文档视界 最新最全的文档下载
当前位置:文档视界 › 金属表面改性-离子注入技术

金属表面改性-离子注入技术

金属表面改性-离子注入技术
金属表面改性-离子注入技术

金属表面改性方法-离子注入技术

(材料加工-铸造一班訾凌君 11S009103)

摘要:系统介绍了金属表面改性用离子注入的机理和特点剖析了温度、注入剂量、离子种类等影响因子对改性层效果的影响,综述了该技术在提高强度和硬度、改善磨损性能、降低摩擦系数等方面的用途,展示了离子注入技术的开发方向和应用前景。

关键词:表面改性;离子注入;应用;

Abstract: mechanism and characteristic of ion implantation using for improvement of surface properties of metallic materials are described systematically. Anatomy genes such as temperature, dosage and the kind of ion infection on improved layer, its applications such as enhancing hardness and strength; improving wear resistance reducing friction modulus have been reviewed, so as to indicate the direction of development and wide range of its use.

Keywords: ion implantation; improvement of surface property of metallic materials application.

1、前言

现代科技的高速发展,对金属材料表面性能(抗磨损、抗腐蚀、抗疲劳等)的要求日益提高,特别是高负荷、高转速、高寿命、耐高温、低损耗金属零部件的迫切需求,广泛采用最近发展的金属表面处理技术及工艺(抛光、电刷镀、化学镀复合镀层、热喷涂、激光表面强化、气相沉积、等离子体渗氮、渗碳、渗硼及金属修补胶和薄膜性保护技术)虽然在各自领域发挥着重要作用,但都存在一定的缺点和局限性,因而使得离子注人技术应运而生。离子注人早期研究的是对金属材料的磨擦和显微硬度的影响,后来转向对金属滑动性能的研究,其结果都成功地实现了工业应用。近十几年来,离子注人在金属和半导体材料的研究和应用发展迅速,并且已扩展到绝缘材料和聚合物方面。离子注人金属表面改性,可以使金属材料表面陶瓷化和金刚石化,使其披上一层十分坚固的盔甲[1]。

常用注人原子[2]有:碳、氮、氧、硼、氦、磷、铁、铝、锌、钴、锡、镍

等,注人原子原则上可以是元素周期表中的任何元素;被注人基体原则上可以是任何材料;离子注人将引起金属表层的成分和结构的变化以及原子环境和电子组态等微观状态的扰动,因此导致金属各种物理、化学、机械性能的变化。主要包括3个方面[3]改善物理性能:例如改善材料表面的电磁学及光学性能,提高超导的转变温度等;(2)改变化学性能:抗腐蚀、抗氧化性能;(3)机械性能:表面的摩擦系数,提高表面硬度和抗磨损能力,改善材料的疲劳性能等。

2、离子注入金属表面改性机理

高速离子注入金属后,与金属中的原子、电子发生弹性碰撞( 离子能量较低) 、非弹性碰撞 ( 离子能量较高),逐渐把离子的动能传递给反冲原子和电子,完成能量的传递和沉积;如果晶格原子从碰撞中获得足够的能量(大于移位阀功,即克服断键能和克服势垒做功之和),则被撞击原子将越过势垒而离开晶格位置进入原子间隙成为间隙原子;如果反冲原子获得的反冲能量远远超过移位阀功,它会继续与晶格原子碰撞,产生新的反冲原子,发生“级联碰撞”。在级联碰撞中,金属原来的晶格位置上会出现许多“空位”,形成辐射损伤[4]即损伤强化;离子注入金属表面后,有助于析出金属化合物和合金相、形成离散强化相、位错网;灵活地引入各种强化因子,即掺杂强化和固溶强化。通过离子注入,减少粘着和互扩散,增强氧化膜、提高润滑性。

图1 离子注入机示意图

离子注入就是从离子源发出的离子经过加速极加速到一定的能量,由磁分析器进行离子选择,然后通过聚焦、扫描,最后打到靶片上。上图1是一个离子注入机的示意图。离子或粒子的能量不同,打到靶片上会产生不同的效应。如下图 2 所示。对于金属中的离子注入,其离子的能量要大于10kev。金属中的离

子注入具有许多其它方法无法比拟的优点。离子注入法与热扩散法不同,它不依赖于固溶度和热扩散系数,可以在室温下注入,可以注入任何一种元素。离子注入深度和剂量可以精确地进行控制,这样就可以重复地进行注入。注入的离子与金属基体有机地熔合在一起,注入层与未注入层没有严格的界限,不会产生如同薄膜脱落的现象。

图2 表面效应与粒子(离子)能量的关系

3、离子注入技术在金属表面改性中的应用

3.1 提高材料的强度和硬度

强度和硬度是金属表面改性的重要研究参数。大量的实验和研究表明:离子注入可以不同程度的提高金属材料表面的强度和硬度;金属表面的硬度和强度随着注入剂量的增加而增加。当金属中注入碳、氮、氧和磷等非金属元素时,可在金属中析出碳化物、氮化物、磷化物等弥散相和超硬相,在近表面形成TiC / TiN,Fe2Ti, Fe2N和Fe2C,表面洛氏硬度得到提高,将Zr和V离子注入Al膜可以在Al膜表面层形成金属化合物DO23 -Al3Zr ,Li2 -Al3Zr ,Al10V 和A l3V。注入剂量分别为:5×1017ions/cm2和3×1017ions/cm2。使表面的硬度和弹性模量

显著提高[5]表1是N注入后金属的硬度增加量。

表1 N+注入后金属硬度的增加量

表2 离子注入提高金属样品的疲劳寿命

3.2 提高抗磨损、抗腐蚀、抗氧化及抗疲劳能力

早在1957年,波维尔就提出材料磨损机制分为四类:粘着、磨粒、腐蚀和表面断裂磨损。通常认为离子注入使基体相晶面间距增大,产生晶格畸变和形成新的强化相,是材料硬度和耐磨性提高的主要原因。常采用 N、Cr 、Te 、Mo 等离子注入来提高金属材料的耐磨性和铁合金的表面力学性能;用 T i +N或 Mo +N 注入9Crl8 试样获得了更高的显微硬度和更好的耐磨性[6]Ti 和 Ti +Y离子注入均可使65钢表面硬度和耐磨性显著提高[7]不锈钢表面在注入N后,表面形成γN

相,硬度和耐磨性有很大提高[8]钢同时注入 Cr、N耐蚀性明显改善[9]Ti,Ni 离子注入铝表面,注入剂量分别为和1.5×1018cm-2和6×1017cm-2,形成 Ti3Al、

NiTi 、 A12O3等合金层,其中Ti在铝中产生20%原子数分数,其深度高达70000 A,

磨损率明显降低,H13钢塑料模具注入N离子后,耐磨性和耐腐蚀性提高,注入铝离子钢的抗氧化性提高[10、11]试验比较如图3,从图中可以看出,65Nb钢在离子注入后可以明显改善磨损条件,并且双离子注入大大提高了钢的抗磨损能力。

图3 不同条件下65Nb钢的磨损试验结果

3.3 降低摩擦系数

摩擦系数是金属表面性能的一个重要指标。它是描述物体之间相对运动或有相对运动的趋势时产生的一种现象。实验表明:摩擦系数的增减与注入离子的种类有关;增减幅度与注入离子的剂量和能量有关。早在1984年,Follstaedt 等将氮离子注入钛合金(Ti-6 Al- 4V)发现,注入能量200 keV、注入剂量为3×1017 ions/cm2情况下,由于形成TiN等硬质合金相,距表层20nm处硬度提高达200%、距表层100nm处硬度提高达100%,摩擦系数从0.48降到0.15,磨损率下降两

个数量级,现已广泛应用于钛合金人造关节的表面改性上[12、13]发现C0和Ti离子注入有很好的润滑作用,可使钢表面的摩擦系数下降 65%,并能提高HSS钢表面的韧性和弹性,使其具有很好的自修复能力[14]图4所示。结果表明,大注入剂量,高注入能量和高靶温的效果更明显,双注入好于单注入。

图4 C0离子注入HSS样品的系数与摩擦次数的关系

表3 离子注入降低摩擦系数的结果

4、 离子注入金属表面改性的影响因子

4.1 注入温度

在离子注入过程中,高速离子具有的动能在注入基体后,将转化为热能,使样品温度升高;比如100kev 、N+,10uA /s 注入时,可 使样品升温100~200℃。

试样的温度对注入合金层的结构和性能有重大的影响:(1)升温往往使注入所得的亚稳态结构( 如过饱和固溶体和非晶态) 转变成平衡状态,即进行了退火处理,从而使注入而硬化的表面层发生软化;(2)加速原子的扩散,使注入层浓度降低。(3)存在一个“ 临界温度”,低于此温度进行注入,温度对混合层的影响较小碰撞作用决定混合量;高于此温度进行注入,混合量随着温度增加而呈指数增加扩散混合起主要作用[15]对于金属表面改性用离子注入,一般要求在常温或低温( 碰撞起主要作用)下(如小于100℃)进行。应根据应用目的、基体材料、 离子种类、离子的能量和质量等条件综合利用温度效应。

4.2 注入离子能量和剂量

注入离子能量和剂量的调节是通过改变离子注入的电参数实现的,改变离子源和加速器能量,可以调整离子注入的浓度和深度。注入元素沿深度x 的浓度分布 N(x)可用下式计算:

e R R R t

x N P p x P 2)(212)(?--?Φ=π

式中:R P ?为投影射程,R P 为标准偏差,t Φ为注入剂量(单位面积的注入离

子数)。

上式表明:在其它条件不变的条件下,浓度分布与离子的注入剂量呈线性关系, 一般来说,对于金属材料,注入离子的剂量越大、浓度越大、分布越均匀,表面改性效果就越好。

4.3 注入离子的种类

早在1964年便有人提出“大原子强化”观点:大直径替位原子(如Y 、Sn 惰性原子氖、氪 、氩、氙)与间隙原子(如C 、N) 或空位结合。能形成非球对称的缺陷并与邻近的位错应力 的剪切分量强烈作用而起强化作用

[16]重要的强化机理主要包括4种类型[17]强化、位错强化、晶界与晶面强化和析出强化,其中

由位错强化造成的强化增量d σ?与位错密度p 如下关系[18]

21ρασGb d =?

式中:G 为金属的切变弹性模量b 为位错的柏氏矢量α为强化系数;如用高能离子C +或N +入和T8和T10表面后,位错密度达到1012条/cm 2可知,强化相对增量为9。离子强化原则[18](1)选择原子半径大的注入离子在合适温度下尽量吸

附在位错上;(2)注入间隙原子如 C +、N +或 O +以有利于形成各种复杂的化合物 ,

从而形成弥散强化;(3)利用晶体结构差异,在体心立方点阵的基体中注入有利于形成面心立方或密排六方结构相的各种离子,反之亦然。

5、 离子注入技术的优点

离子注入是一个非平衡过程,注入元素不受扩散系数、固溶度和平衡相图的限制,理论上可将任何元素注入到任何基体材料中去。注入层与基体之间没有界面,系冶金结合,改性层和基体之间结合强度高、附着性好。高能离子的强行射入工件表面,导致大量间隙原子、空位和位错产生,故使表面强化,疲劳寿命提高。离子注入是在高真空和较低的工艺温度下进行,因此工件不产生氧化脱碳现象,也没有明显的尺寸变化,故适宜工件的最后表面处理。

因此离子注入技术有以下优点:

(1)它是一种纯净的无公害的表面处理技术;

(2)无需热激活,无需在高温环境下进行,因而不会改变工件的外形尺寸和表面光洁度;

(3)离子注入层由离子束与基体表面发生一系列物理和化学相互作用而形成的一个新表面层,它与基体之间不存在剥落问题;

(4)离子注入后无需再进行机械加工和热处理。

6、 结论与展望

离子注人属原子级表面加工技术。其改性效果明显、效率高、可控性和可操作性强、无污染等优点逐渐显出强大的生命力和优势。离工业化、产业化道路还有一段距离(1)从注人离子与金属表面相互作用的物理化学与冶金规律出发,探讨注入工艺参数对表面改性层结构和性能的影响规律 ;(2)改性层厚度,探讨

注人层厚度增长动力学、热力学影响因素;(3)实现多元注入、高能注入、能量重叠注人。(4)加大研究与开发力度,使离子注人这一新型表面改性技术多领域、多功能、多形式的应用。

参考文献

[1] 窦光宇.离子注入显神奇材料披上新盔甲[J] .金属世界,2001.(5).

[2] 汤宝寅.等离子体源离子注入(1)原理和技术[J] .物理,1994,3 (1): 41—45.

[3]BllSJ High .ion implantation of cermics:benefits and limitations for tribiology [j],journal of materials science ,1988,23:4217~4230.

[4]王贻华,胡正琼.离子注入与分析基础[ M] .北京:航空工业出版社,1992.

[5]苗伟,陶琨,李彬等.锫、钒离子注入铝形成金属间化合物[J].真空科学与技术,2001 21(4):269—272 .

[6]汤宝寅,曾照明.9Cr18轴承钢的金属离子加氮离子复合注入处理新工艺[J].中国表面工程,2OOO,7,24~28.

[7]黄拿灿,许承惠.n,Y离子注入65Nb钢的表面优化[J].金属学报,2OOO,36(6):634~637 .

[8]MahdiS,CamelR.Nitriding of auatenitic atainless steels using plas ma immeraion ion implantation [J].Sllrfltee and Coationgs Technology,1998,00:72.

[9]nilvonen JP,Ruck D.Corrosion resistance of N—Cr ,or Cr +N—imp lanted AISI420 stainless steel[J] .Surface and Co.ti ~Technolo~,1995,74:760.[10]杨建华,张通和.经钨离子束处理H13钢的表面结构和成分研究[J].真空,2001,(4):11~13.

[11] 黄拿灿.工模具钢金属离子金属离子注入及其强化机理[J],热加工工艺2OOO,(2):8~10.

[12] Follstaedt DM,Yoat FG,PopeI E,eta1.Improved wear properties of high energy ion —implanted Ti-6AJ 4V[JJ1 ~ate - rials Science and ErlgiI 1eBring,1984,6(3):261—263.

[13] Rodrigez RJ,SamA,McdranoA,eta1.Tribologi ~ proper - ties of ion aluminium alloys[J].Vacuum,1999,52 :187—192

[14]张通和.金属离子注入钢表面摩擦学特性及应用研究[J].微细加工技术,2OO2,(1):18—21.

[15]刘江南.金属表面工程学[M].北京:兵器工业出版社1995.

[16]张通和.离子注入表面优化技术[M].北京:冶金工业出版社,1993.

[17]张光胜,离子注入材料表面改性及其在摩擦学中的应用[J],安徽机电学院学报,2OO2,17(1):1-6.

[18]刘江龙,邹至荣.高能束热处理[M].北京:机械工业出版社,1997.

金属材料表面改性涂层的新进展(专业课)试题及答案

1、工艺参数对合金元素吸收率的影响重要程度由大到小排列正确的是()。 A、工件电压>气压>源极电压>极间距 B、工件电压>极间距>源极电压>气压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 2、激光熔覆陶瓷涂层不包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 3、在1995年,()生产的Hastelloy C-2000镍基耐蚀合金为苑极,进行Ni-Cr-Mo-Cu多元共渗工艺研究。 A、美国 B、日本 C、中国 D、英国 4、下列对良好熔覆层的客观要求描述不正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹 5、下列哪项不是熔覆技术的应用()。 A、耐磨涂层 B、抗老化涂层 C、抗氧化涂层 D、耐蚀涂层 6、下列是结合力的定量测试方法的是 A、喷砂法 B、弯折法 C、锉刀法 D、张力法 7、工艺参数对合金元素的影响重要程度由小到大排列正确的是()。 A、工件电压>气压>源极电压>极间距

B、工件电压>气压>极间距>源极电压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 1、激光熔覆尚待研究和解决的问题是()。 A、大功率激光器及适于自动化工业生产的光路转换系统 B、快速凝固理论的建立与复合涂层界面精细结构的深入研究 C、工艺过程的稳定性与反馈控制 D、涂层质量的监测与缺陷控制 2、下列哪项是熔覆技术的应用()。 A、耐磨涂层 B、耐蚀涂层 C、抗氧化涂层 D、抗老化涂层 3、下列对冲刷腐蚀描述正确的是()。 A、简称冲蚀,是材料在应力和化学介质协同作用下材料的过早失效现象 B、在石油、化工。水电等过程中广泛存在 C、暴露在运动流体中的多有类型的设备如料浆泵的过流部件、弯头、三通和换热器管,都会遭受到冲蚀的破坏 D、在含固相颗粒的双相流中,破坏更为严重,它大大缩短设备的寿命 4、激光熔覆陶瓷涂层包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 5、下列为结合力的测试方法的是()。 A、喷砂法 B、弯折法 C、锉刀法 D、划格法 6、下列对良好熔覆层的客观要求描述正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹

稀土在金属表面改性中的应用

应用技术 稀土在金属表面改性中的应用 李安敏,许伯藩 (武汉科技大学材料与冶金学院,湖北武汉430081) [摘要] 扼要总结了有关稀土在金属表面改性中的应用研究情况,分析了稀土在金属表面改性中的作用,并对其机理进行了初步探讨。 [关键词] 稀土元素;金属表面;表面改性 [中图分类号]TG113.2;TG146.4 [文献标识码]B [文章编号]1001-3660(2002)04-0040-03 The Application of R are E arth to the Surface Improvement of Metal Material LI An2min,XU Bo2fan (C ollege of Material&Metallurgy,Wuhan University of Science&T echnology,Wuhan430081,China) [Abstact] The effects of the rare-earth to the surface of metal material are reviewed,and s ome trend to research im proving the surface properties of metal material is introduced. [K eyw ords] Rare-earth element;Metal surface;Snrface im proverment 0 引言 由于稀土以其优良的性能,被广泛应用于冶金、电子、化工、医学等行业中,特别是在钢铁生产中,由于稀土的净化作用、变质作用、微合金化作用[1],改善铸锭冶金质量,提高钢材的性能,取得了显著效益。近年来,稀土逐渐被应用于金属表面改性工程(如化学热处理、激光表面改性、喷焊、堆焊等)中,也显示出稀土元素独特的改性作用,同时稀土在这些金属表面改性的行为及其改性机理需要材料工作者进一步研究,使稀土更好地发挥其在金属表面改性中的作用。 1 稀土在金属表面改性中的作用 由于稀土有上述的特点,材料科学工作者利用稀土的这些特点,将稀土应用于金属表面改性中,并取得了一定的成果。 1.1 稀土在化学热处理中的应用 稀土在化学热处理中的应用有以下4种方法:粉末法、盐浴法、熔盐电解法、气体法。孙轩华等用自制 的稀土硅和E NE催化剂对45钢进行了稀土覆层的研究,研究表面渗后试样表面为高硬度的白亮层,过渡层中先共稀铁素体消失,全部变为细球状珠光体,其硬度增至H V504。 王荣滨等[3]用(70%FeB+20%K BFe+10%RE)进行固硼稀土共渗,获得70~80μm的单相致密的Fe2B渗层,硬度可达H V2000~2100。王荣滨还用(70%NaB 4 O7+10%NaF+10%Na2O3+10%RE)进行盐浴硼稀土共渗,处理的Crl2钢制无缝钢管冷拔内、外模,可提高寿命10倍以上。 程先华[4]在化学热处理渗剂中添加微量稀土元素,研究其对工艺过程、渗层的组织和性能的影响以及其在生产中的应用,发现稀土元素在化学热处理中显示出优异催渗效果,与普通化学热处理相比,可使渗入速度提高20%~35%。 杨顺贞[5]研究发现稀土对低温固体B2C2N共渗与有催渗作用。王伟兰等[6]研究稀土对H13模具钢低温粉末渗硼的影响,发现加稀土渗硼仍具有比较明显的“滑化”效果,能够提高渗硼的耐磨性,合适的饿稀土加入量促进渗层趋向均匀,致密,并有一定的催渗作用。 [收稿日期]2002203202 [作者简介]李安敏(1973-),女,广西武鸣人,硕士,主要从事金属表面改性研究。 04Aug. 2002 SURFACE TECHN OLOG Y V ol.31 N O.4

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

金属的表面处理

金属表面处理 金属表面处理一般包含哪几类? 金属表面处理有:电镀、涂装、化学处理层。 电镀包括(镀锌、铜、铬、铅、银、金、镍、锡、镉等); 涂装包括(油漆涂装、静电喷粉、喷塑工艺); 化学处理包括(发黑处理、磷化处理)。 另一方面是金属的表面改性,也称表面优化,现代先进的表面改性技术主要有物理气相沉积(简称PVD)、化学气相沉积(简称CVD)、等离子体化学气相沉积(简称PCVD)、离子注入和离子束沉积。 什么是电镀? 电镀(electroplating)被定义为一种电沈积过程(electrodepos- ition process),是利用电极(electrode)通过电流,使金属附着于物体表面上,其目的是在改变物体表面之特性或尺寸。目前较常遇见的电镀方式:水溶液电镀(滚镀、挂镀、连续镀)、化学电镀。 电镀的目的是什么? 电镀的目的是在基材上镀上金属镀层(deposit),改变基材表面性质或尺寸。例如赋予金属光泽美观、物品的防锈、防止磨耗;提高导电度、润滑性、强度、耐热性、耐候性;热处理之防止渗碳、氮化、尺寸错误或磨耗之另件之修补。 电镀的基本流程是什么? 前处理(研磨→预备洗净→水洗→电解脱脂→水洗→酸浸渍及活性化→水洗)?中和→洗水→电镀(打底) →水洗→中和→水洗→电镀(表层) →水洗→纯水→脱水→烘干 前处理不完全所造成的镀层缺陷有以下几点:? (1)镀层的剥离、气胀。? (2)污点、无光等光泽不均的现象。 (3)镀层的小孔、不平。? (4)针孔的发生而降低制品的耐蚀性。 (5)镀层皮膜的脆化。?

镀锌 电镀锌有哪几类? (1)酸性镀锌(acid zinc plating) (2)碱性非氰化物镀锌(alkaline plating ) (3)氰化物镀锌(cyanide zinc plating ) 各有什么优缺点? 1.1?酸性镀锌? 形状简单镀件和做油漆底层用的较多,其优缺点如下:? 优点? (1)可得光泽,平滑,镀锌层相似的镀层????? (2)可直接镀在碳化,氮化的钢铁上和铸铁上????? (3)电流效率较高? (4)废液处理容易,只需用高ph值将锌沉淀????? (5)导电性佳,节省电原???? (6)产生氢脆性小? (7)可在较高温下得到光泽镀层????? (8)镀浴安定,毒性小,成本低? 缺点? (1)镀浴腐蚀性强,镀槽及附属设备需加衬????? (2)焊接及组合镀件不宜,会有渗流(bleadout)????? (3)厚镀层延性差????? (4)结晶粗糙????? (5)均一性差? ????(6) 需要有过滤,冷却管及冷冻设备? 1.2碱性非氰化物镀锌(Alkaline?Non-Cyanide?Zinc?Plating)? 优点?? ????(1)毒性小? ????(2)废液处理容易,只需将锌沉淀? ????(3)成本低? ????(4)均一性好? ????(5)可用刚镀槽? 缺点? ????(1)镀浴成份需严格控制,每天要分析?????? (2)前处理要求质量高 (3)锌含量少时,电流效率降低 (4)对金属杂质及硬水杂质敏感?????? (5)镀层校氰化镀锌脆? ????(6)需要添加剂,否则黑暗镀层出现?????? (7)添加剂特殊,非一般性原料,需由厂商提供? 1.3?光泽氰化镀锌优点? ?????(1)使用历史悠久,经验较丰富?????? (2)前处理要求比较不严格?????? (3)被覆性优良? ????(4)浴成份的分析及控制比较容易??????

离子注入高分子材料表面改性

摘要叙述了离子注入对高分子材料进行表面改性的新工艺。其技术原理和特点, 并着重介绍了其在高分子材料表面改性中的应用,综述了国内目前在这方面的研究现状及试验结果及发展前景。 关键词离子注入高分子材料表面改性

1.前言 近几十年来, 随着高科技的迅猛发展, 对各类材料的表面性能提出越来越高的要求。因此, 采用新技术、新工艺改善材料的表面性能就越显重要- 离子注入能在不改变材料基本性能的情况下, 有选择地改善材料表面的耐磨性、耐蚀性、抗氧化性和抗疲劳性等- 目前世界上许多国家都有专门从事离子注入研究的队伍。据了解, 英国Rolls-Roycc股份有限公司为了解决飞机发动机叶片材料的微粒磨损, 曾比较了46种不同的表面处理工艺, 最后选择了3种, 其中之一就是离子注入新工艺。由此可见, 离子注入技术将会受到人们更加广泛的重视, 它将在我国社会主义现代化建设中发挥越来越大的作用。 2.离子注入的原理 离子注入对高分子材料的改性是通过离子注入使材料的结晶、组分以及分子空间位置的变化来实现的。当带能离子射到高分子表面时,会与材料原子和电子发生一系列的碰撞作用,与电子的碰撞是非弹性碰撞,与原子的碰撞是弹性碰撞。无论在哪种碰撞过程中,载能离子每经一次碰撞,就将部分能量传递给原子或电子,同时相应减少离子本身的能量,直到经多次碰撞后入射离子的能量几乎耗尽,它才在材料中作为一种杂质原子停留下来。此外,被撞的晶格节点上的原子,如果接受的能量足以使其克服周围原子对它的束缚就会发生离位,并以一定能量在材料晶格中飞行。此时,它同样能使别的原子离位。可以想像,一个入射离子可以产生出一系列的碰撞,产生一系列的离位原子,这种原子与原子、原子与电子的碰撞就是注入离子与高分子材料相互作用的基本物理过程。 离子在加速器中获得一定的能量并藉此进入样品表面以下一定深度, 在靠近表面处形成一层组成和结构都不同于体相的注入层。由于离子的注入深度h 和离子能量的平方根E1/ 2成正比, 所以在不同加速器中得到的表面改性层是不一样的。影响离子注入改性效果的另外一个重要因素是离子注入量, 只有在恰当的离子注入量的时候才会使表面硬度和耐磨性得到最好的改善。 在离子注入技术中由于注入离子在基体中与基体原子相混合,属于非包覆处理, 因此离子注入技术的应用不受材料固溶度的限制。另外, 离子注入过程是在较低温度下进行的, 被注入材料不会发生热变形,可保持原有的尺寸精度和表面粗糙度等。由于这些突出的优点, 近年来, 人们不断将离子注入技术用在

高能粒子束表面改性技术研究与发展

高能粒子束表面改性技术研究与发展 昆明理工大学材料111班解开书 【摘要】主要叙述了高能粒子束表面改性技术中的离子束表面改性技术的基本原理、工艺特点、发展趋势及其存在的问题和解决途径。 关键词:高能粒子束;表面改性;研究与进展 前言 高能粒子束表面改性是通过高能量密度的束流改变材料表面的成分或组织结构的表面处理技术。由于高能粒子束的功率密度可以达到108W/cm2以上,甚至可超过109W/cm2,因此在极短的作用周期下,材料表面就能达到其他表面技术所无法达到的效果。高能粒子束表面改性技术具备以下一些特点: (1)能量密度可以在很大范围内进行调节,并可精确控制; (2)高能粒子束表面改性技术可以方便地与传统的表面改性技术结合起来,从而弥补甚至消除各自的局限性; (3)利用高能粒子束可以对材料表面进行超高速加热和超高速冷却,其冷却速度可达104℃/S,从而实现新型超细、超薄、超纯材料的合成和金属复合材料的制备。 1高能离子束表面改性技术的研究及其应用 1.1 离子束表面改性研究现状 20世纪70年代中期,离子注入技术进入到半导体材料的表面改性,采用离子注入精细掺杂取代热扩散工艺,使半导体从单个晶体管加工发展为平面集成电路加工。20世纪80年代初,离子束混合的出现,对离子束冶金学的发展做出了巨大的贡献。80年代中期,金属 蒸发真空弧离子源(M EV VA)和其他金属离子源的问世,为离子束材料改性提供了强金属离子束。与此同时,为克服注入层浅的问题,开始研究离子束辅助沉积技术(IBAD),又称离子束增强沉积技术(IBED)。20世纪末发展起来的称为“等离子体注入”技术(PSII-PIasm a Source Ion Implantation)克服了常规注入的缺点,可对成批工件同时进行全方位的离子注入而引起人们的关注,由于工件是直接“浸泡”在被注入元素的等离子体内,也有人称之为“等离子体浸没离子注入”(PI II-Plasma Source Ion Implantation)。PSII技术发 展很快,该技术的奠基人之一CONRAD J R已取得大量基础研究和应用成果。 自20世纪70年代以来,许多国家对离子注入材料改性的研究和应用都给予了相当的重视,一些大学、科研机构和公司都相继成立了专门从事这方面工作的研究中心或实验室,如美国的斯坦福大学,英国的哈威尔原子能研究中心以及日本的RIK EN物理化学研究所等。我国离子注入改性技术的研究,早期也和国外一样主要集中在半导体的研究和应用方面,从20世纪70年代至今逐渐把该技术应用于其他领域,特别是在优化材料表面的摩擦学特性方面的研究和应用得到了不断发展。目前,除了北京师范大学、清华大学、四川联合大学原子能研究所、中国原子能研究所等有专门的研究中心外,还在上海冶金研究所建立了中国科学院离子束开放实验室,在大连理工大学建立了国家激光束、电子束、离子束开放研究室。但是由于高性能离子束装置的研制和建立都比较缓慢,因而,无论在基础研究或应用方面与国外相比都还存在一定的差距。

表面改性技术

先进制造技术课程论文 论文题目:[高速齿轮表面改性工艺方法研究] 系部:机械工程系 专业:机械制造与制动化 班级:机制103 学生姓名: 学号:100114314 2012年10 月10 日 摘要 齿轮表面改性技术对于齿面强化,延长齿轮的使用寿命和发展新型齿轮加工技术具有重要的意义.齿轮传动具有传动比准确,传递运动工作可靠,传动平稳效

率高,机构紧凑,使用寿命长等优点,在许多行业得到广泛使用.齿轮工作时的运动和受力情况非常复杂,由此产生的损伤形式多样,比较常见且对其能影响较严重的损伤有3种:断齿、破坏性胶合和破坏性点蚀_l .因此,要求齿轮的整体具有高的弯曲疲劳强度,心部要求高的强度和冲击韧性,齿面要求高硬度、高耐磨性和一定的耐腐蚀性.德国权威机构曾对涉及各行各业的齿轮传动失效实例进行过调查研究,发现因齿轮表面失效而引起的齿轮传动副失的数量约占所调查对象总数的.因此,提高齿轮表面强度已成为提高齿轮传动副的可靠性和延长其使用寿命的有效途径.为了达到这一目的,必须对齿轮进行表面强化处理.除采用常规表面热处理手段外,日益成熟的各种表面强化新技术也获得了广泛应用.目前,齿轮表面强化处理技术主要有渗碳、渗氮、碳氮共渗、渗金属、激光表面强化、热喷涂等 关键字:齿轮表面改性现代表面技术 一、表面改性技术: 表面技术是指采用某种工艺手段使材料表面获得与其基体材料的组织结构、性能不同的一种技术。材料经表面改性处理后,既能发挥基体材料的力学性能,又能使材料表面获得各种特殊性能(如耐磨,耐高温,合适的射线吸收、辐射和反射能力,超导性能,润滑,绝缘,储氢等) 表面改性技术可以掩盖基体材料表面的缺陷,延长材料和构件的使用寿命,节约稀、贵材料,节约能源,改善环境,并对各种高薪技术的发展具有重要作用。表面改性技术的研究和应用已有多年。70年代中期以来,国际上出现了表面改性热,表面改性技术越来越受到人们的重视。 表面改性的特点是: (1)不必整体改善材料,只需进行表面改性或强化,可以节约材料。 (2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比。 (3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本。 (4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。 表面改性技术应用:表面改性技术广泛应用于机械工业、国防工业及航空航天领域,通过表面改性可以使材料性能提高,产品质量提高,降低企业成本。表面技术的应用,在提高零部件的使用寿命和可靠性,提高产品质量,增加产品的竞争力,以及节约材料,节约能源,促进高科技技术的发展等方面都有着十分重要的意义。 二、一般传统齿轮的处理方式 1、金属表面形变强化 喷丸强化是当前国内外广泛应用的一种应用广泛的表面强化方法,即利用高速弹丸强烈冲击零件表面,使之产生形变硬化层并引进残余压应力。 喷丸强化原理: (1)形成形变硬化层,在此层内产生两种变化:

金属材料及热处理教学计划

金属热处理工培训计划 1.培训目标 1.1总体目标 培养中级技术工人所必须的一门技术基础课。其容包括金属的机械性能、金属学的基础知识及金属材料等部分。并达到一定熟练程度。 1.2理论知识培训目标 (1)本课程的任务是使学生掌握金属材料和热处理的基础知 识,为学习各门专业工艺学课及今后从事生产技术工作打下必要的基础。 (2) 通过本课程的教学,应使学生达到下列基本要求: ①基本掌握常用金属材料的牌号,成分,性能及应用围。 ②了解金属材料的部结构,以及成分,组织和性能三者之间的一般关系。 ③懂得金属材料热处理的一般原理。 ④明确热处理的目的,了解热处理的方法及实际应用。 1.3操作技能培训目标 ①会评价工程材料力学性能指标。 ②运用Fe-Fe3C平衡相图解决工程问题; ③能为工程零件及结构正确选材; ④能为工件制定的热处理工艺参数。 2.教学要求 2.1理论知识要求

2.1.1职业道德 2.1.2会评价工程材料力学性能指标。 2.1.3运用Fe-Fe3C平衡相图解决工程问题; 2.1.4能为工程零件及结构正确选材; 2.1.5能为工件制定的热处理工艺参数。 2.1.6热处理工艺管理知识。 2.1.7热处理各种淬火介质的冷却性能知识。 2.1.8热处理辅助设备、控温仪表知识。 2.1.9.热处理质量检验及校正知识。 2.2操作技能要求 工装制作基础知识 (1)识图及绘图。 (2)钳工操作一般知识。 电工知识 (1)通用设备常用电器的种类及用途。 (2)电气传动及控制原理基础知识。 (3)安全用电知识。 安全文明生产与环境保护知识 (1)现场文明生产要求。 (2)安全操作与劳动保护知识。 (3)环境保护知识。 质量管理知识

离子束加工原理

离子束加工原理 离子束加工(ion beam machining,IBM)是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。 因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。 2.离子束加工特点 加工精度高。因离子束流密度和能量可得到精确控制。 在较高真空度下进行加工,环境污染少。特别适合加工高纯度的半导体材料及易氧化的金属材料。 加工应力小,变形极微小,加工表面质量高,适合于各种材料和低刚度零件的加工。 3.离子束加工的应用范围 离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。 1)离子刻蚀 3.离子束加工的应用范围 离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。 1)离子刻蚀 当所带能量为0.1~5keV、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子或分子间键合力时,材料表面的原子或分子被逐个溅射出来,以达到加工目的 这种加工本质上属于一种原子尺度的切削加工,通常又称为离子铣削。 离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等高精度图形。 2)离子溅射沉积 采用能量为0.1~5keV的氩离子轰击某种材料制成的靶材,将靶材原子击出并令其沉积到工件表面上并形成一层薄膜。 实际上此法为一种镀膜工艺。 3)离子镀膜 离子镀膜一方面是把靶材射出的原子向工件表面沉积,另一方面还有高速中性粒子打击工件表面以增强镀层与基材之间的结合力(可达10~20MPa), 此法适应性强、膜层均匀致密、韧性好、沉积速度快,目前已获得广泛应用。4)离子注入 用5~500keV能量的离子束,直接轰击工件表面,由于离子能量相当大,可使离子钻进被加工工件材料表面层,改变其表面层的化学成分,从而改变工件表面层的机械物理性能。 此法不受温度及注入何种元素及粒量限制,可根据不同需求注入不同离子(如

金属热处理及表面处理工艺规范

北京奇朔科贸有限公司 部分金属材料热处理及表面处理工艺规范 第一版 编写:赵贵波 审核: 批准: 北京奇朔科贸有限公司 二零一二年六月

目录 1.0 热处理的工艺分类及代号---------------------------------------------------------------------3 1.1 基础分类-----------------------------------------------------------------------------------------------3 1.2 附加分类-----------------------------------------------------------------------------------------------3 1.3 热处理工艺代号--------------------------------------------------------------------------------------4 1.4 图样中标注热处理技术条件用符号--------------------------------------------------------------7 2.0 金属材料的热处理方法和应用目的-------------------------------------------------------8 2.1 钢的淬火-----------------------------------------------------------------------------------------------8 2.2 热处理的过程方法和应用目的--------------------------------------------------------------------9 3.0 部分金属材料的热处理规范-----------------------------------------------------------------17 3.1 渗碳钢的热处理工艺--------------------------------------------------------------------17 3.2 渗氮钢的热处理工艺--------------------------------------------------------------------------------20 3.3 调质钢的热处理工艺-------------------------------------------------------------------------------21 3.4 -弹簧钢的热处理工艺------------------------------------------------------------------------------23 3.5 轴承钢的热处理工艺-------------------------------------------------------------------------------25 3.6 合金工具钢的热处理工艺------------------------------------------------------------------------- 26 3.7 碳素工具钢的热处理工艺--------------------------------------------------------------------------29

离子注入金属表面改性技术

摘要本文综述了金属表面改性离子注入法的机理、特点和应用。并介绍了等离子体浸没式离子注入(PIII)方法,及其相对于传统方法的特点。 Abstract Mechanism, characteristics and application of ion implantation for surface modification of metals are reviewed in this paper. Besides, a promising ion implantation technique—plasma immersion ion implantation(PIII)—is introduced. Especially, its advantages, relative to conventional techniques, are discussed. 关键词金属表面改性离子注入等离子体浸没式离子注入 Keywords surface modification of metal, plasma immersion ion implantation(PIII), ion implantation 前言 金属材料的表面性能在生产中起到至关重要的作用,特别是有的工作环境要求材料高负荷、高转速、高寿命、耐高温、低损耗。离子注入技术应运而生。近几十年来,离子注入在金属和半导体材料的研究、应用发展迅速,并在向绝缘材料和聚合物领域扩展。注人原子原则上可以是元素周期表中的任何元素;被注人基体原则上可以是任何材料;离子注人将引起金属表层的成分和结构的变化以及原子环境和电子组态等微观状态的扰动,因此导致金属各种物理、化学、机械性能的变化。得到理想的材料表面性能。 离子注入金属表面改性的机理 高速离子注入金属后,与金属中的原子、电子发生碰撞。如果晶格原子从碰撞中获得足够的能量,则被撞击原子将越过势垒而离开晶格位置进入原子间隙成为间隙原子;如果反冲原子获得的反冲能量远远超过移位阀功,它会继续与晶格原子碰撞,产生新的反冲原子,发生“级联碰撞”。在级联碰撞中,金属原来的晶格位置上会出现许多“空位”,形成辐射损伤;离子注入金属表面后,有助于析出金属化合物和合金相、形成离散强化相、位错网;灵活地引入各种强化因子,即掺杂强化和固溶强化。 离子注入技术的特点 离子注入技术主要有以下几个特点: 1)进入金属晶格的离子浓度不受热力学平衡条件的限制; 2)注入是无热过程,可在室温或地温下进行;不引起金属热变形; 3)注入离子在基体中与基体原子混合,没有明显的界面,注入层不会像镀 层或涂层那样发生脱落现象; 4)可以进行新材料的开发;注入离子在基体中进行原子级混合,可以形成 固溶体、化合物或新型合金。

【有色金属行业标准】金属热处理工国家职业标准

金属热处理工国家职业标准 1、概述 1.1职业等级 本职业共设五个等级,分别为:初级(国家职业资格五级)、中级(国家资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.2适用对象: 从事或准备从事本职业的人员。 1.3申报条件(初级和高级技师从略) 中级(具备以下条件之一者) (1)取得初级职业资格证书后连续从事本职业工作3年以上,经本职业中 级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)取得本职业初级职业资格证书后,连续从事本职业5年以上。 (3)取得经劳动保障行政部门审核认定的、以中级技能为培养目标的中等 以上职业学校本职业毕业证书。 高级(具备以下条件之一者) (1)取得中级职业资格证书后并连续从事本职业工作4年以上,经本职业 中级正规培训达到规定标准学时数,并取得毕(结)业证书。 (2)取得本职业中级职业资格证书后,连续从事本职业工作8年

以上。 (3)取得经劳动保障行政部门审核认定的、以高级技能为培养目标的高等职业学校本职业毕业证书。 (4)大专以上本专业或相关专业毕业生,取得本职业中级职业资格证书后连续从事本职业工作2年以上。 技师(具备以下条件之一者) (1)取得高级职业资格证书后连续从事本职业工作5年以上,并经本职业技师正规培训达到规定标准学时数,取得毕(结)业证书。 (2)取得本职业高级职业资格证书后,连续从事本职业8年以上。 (3)取得本职业高级职业资格证书的高级技工学校毕业生,连续从事本职业4年以上。 1.4.0基础知识 1.4.1基础理论知识 (1)识图知识。 (2)金属材料基础知识。 (3)常用非金属材料知识。 (4)热传递基础知识。 1.4.2金属热处理工基础知识 (1)常用热处理设备知识(用途及基本结构)。 (2)金属的一般热处理工艺、表面改性热处理工艺。 (3)典型零件(主轴、齿轮等)的热处理工艺。 (4)热处理工艺管理知识。

QPQ金属材料表面改性处理技术简介

QPQ金属材料表面改性处理技术简介 QPQ处理技术是一种可以同时大幅度提高金属表面的耐磨性、抗蚀性,而工件几乎不变形的新的金属表面强化改性技术。该技术由德国迪高沙公司开发。由于该工艺可以使金属表面的耐磨、耐蚀性及耐疲劳性能大幅度提高,已被广泛用于汽车、摩托车、机车、工程、纺织、轻工机械、仪表,工模具、办公设备等各种行业。该技术具有以下优点: 一、性能优良 1.良好的耐磨性、耐疲劳性能: 经QPQ处理的45钢,40Cr钢(退火状态)的耐磨性达到淬火及高频淬火的16倍以上,达到20钢渗碳淬火的9倍以上,为镀硬铬和离子氧化的2倍多(见附表一)。在大量生产条件下提高工模具寿命1-4倍。 2.极好的抗蚀性: 普通炭钢经QPQ处理后具有极高的抗蚀性,例如45钢经QPQ处理后在大气中和盐雾中的抗蚀性比1Cr18Ni 9Ti不锈钢高5倍;比镀硬铬高70倍以上;比发黑高280倍以上(见附表二)。 3.极小的变形: QPQ处理可以认为是变形最小的硬化方法,处理后工件的尺寸和形状变化极小,可以用来解决很多常规处理方法无法解决的热处理变形问题。 4.可以替代多道工序: 该工艺一次处理可以替代淬火——回火——发黑三道工序或渗碳——淬火——回火——镀硬铬四道工序,可以大大降低生产成本,并且大幅度节能。 二、应用范围广: 1.使用材料: 适用于各种工具钢、冷热模具钢、结构钢、不锈耐热钢、纯铁、铸铁及粉末冶金件。 2.可替代工艺: 可以大量替代渗碳淬火、高频淬火、易变形的淬火;替代离子氮化;替代发黑、磷化、硫化、镀硬铬、镀装饰铬。普通结构钢经QPQ处理,在很多情况下可以大量替代不锈钢。 3.已经成熟应用的产品: 工具:高速钢钻头、铣刀、铰刀、丝锥、滚刀、插齿刀、拉刀等,加工不锈钢、耐热钢效果尤为显著。 模具:各种冷拉模、挤压模、冲模、压铸模。对大量通用的橡胶模、塑料模、玻璃模等各种模具,由于模具承受压力不大,可以选用退火态调质的中炭钢作QPQ处理替代T12或9SiCr类钢制淬火模具。 机床件:机床摩擦片、导轨、电器铁芯等。 汽车摩托车件:曲轴、凸轮轴、气门、气簧、扭转盘、刹车控制系统、座位滑动器、保险杠、齿轮、连杆、链轮、缸套、门锁、挡风玻璃摇臂风扇电机、离和器摩擦片等…… 纺织机:络筒机件、弹力丝机热轨、罗拉、钢令圈等。 齿轮:多种大小规格齿轮。 办公设备及家用电器件:各种耐磨性、轴类件。 电力设施件:露天放置的电力设施中的耐磨蚀件。 中山市小榄镇生产力促进中心为了提高小榄镇五金产业的生产技术水平,现定于在本月23日与中山成工材料科技有限公司联合举行一次QPQ金属材料表面改性处理技术展示会,届时欢迎各五金企业参加,详情请与本中心联系。 表一:滑动磨损试验

离子注入技术的发展和在材料方面的应用

离子注入技术的发展 及其在材料方面的应用

摘要 离子注入是一项新兴的材料表面改性技术。它可以使材料表面的机械、物理、化学、电学等性能发生变化。有效地提高材料表面的硬度以及耐磨擦、耐磨损、抗腐蚀、抗疲劳等能力,延长材料使用寿命,增加经济收益。本文介绍了离子注入的基本原理以及技术特点,描述了离子注入在金属材料表面改性、半导体材料以及超导方面的技术应用,并展望了离子注入的应用前景。 关键词:离子注入;材料;表面改性;半导体;超导

一、绪论 离子注入技术于七十年代初首先成功地应用于半导体工业,成为制备大规模集成电路必不可少的手段之一。八十年代起人们把离子注入技术开始用于金属材料的表面改性。由于该项技术本身的独特优点、良好的改性效果以及潜在的巨大经济效益,近年来吸引了愈来愈多的研究者开始从事该项技术的开发研究。日前,随着应用围的日益扩大和理论研究的不断深入,离子注入技术日趋成熟。 近年来离子注入的方式也更加多样化,除了常规离子注入外,由此派生出的其它注入方法有:反冲注入、动态反冲注入、离子束混合等。注入方式的多样化完善了注入实验手段,使人们对各种具体情况可以选择恰当的注入方式,以满足不同的要求。 在实际应用中,很多方面都需要固体材料有较好的表面性能,如耐腐蚀性,抗磨损性,较高的硬度和抗氧化性等,而这些性能都直接与固体材料表面成分,结构组态,化台物相等有关,离于注入技术是最重要的手段之一。 离子注入技术应用于金属材料的改性,从碳素工具钢、硬质合金刚到人造或天然金刚石制造的量具、刃具、刀具、模具和工件等,通过表面改性,可提高使用寿命。经离子注入后,材料(或工件)韵表面硬度、耐磨损性能、抗腐蚀能力及使用寿命等,一般可提高几倍到十几倍。目前,离子注入已经发展成为一门核技术与金属学之间新兴的边缘学科——“离子注入冶金学” (Ion Implantation Metallurgy)。各发达国家都十分关注这门学科的发展和应用。 二、关于离子注入的简单介绍 (一)离子注入的定义 离子注入是利用某些杂质原子经离化后形成带电杂质离子,离子经过一定的电场加速,直接轰击靶材料实现掺杂或其他作用。一般的说,离子能量在1-5KeV 的称为离子镀;0.1-50KeV称作离子溅射;一般称10-几百KeV的称为离子注入。注入到材料中的离子具有很高的能量,足以使注入层的化学组分和原子结构发生变化,这样使得材料表面的机械、物理、化学、电学等性能也随之改变.从而达到材料表面改性的目的。 简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

表面改性技术综述

表面改性技术综述 表面改性是指采用某种工艺和手段使材料获得与其基体材料的组织结构性能不同的一种技术。材料经过改性处理之后,既能发挥材料基体的力学性能,又能使材料表面获得各种特殊性能,如耐磨,耐腐蚀,耐高温,合适的射线吸收等。 金属表面改性技术在冶金、机械、电子、建筑、轻工、仪表等各个工业部门乃至农业和人们日常生活中都有着广泛的用途, 其种类繁多。除常用的喷丸强化、表面热处理等传统技术外, 近些年还快速发展了激光、电子和离子等高能束表面处理技术。今后, 随着物理学、材料学等相关学科的迅速发展, 还将不断涌现出新的表面改性技术。尤其是复合表面技术的发展, 有可能获得意想不到的效果。金属表面改性技术的飞速发展和不断创新, 将进一步推动其在工农业生产中的应用, 带来显著的经济效益。 传统的表面改性技术有:表面形变强化、表面热处理、表面化学热处理、离子束表面扩渗处理、高能束表面处理、离子注入表面改性等。 1、喷丸强化 喷丸处理是在受喷材料再结晶温度以下进行的一种冷加工方法, 是将弹丸在很高速度下撞击受喷工件表面而完成的。喷丸可应用于表面清理、光整加工、喷丸成型、喷丸校正、喷丸强化等方面。喷丸强化又称受控喷丸, 不同于一般的喷丸工艺, 要求喷丸过程中严格控制工艺参数, 使工件在受喷后具有预期的表面形貌、表层组织结构和残余应力场, 从而大幅度提高疲劳强度和抗应力腐蚀能力。实施喷丸时, 弹丸由专用的喷丸机籍助压缩空气、高压水流或叶轮, 高速射向零件受喷部位。常用弹丸有球形铸铁丸、铸钢丸和其它非金属材料制成的弹丸。喷丸强化的效果用喷丸强度来表示, 与弹丸种类和形状、碰撞速度和密度、喷射方位和距离、喷丸时间等因素有关。表面喷丸提高金属材料疲劳强度的机理比较复杂, 涉及到塑性变形层(通常为011~018mm 厚) 的组织结构变化(如位错密度、亚晶粒尺寸) 和残余应力的变化。因此, 只有合理控制表面变形层内的变化, 才可能获得预期的喷丸强化效果。 早在20 世纪20 年代, 喷丸强化就应用于汽车工业。目前已成为机械制造等工业部门的一种重要的表面技术, 应用广泛。涉及的材料除普通钢外,还有高强度钢和各种有色金属; 涉及的零件类型有弹簧、轴、齿轮、连杆、叶片、涡轮盘和飞机起落架组成件等。 2、传统表面热处理改性 传统的表面热处理技术可分为表面淬火和化学热处理两大类。它主要用来提高钢件的强度、硬度、耐磨性和疲劳极限。在机械设备中, 许多零件(如齿轮轴、活塞销、曲轴等) 是在冲击载荷及表面磨损条件下工作的。这类零件表面应具有高的硬度和耐磨性, 而心部应具有足够的塑性和韧性。因此, 为满足其使用性能要求, 应进行表面热处理。 ○1表面淬火 表面淬火是把零件的表层迅速加热到淬火温度后快冷, 使零件表面层获得淬火马氏体而心部仍保持未淬火状态的一种淬火方法。表面淬火的目的是使零件获得高硬度的表层, 以提高工件的耐磨性和疲劳性能, 而心部仍具有较好的韧性。其设备简单、方法简便, 广泛用于钢铁零件。根据加热方法的不同, 可分之为火焰加热表面淬火和感应加热表面淬火。火焰加热表面淬火的淬透层一般为2 -6mm。其特点是设备简单, 但加热温度高及淬硬层不易控制, 淬火质量不稳定, 使用上有局限性。感应加热表面淬火的特点是: 加热速度快, 零件变形小, 生产效率高, 淬火后表面能获得优良的机械性能; 淬透层易控制, 淬火操作易实现机械化。但设备较贵, 形状复杂零件的感应器不易制造, 不宜单件生产。 ○2化学热处理 化学热处理是将金属零件放在某种介质中加热、保温、冷却, 使介质中的某些元素渗入

相关文档