处i s ?为 i L 的弧长,i n i s T ?=≤≤1max , J 为一常数),并且记作 ? L ds z y x f .),,( (2) 2.物理意义 1) 设某物体的密度函数f (P )是定义在Ω上的连续函数.当Ω是直线段时,应用定积分就能计算得该物体的质量, 现在研究当Ω是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对Ω作分割,把Ω分成n 个可求长度的小曲线段i Ω(i=1,2,…,n),并在每一个i Ω上任取一点P i 由于f (P )为Ω上的连续函数,故当i Ω的弧长都很小时,每一小段i Ω的质量可近似地等于f (P i )?i Ω,其中?i Ω为小曲线段i Ω的长度.于是在整个Ω上的质量就近似地等于和式 i n i i P f ?Ω∑=)(1 当对Ω的分割越来越细密(即0max 1→?Ω=≤≤i n i d )时,上述和式的极限就应是该物体的 质量.

第二类曲面积分的五种求法

万方数据

万方数据

第二类曲面积分的五种求法 作者:吴燕 作者单位:东南大学,吴健雄学院,江苏,南京,210018 刊名: 考试周刊 英文刊名:KAOSHI ZHOUKAN 年,卷(期):2009,""(33) 被引用次数:0次 参考文献(2条) 1.严子谦数学分析 2004 2.同济大学数学教研室高等数学 2001 相似文献(6条) 1.期刊论文甘泉第二型曲面积分的参数形式计算 -高等数学研究2010,13(1) 给出"第二型曲面积分"的一种计算方法,即在曲面的参数形式下直接将曲面积分转化成参数区域上的一个二重积分,由此可使"第二型曲面积分"的计算问题得到简化.此法是对菲赫金哥尔茨<微积分学教程>所给"第二型曲面积分的参数形式计算"的一个改进. 2.期刊论文陈定元.王业庆.CHEN Ding-yuan.WANG Ye-qing一种有效计算第二型曲面积分的方法-安庆师范学院学报(自然科学版)2008,14(1) 第二型曲面积分的计算是高等数学中的一个难点.利用二重积分和高斯公式计算第二型曲面积分不是很方便,借助第一型曲面积分与第二型曲面积分的关系,得出了一种有效计算第二型曲面积分的方法:向量形式计算法,该方法避免了传统计算方法对曲面侧面的判定和高斯公式条件的限定,物理意义明确,计算过程简单. 3.学位论文邓乐斌黎曼积分中的问题和反例2007 20世纪初期,勒贝格(Lebesgue)测度与积分理论的发展奠定了近代分析数学的基础,而这一变革和发展的根基就是经典的黎曼(Riemann)积分。因而Riemann积分的概念和理论是十分重要的.在数学分析的教学中,Riemann积分占据了主导内容,同时也是学习数学分析的后续课程一常微分方程、复变函数论、实变函数论、概率论以及力学课程的重要基础。 本文主要分析探究了高等数学和数学分析教材中的积分计算和积分证明中出现的错误,总结了正确解决这些问题所需要注意的问题,事实证明正确理解Riemann积分的相关概念和性质是关键。 本文具体由以下六章构成: 第一章介绍了相关背景和本文选题的动机和意义。 第二章述叙了不定积分、定积分、第二型曲面积分的有关定义、性质和计算方法。 第三章给出了现行的高等数学教材中出现的不定积分中的常见错误。 第四章总结了定积分证明或计算中出现的常见错误。 第五章分析了第二型曲面积分计算中的错误以及应该注意的问题。 第六章对Riemann积分中容易出现的错误进行了小结,并指出正确理解Riemann积分的概念是正确解题的基础。 4.期刊论文杨孝先.殷保群计算第二型曲面积分的实例分析-高等数学研究2001,4(1) 今以同济大学数学教研室编<高等数学>(第四版)下册,总习题十的第3题第(4)小题为例,介绍几种计算曲面积分的方法,并简单地给出了该小题的正确解答. 5.期刊论文尹水仿关于对称性在积分计算中的应用补遗-高等数学研究2002,5(1) <高等数学研究>杂志第4卷第1期介绍了对称性在二重积分、三重积分、第一型曲线积分和第一型曲面积分计算中的应用,其方法可参见该期杂志P24-27.除以上应用外,本文还要介绍对称性在第二型曲线积分和第二型曲面积分计算中的应用. 6.期刊论文梁存利高数考研中有关曲面积分问题的求解方法-考试周刊2009,""(46) 最近几年考研高等数学试题中所出现的有关曲面积分的问题主要有第一型曲面积分、第二型曲面积分的计算,以及有关性质的考查.本文以考研高等数学试题为例探讨了曲面积分问题的主要的求解方法,即利用公式转化为二重积分的方法、利用对称性求曲面积分的方法、高斯公式法,以及利用两种曲面间的关系法等. 本文链接:https://www.docsj.com/doc/f411985446.html,/Periodical_kszk200933061.aspx 授权使用:铁道学院(tdxy),授权号:5e3ab8ec-76cb-4f51-a35f-9da5014bbc6f,下载时间:2010年6月30日

计算第一型曲线积分

1. 计算第一型曲线积分: (1)?+L ds y x )(,其中L 是以)1,0(),0,1(),0,0(B A O 为顶点的三角形 分析:先将L 分段表示,在利用第一型曲线积分的性质。 L=OA+AB+BO ,又 OA :010 x x x y =?≤≤?=? AB :011x x x y x =?≤≤?=-? BO :001x y y y =?≤≤? =? 解:?+L ds y x )(=?+OA ds y x )(+?+AB ds y x )(+?+BO ds y x )( = .212101010+=++???dy y dx dx x (2)?+L ds y x 2 122)(,其中L 是以原点为中心,R 为半径的右半圆周; 分析:是以原点为中心,R 为半径的右半圆周的参数方程为: )22.(sin ,cos πθπθθ≤≤- ==R y R x 解:?+L ds y x 2122)(=.2222R d R πθπ π=?- .(3)?L xyds , 其中L 为椭圆122 22=+b y a x 在第一象限中的部分; 分析:先将椭圆122 22=+b y a x 在第一象限中的部分表示为: 0y x a =≤≤ 解:因为,,2222x a bx y x a a b y --='-= 从而 ?L xyds =dx y x a x a b a 2220)(1'+-? =dx x a a x b x a x a b a ) (122222220-+-? =?+-a dx x a b x a a b 02222 222

=?--a dx x b a a a b 0222242)(2 =) (3)(22b a b ab a ab +++. 此题也可将椭圆122 22=+b y a x 在第一象限中的部分表示为参数方程:cos 0sin 2x a y b θπθθ =?≤≤?=? (4) ?L ds y ,其中L 为单位圆周122=+y x ; 解:由于单位圆的参数方程为:cos ,sin (02)x y θθθπ==≤≤,从而 ? L ds y =4sin sin 20=-??πππθθθθd d . (5) ?++L ds z y x )(222,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段; 解: ?++L ds z y x )(222=222222222202)43(3 2)(b a b a dt b a t b a ++=++?πππ. (6) ?L xyzds ,其中L 是曲线)10(2 1,232,23≤≤===t t z t y t x 的一段; 解:?L xyzds =dt t t t t t 223102121232++??? = .143216)1(32102/9=+??dt t t (7)ds z y L ?+222,其中L 是2222a z y x =++与y x =相交的圆. 分析:2222a z y x =++与y x =相交的圆? ??=+=2222a z y y x 的 其参数方程为)20(,cos ,sin 2 π≤≤===t t a z t a y x 解:ds z y L ?+222=.2cos sin 2202222ππ a dt t a t a a =+? 注意:计算第一型曲线积分的关键是将L 的表达式正确的给出来。 2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量,设其线密度为a z 2=ρ. 分析:根据第一型曲线积分的物理意义L M ds ρ=?

相关文档
相关文档 最新文档