文档视界 最新最全的文档下载
当前位置:文档视界 › 煤直接液化技术研究与发展

煤直接液化技术研究与发展

煤直接液化技术研究与发展
煤直接液化技术研究与发展

煤液化技术的重要性

煤液化技术的重要性 1.1 中国的能源现状 随着我国经济的快速发展,能源消费急剧增加,20世纪90年代我国已成为石油净进口国。2003年,我国已是全球仅次于美国的第二大石油进口国和消耗国,2008年我国石油净进口量超过19985万t,进口原由占国消费比重达53.1%。石油资源匮乏和国石油供应不足已成为中国能源发展的一个严峻现实, 随着国民经济的发展,石油供需矛盾将呈持续性扩大趋势。经济高速增长、石油资源缺乏的中国已经把石油安全置于能源战略的核心位置。 我国“多煤炭、少石油、缺天然气”的能源资源特点决定了我国能源在较长时期以煤为主的格局不会改变,确立我国的能源安全战略,必须从这一基本条件出发。充分利用我国丰富的煤炭资源解决石油短缺问题并保证能源安全供给,是我国能源安全战略的一条有效而又可行的途径。 1.2 煤液化技术在我国应用前景 在替代石油的化石资源中,只有煤炭可以在近中期满足与千万吨数量级的油品缺口相匹配的需要。在这样的背景下,合理利用中国丰富的煤炭资源, 开发“煤制油”技术, 作为石油资源的补充, 解决目前燃油短缺、环境污染两大难题, 对中国具有十分重要的战略意义[1]。 若以目前已查证的煤炭资源量的2 0 %作为直接液化原料,则相当于为中国增加了约4 5 0亿吨的原油资源量。有专家预计,到2 0 2 0 年中国的“煤制油”项目将形成年产5 0 0 0万吨油品的生产能力,加上届时将有年产2 0 0 0万吨的生物质油品投入使用,中国原油对外依赖程度有望从6 0 %以上下降到45%以下。到2030 年,在全球替代能源中非石油替代能源将达到日产1 0 0 0万桶,其中煤制油将占2 9%。就中国来说,煤炭储量丰富,政府有意愿发展这一产业,煤制油工业有着光明的前景。 1.3 煤液化技术在我国中战略地位 中国将长期坚持能源供应基本立足国的方针, 把煤炭作为主体能源, 这是中国能源安全的基石。长期以来, 中国政府坚持能源生产、消费与环境保护并重的方针, 把支持清洁煤技术的开发应用作为一项重要的战略任务。煤炭直接液化是中国能源战略的组成部分, 对充分利用国资源, 解决石油安全具有重要的战略和现实意义。 2 煤液化的发展状况 2.1 煤液化技术简介 煤液化工艺大致可分为两大部分,即在高温高压条件下把粉煤催化加氢生产液化粗油的液化工艺和把液化粗油加氢裂解的提质加工精制工艺。其中煤液化技术又包括直接液化技术和间接液化技术。 2.1.1 煤直接液化技术 煤的直接液化法,就是以煤为原料,在高温高压条件下,通过催化加氢直接

煤液化技术

《近代化学》课程作业 煤液化技术的研究现状 The research status of coal liquefaction technology 姓名: 专业: 时间:

煤液化技术的研究现状 能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。 煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。 1煤直接液化 煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。理论上讲,煤加氢液化分为轻度加氢和深度加氢。通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。 1.1煤直接液化的技术的进展 煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元; ②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。具体流程图如图1所示: 图1:煤直接液化工艺流程简图 自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。 1.1.1德国IGOR工艺 德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。 该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR 工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/ d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。 第二部分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中型分子,这些分子中包含较多的极性官能团,它们以各种物理力为主,或相互缔合,或与第一部分大分子中的极性基团相缔合,成为三维网络结构的一部分。

神华煤直接液化工艺技术特点和优势

神华煤直接液化工艺技术特点和优势 神华煤直接液化示范工程采用的煤直接液化工 艺技术是在充分消化吸收国外现有煤直接液化工艺 的基础上,利用先进工程技术,经过工艺开发创新,依靠自身技术力量,形成了具有自主知识产权的神 华煤直接液化工艺 神华煤直接液化工艺技术特点 1) 采用超细水合氧化铁(FeOOH)作为液化催 化剂。以Fe 2 + 为原料,以部分液化原料煤为载体,制成的超细水合氧化铁,粒径小、催化活性高。 2) 过程溶剂采用催化预加氢的供氢溶剂。煤 液化过程溶剂采用催化预加氢,可以制备45% ~50%流动性好的高浓度油煤浆;较强供氢性能的过 程溶剂防止煤浆在预热器加热过程中结焦,供氢溶 剂还可以提高煤液化过程的转化率和油收率。 3)强制循环悬浮床反应器。该类型反应器使 得煤液化反应器轴向温度分布均匀,反应温度控制 容易;由于强制循环悬浮床反应器气体滞留系数低, 反应器液相利用率高;煤液化物料在反应器中有较 高的液速,可以有效阻止煤中矿物质和外加催化剂4)减压蒸馏固液分离。减压蒸馏是一种成熟 有效的脱除沥青和固体的分离方法,减压蒸馏的馏 出物中几乎不含沥青,是循环溶剂的催化加氢的合 格原料,减压蒸馏的残渣含固体50%左右。 5) 循环溶剂和煤液化初级产品采用强制循环 悬浮床加氢。悬浮床反应器较灵活地催化,延长了 稳定加氢的操作周期,避免了固定床反应由于催化 剂积炭压差增大的风险;经稳定加氢的煤液化初级 产品性质稳定,便于加工;与固定床相比,悬浮床操作性更加稳定、操作周期更长、原料适应性更广。神华示范装置运行结果表明,神华煤直接液化 工艺技术先进,是唯一经过工业化规模和长周期运 行验证的煤直接液化工艺。 神华煤直接液化工艺技术优势 1)单系列处理量大。由于采用高效煤液化催 化剂、全部供氢性循环溶剂以及强制循环的悬浮床 反应器,神华煤直接液化工艺单系列处理液化煤量 为6000 t/d。国外大部分煤直接液化采用鼓泡床反 应器的煤直接液化工艺,单系列最大处理液化煤量 为每天2500 ~3000 t。 2)油收率高。神华煤直接液化工艺由于采用

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

新能源技术应用的现状及发展趋势

目录 摘要 (2) 第一章对能源的认识 (3) 1.1能源的定义 (3) 1.2能源的源头 (3) 1.3能源的种类 (4) 第二章新能源的发展趋势 (5) 2.1 多元化 (5) 2.2 清洁化 (5) 2.3 高效化 (5) 2.4 全球化 (6) 2.5 市场化 (6) 第三章启示与建议 (7)

摘要 我们人类生存与发展中最具有决定性意义的要素是三个:物质、能量和信息。组成我们的世界是物质;人类生存活动决定于对信息的认知和反应;而维持生命,从事发展的活动又地要通过消耗能量来进行。一切能量来自能源,人类离不开能源。能源是人类生存、生活与发展的主要基础。能源科学与技术,能源利用的发展在人类社会进步中一直扮演着及其重要的角色。 能源发展的里程碑可以这么说,每一次能源利用的里程碑式发展,都伴随着人类生存与社会进步的巨大飞跃。几千年来,在人类的能源利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光;18世纪蒸汽机的发明与利用,大大提高了生产力,导致了欧洲的工业革命;19世纪电能的使用,极促进了社会经济的发展,改变了人类生活的面貌;20世纪以核能为代表的新能源的利用,使人类进入原子的微观世界,开始利用原子部的能量。 未来对能源的要求有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题。未来对能源的需求未来的人类社会依然要依赖于能源,依赖于能源的可持续发展。因此,我们须现在就很清楚地了解地球上的能源结构和储量,发展必须开发的能源利用技术,才能使人类的生存得于永久维持。而我们赖于生存的能源是取之不尽用之不完的吗?回答是:不是,也是。事实上,进入21世纪后,人类目前技术可开发的能源资源已将面临严重不足的危机,当今煤、石油和天然气等矿石燃料资源日益枯竭,甚至不能维持几十年。因此,必须寻找可持续的替代能源。而近半世纪的核能和平利用,已使核能已成为新能源家属中迄今为止能替代有限矿石燃料的唯一现实的大规模能源。而且,未来如能实现核能的彻底利用,人类的能源将是无穷的。 除了物质、能量和信息三大因素外,人类对安全的要求也越来越重要了。安全包括社会安全、健康安全和环境安全等。它们同能源的关系也是非常密切的。现在利用的能源已造成了大量的环境污染问题,严重影响了人类的生存。因此,未来对能源的要求将不仅是储量充足,而且还必须是清洁的能源。相对其它化石能源而言,核能的和平利用已充分证明了核能是清洁的能源之一。 关键字:能源利用可持续发展环境污染

洁净煤技术的发展及意义

洁净煤技术的发展及意义 摘要:介绍了什么是洁净煤技术以及它的特点,世界上的发达国家和我国洁净煤技术的发展现状,洁净煤技术的发展意义。关键词:洁净煤技术;现状;意义;特点 传统意义上的洁净煤技术主要是指煤炭的净化技术及一些加工转换技术,即煤炭的洗选、配煤、型煤以及粉煤灰的综合利用技术,国外煤炭的洗选及配煤技术相当成熟,已被广泛采用;目前意义上洁净煤技术是指高技术含量的洁净煤技术,发展的主要方向是煤炭的气化、液化、煤炭高效燃烧与发电技术等等。洁净煤技术计划是能源计划,是涉及整个国民经济中包括生产和用户等多个部门的一项庞大的系统工程。在开发、制定和执行程序上通常分为2个层次,即近期与长远相结合,发展常规技术和发展高新技术相结合,同时启动分期完成。常规的应用技术中有煤的洗选燃烧利用技术,如流化床燃烧、烟气净化等。高新应用技术中有新型发电系统、煤的气化、煤的液化新工艺,如燃料电池发电、磁流体发电、二氧化碳固化及有效利用技术等。 洁净煤技术(clean coal technology,CCT)是洁净、高效利用煤炭的先导性技术,最早由美国学者提出,主要是为了解决美国和加拿大边境的酸雨问题。洁净煤技术是指从煤炭开发到利用全过程中,旨在减少污染物排放和提高利用效率的煤炭加工、转化、燃烧及污染控制等一系列新技术的总称,是使煤作为一种能源应达到最大限度的潜能利用而将释放的污染控制在最低水平,实现煤的高效、洁净利用的技术体系。洁净煤技术涵盖了煤炭从“摇篮”到“坟墓”———开采到使用终结的洁净生产和洁净消费的全过程。

从以上分析可知,洁净煤技术具有以下几个显著特点: (1)以高硫煤为原料,以一碳化学为基础,采用多样化工艺,可以实现煤炭资源的优化配置、高效和清洁利用; (2)涉及物理学、化学、生物学、地质学等多学科,化工、热工、环境等多技术,是一项多层次多学科、综合性很强的系统工程; (3)注重综合效益,实现了环境友好和经济发展的双重效益,即“经济”和“环境”的双赢。 随着人们对环境的意识,能源的意识增强,而洁净煤技术在减少污染和提高能源效率都有大的贡献,各国都开始发展洁净煤技术。下面是各发达国家在洁净煤技术上的发展情况; 美国是最先提出洁净煤技术计划且组织最严密、成效最大的国家。美国还开展了4项相关技术的研究:煤的直接液化、煤的气化、氢气和合成气、温和气化。欧共体的洁净煤发展计划的主旨是促进欧洲能源利用新技术的开发,减少对石油的依赖和煤炭利用时所造成的环境污染,提高能源转换和利用效率,减少二氧化碳和其他温室气体排放,使燃煤发电更加洁净,通过提高效率减少煤炭消耗。日本为摆脱对石油的过分依赖,开始积极实行洁净煤技术开发计划(新阳光计划),并以煤代油作为能源的基本政策之一。 而从我国情况看,中国能源结构的特点是缺油、少气、富煤,在常规能源中,煤炭储量占90%以上。加上中国属于发展中国家,这就决定了煤炭是主要能源。在新的技术取得成功之前,控制煤炭燃烧中的污染是最现实的措施。中国用煤的70%至75%用于火力发电,因此,限制发电用煤、工业

煤直接液化技术研究与发展

煤直接液化技术研究与发展 摘要:文章介绍了煤炭直接液化技术的发展状况和典型工艺,对其发展趋势和我国的发展前景进行了展望,指出发展煤炭直接液化工艺是我国缓解环境恶化、优化能源机构、解决石油短缺、保证能源安全的有效途径。 关键词:煤炭直接液化;工艺;趋势;前景 伴随着经济的不断发展,世界性的石油短缺将无法避免。因此,各国一直进行着石油代用燃料的开发。在新能源大规模应用之前,煤炭仍是石油和天然气的最佳替代品。其中,煤直接液化技术作为煤炭清洁、高效利用的代表之一,将是未来调整世界能源结构和保证经济正常高速发展的重要技术途径。 1煤炭直接液化技术的发展历程 煤炭直接液化工艺的开发大致经历以下三个阶段: ①在第二次世界大战前及二战期间,以德国为首的国家开发并建设了高温高压加氢液化工艺的生产装置,实现了煤液化技术的首次工业化。随着第二次世界大战的结束,德国的煤直接液化工厂陆续停产。 ②在1973年中东石油危机结束以后,以美国、德国为首的国家重启了煤直接液化技术的研究与开发。在德国的老工艺基础上,提高了催化剂活性,降低了反应压力,大幅度降低了成本。到20世纪80年代初,新工艺基本成熟,但由于成本依然较高,没有实现工业化。 ③20世纪90年代中后期至今。由于石油资源严重匮乏,以中国、日本为代表的亚洲国家,积极开发煤炭直接液化技术,先后完成了工业示范实验。2008 年世界上首套6000 t/d 的神华煤炭直接液化工业示范装置建成,并于年底投入第一次工业运行。 2煤炭直接液化技术 2.1反应机理 煤直接液化是在高温和高压下,借助于供氢溶剂和催化剂,使氢元素进入煤及其衍生物的分子结构,从而将煤转化为液体燃料或化工原料的过程。 2.2工艺单元 ①煤浆制备单元: 磨细原料煤, 并与溶剂、催化剂一起制成油煤浆;②反应单元: 在高温、高压条件下进行催化加氢反应, 得到液化粗产品;③分离单元: 将

煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。根据不同的加工 ,使其转化成为液体燃 料路线,煤炭液化可分为直 接 、化工原料 和液化和间接液 化 两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使 煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人 于1913 年发现的,并于二战期间在德国实现了工业 化生产。德国先后有12套煤炭直接液化装置建成投产, 到1944年,德国煤炭直接 液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日 本、德国、美国等工业发达国家,在原有基础上相继研究开发出一 批煤炭直接液化新 工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有 较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成 了新工艺技术的处 理煤100t/d 级以上大型中间试 验,具备了建设大规模液化厂的技术能力。煤炭直接 液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工 艺原理 煤的分 子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以 设想由以下四个部分复合而成。 第一部 分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网 络结构,它的主要前身物来自维管植物中以 芳族结构为基础的木质素。 第二部 分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中

煤炭科学技术发展现状与展望

煤炭科学技术发展现状 与展望 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

我国煤炭科学技术发展现状与展望随着现代科学技术的快速发展,现代化的新理念、新工艺和新技术不断渗透到煤炭科学技术领域,有力地促进了煤炭科学技术的迅猛发展。我国政府提出的以煤为主体的能源发展战略,颁布的《国务院关于促进煤炭工业健康发展的若干意见》,引起了全社会对煤炭工业健康发展的高度关注,也将有效地促进我国煤炭科学技术的不断发展。在“十五”期间,通过广大煤炭科技工作者的不懈努力,奋勇攻关,自主创新,我国煤炭科学技术得到了长足的发展,积极赶超国际先进水平。 一是煤田地质勘探精度不断提高,快速建井技术及巷道掘进技术水平不断提高。应用以高分辨率三维地震勘探技术为核心的精细物探技术,结合其他的高精度、数字勘探技术的推广,在物探条件适宜的矿区可以有效地控制落差5米左右的小断层和直径15米左右的陷落柱,极大地提高了井田的精细化勘探程度,为大型矿井设计提供了资源保障。我国深井、厚冲积层条件下的矿井建设水平不断提高,采用钻井法、冻结法两种凿井工艺,基本解决了近600米厚松散冲积层的矿井建设难题,使该项技术成果达到国际领先水平;我国千米深井凿井技术和工艺取得了突破性进展,使立井井筒施工速度达到每月232米以上,创造了世界纪录;煤巷、半煤岩巷掘进技术装备得到长足发展,研制成功了一系列高可靠性的半煤岩巷掘进机,配合巷道锚杆锚索支护新技术,显着地提

高了巷道掘进施工的机械化水平,为加快我国现代化矿井建设速度提供了有力的技术保障。 二是我国煤矿综采成套装备水平不断提高,高产高效矿井建设取得了巨大成就。近几年来,我国自主研究开发了具有国际先进水平的大功率电牵引采煤机,具有电液控制功能的大采高强力液压支架,大运力重型刮板运输机及转载机,大倾角、大运力胶带输送机,可为开采煤层厚度5米左右、配套能力每小时2500吨、年生产能力600万吨的综采工作面提供成套装备及开采工艺,可在比较复杂的开采条件下实现高产高效。到2005年底,全国符合高产高效矿井建设条件的煤矿共有197个,产煤6.35亿吨,人均工效达到17.5吨,百万吨死亡率为0.045,主要技术经济指标接近或达到了世界先进水平。 三是煤矿瓦斯、火灾灾害治理技术不断改进,煤矿安全生产的技术水平不断提高。在瓦斯防治中全面落实“先抽后采、监侧监控、以风定产”的“十二字方针”,研究成功了地面抽放、本煤层抽放、邻近煤层抽放、采空区抽放等瓦斯抽放技术与装备,目前90%以上的高瓦斯煤矿开展了瓦斯抽放工作,年抽放量达到20多亿立方米,其中40%被用于瓦斯发电或作为民用燃料。基于计算机网络系统的全矿井安全监测系统和远程集中监控系统被普遍推广应用,在煤矿瓦斯事故监控和防治中发挥了重要作用。

现代化煤直接液化技术进展通用版

安全管理编号:YTO-FS-PD683 现代化煤直接液化技术进展通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

现代化煤直接液化技术进展通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化是国家“十五”期间12 个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃料、化工原料等产品。根据加工路线的不同,通常把煤液化分为直接

我国煤化工产业概况及其发展趋势

我国煤化工产业概况及其发展趋势 煤化学加工包括煤的焦化、气化和液化。主要用于冶金行业的煤炭焦化和用于制取合成氨的煤炭气化是传统的煤化工产业,随着社会经济的不断发展,它们将进一步得到发展,同时以获得洁净能源为主要目的的煤炭液化、煤基代用液体燃料、煤气化—发电等煤化工或煤化工能源技术也越来越引起关注,并将成为新型煤化工产业化发展的主要方向。发展新型煤化工产业对煤炭行业产业结构的调整及其综合发展具有重要意义。 1 煤化工产业发展概况 1.1 煤炭焦化 焦化工业是发展最成熟,最具代表性的煤化工产业,也是冶金工业高炉炼铁、机械工业铸造最主要的辅助产业。目前,全世界的焦炭产量大约为3.2~3.4亿t/a,直接消耗原料精煤约4.5亿t/a 。受世界钢铁产量调整、高炉喷吹技术发展、环境保护以及生产成本增高等原因影响,工业发达国家的机械化炼焦能力处于收缩状态,焦炭国际贸易目前为2500万t/ a。 目前,我国焦炭产量约1.2亿t/a,居世界第一,直接消耗原料煤占全国煤炭消费总量的14%。 全国有各类机械化焦炉约750座以上,年设计炼焦能力约9000万t/a,其中炭化室高度为4m~5.5m以上的大、中型焦炉产量约占80%。中国大容积焦炉(炭化室高≧6m)已实现国产化,煤气净化

技术已达世界先进水平,干熄焦、地面烟尘处理站、污水处理等已进入实用化阶段,焦炭质量显著提高,其主要化工产品的精制技术已达到或接近世界先进水平。 焦炭成为我国的主要出口产品之一,出口量逐年上升,2000年达到1500t/a,已成为全球最大的焦炭出口国。 从20世纪80年代起,煤炭行业的炼焦生产得到逐步发展,其中有的建成向城市或矿区输送人工煤气为主要目的的工厂,有的以焦炭为主要产品。煤炭行业焦化生产普遍存在的问题是:焦炉炉型小、以中小型焦炉为主,受矿区产煤品种限制、焦炭质量调整提高难度较大,采用干法熄焦、烟尘集中处理等新技术少,大多数企业技术进步及现代化管理与其他行业同类工厂相比有较大差距。 1.2 煤气化及其合成技术 1.2.1 煤气化 煤气化技术是煤化工产业化发展最重要的单元技术。全世界现有商业化运行的大规模气化炉414台,额定产气量446×106Nm 3/d,前10名的气化厂使用鲁奇、德士古、壳牌3种炉型,原料是煤、渣油、天然气,产品是F-T合成油、电或甲醇等。 煤气化技术在我国被广泛应用于化工、冶金、机械、建材等工业行业和生产城市煤气的企业,各种气化炉大约有9000多台,其中以固定床气化炉为主。近20年来,我国引进的加压鲁奇炉、德士古水煤浆气化炉,主要用于生产合成氨、甲醇或城市煤气。 煤气化技术的发展和作用引起国煤炭行业的关注。“九五”期间,

我国煤炭科学技术发展现状与展望(2021版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 我国煤炭科学技术发展现状与 展望(2021版) Safety management is an important part of production management. Safety and production are in the implementation process

我国煤炭科学技术发展现状与展望(2021 版) 随着现代科学技术的快速发展,现代化的新理念、新工艺和新技术不断渗透到煤炭科学技术领域,有力地促进了煤炭科学技术的迅猛发展。我国政府提出的以煤为主体的能源发展战略,颁布的《国务院关于促进煤炭工业健康发展的若干意见》,引起了全社会对煤炭工业健康发展的高度关注,也将有效地促进我国煤炭科学技术的不断发展。在“十五”期间,通过广大煤炭科技工作者的不懈努力,奋勇攻关,自主创新,我国煤炭科学技术得到了长足的发展,积极赶超国际先进水平。 一是煤田地质勘探精度不断提高,快速建井技术及巷道掘进技术水平不断提高。应用以高分辨率三维地震勘探技术为核心的精细物探技术,结合其他的高精度、数字勘探技术的推广,在物探条件

适宜的矿区可以有效地控制落差5米左右的小断层和直径15米左右的陷落柱,极大地提高了井田的精细化勘探程度,为大型矿井设计提供了资源保障。我国深井、厚冲积层条件下的矿井建设水平不断提高,采用钻井法、冻结法两种凿井工艺,基本解决了近600米厚松散冲积层的矿井建设难题,使该项技术成果达到国际领先水平;我国千米深井凿井技术和工艺取得了突破性进展,使立井井筒施工速度达到每月232米以上,创造了世界纪录;煤巷、半煤岩巷掘进技术装备得到长足发展,研制成功了一系列高可靠性的半煤岩巷掘进机,配合巷道锚杆锚索支护新技术,显著地提高了巷道掘进施工的机械化水平,为加快我国现代化矿井建设速度提供了有力的技术保障。 二是我国煤矿综采成套装备水平不断提高,高产高效矿井建设取得了巨大成就。近几年来,我国自主研究开发了具有国际先进水平的大功率电牵引采煤机,具有电液控制功能的大采高强力液压支架,大运力重型刮板运输机及转载机,大倾角、大运力胶带输送机,可为开采煤层厚度5米左右、配套能力每小时2500吨、年生产能力

现代化煤直接液化技术进展通用范本

内部编号:AN-QP-HT736 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 现代化煤直接液化技术进展通用范本

现代化煤直接液化技术进展通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国

神华煤直接液化项目的综合评价

摘要 神华煤制油项目是世界上首个建设的工业化项目,工程分为先期和一期,总建设规模为年生产油品500万t,自2004年8月先期工程开工建设,到2009年一期工程第一条生产线基本完成,并计划于2009年5月正式投产。 本文对神华煤直接液化工艺项目进行了综合评价,主要分为3个部分,包括经济分析、技术分析和环境分析。同时,本文还介绍了煤直接液化的工艺流程,重点介绍了煤制油工艺的特殊的单元,例如:煤液化单元,煤制氢单元,T-star工艺单元。 经济分析部分,采用技术经济学的知识,计算了项目的总投资、总成本、项目销售收入和税金以及现金流量。计算出了项目的内部收益率为13.13%,全投资的回收期为7.73年,大于石油化工项目的平均内部收益率10%。从经济方面,神华煤制油项目是有优势的。 技术分析部分,主要从煤直接液化工艺的技术方案,工程放大和项目的建设进行了研究。重点分析了液化工艺核心技术—采用美国的HTI工艺,液化工艺的催化剂制备单元—采用新型高效“863”合成催化剂,液化工艺煤制氢单元—采用Shell粉煤加压气化工艺等先进的技术。神华煤制油项目在产品分离、加氢改质、空分、水处理方面都采用了先进的技术。同时项目的工程放大和项目的建设都保证了神华煤制油项目的有条不紊的建设。 环境分析部分,重点研究了神华项目污水和液化残渣的利用。对这两部分分别提出了建议意见。 最后,本文对神华项目提出了发展建议,提出了神华项目要加大自主技术研究,完善绿化方案,建立水库储备水源,研究煤、电和化工的结合。 关键词:煤制油;直接液化;综合评价

Abstract Shenhua coal to oil was the first industrialization project on construction in the world, which was divided into two stages,including the early one and the first one.the gross of project is five million tons/year in petroleum product. The early stage started to be constructed since August, 2004, the first stage will be finshed in 2009, and plan to put into production in may. The comprehensive evaluation of the project in direct liquefaction process on shenhua coal was studied in this paper, which mainly was divided into three parts, including the economic analysis, technical analysis and environmental analysis. At the same time, this paper also introduced the process flow in coal liquefaction, major introduced special unit of coal to oil, for example: coal liquefaction unit, hydrogen unit, T-star process unit. Economic analysis, using knowledge of technical economics, the project total investment, total cost, project sales income and tax and cash flow were calculated,then the internal rate of return and investment recoupment period of project were 13.13% and 7.73 years respectively.The internal rate of return was more than the one for petrochemical industry which was 10%. From the economic aspect, the project was profitable. Technical analysis, mainly studied from coal direct liquefaction technical scheme, engineering enlargement and project construction. The core technology liquefaction process - HTI process employing the America technology, catalyst preparation process - using new efficient "863" synthesis catalyst, coal liquefaction process for hydrogen production unit by adding pressurized gasification - employing Shell advanced pressurized gasification technology were emphatically analyzed. Shenhua coal to oil project in product separation unit, hydrogenation modification uint,air

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

简述煤化工及其发展前景论文

简述煤化工及其发展前景论文 学院:化学与化工学院 专业:化学工程与工艺 年级:化工09* 学号:0908***** 学生姓名:********* 2012 年05 月16 日

简述煤化工及其发展前景 彭启亮 (贵州大学化工学院化学工程与工艺091) 摘要:我国是以煤为主要能源的国家,也是目前世界上最大的煤炭生产国和消费国,而石油和天然气相对短缺。大力发展煤化工行业是我国未来能源发展的主要趋势。随着我国经济的快速发展,煤化工也得到长足的发展。在煤的洁净化、高效燃烧、联合循环发电、干熄焦、炼焦过程自动化、煤炭气化以及环保型洁净能源为主的煤化工能源技术等都得到广泛的重视和应用。因此,发展新型煤化工对煤炭、冶金、城市建设和煤化工行业结构的调整及其综合发展具有重要的战略意义。 关键字:煤化工化工工艺化工产品节能减排发展煤、石油、天燃气等既是化学工业的能源,又是化学工业的原料。该两项加起来占成品成本的25%--40%,在氮肥工业达70%-80%,因此广义化学工业是工业部门第一用能大户。这一特点使节能工作在化学工业中有及其重要意义,能源消费以煤为主,是我国化学工业不同于世界其他主要国家化学工业的一个特点。【1】近年来, 部分发达国家及地区十分重视煤化工技术的开发, 相继推出、实施了一揽子洁净煤深加工计划。涉及通过煤炭液化技术生产石油、醇类等液体燃料, 通过煤炭气化技术合成天然气, 开发煤氢转化技术以及开发碳捕收技术等等【2-3】。“十一五”期间, 我国煤化工产业保持快速增长态势, 规

模不断扩大, 产量大幅度提升, 传统煤化工产品焦炭、电石、煤制氮肥和煤制甲醇的产量产能稳居世界第一。总体上, 我国传统煤化工产能严重过剩, 新型煤化工尚处于示范建设阶段【4】, 煤化工关键共性技术及装备亟待国产化, 产业投资面临极大的风险。今后一段时间内, 我国煤化工产业发展重点是积极探索煤炭高效清洁转化和石化原料多元化发展的新途径【5】。 煤化工【6】是经化学方法将煤炭转化为气体,液体和固体产品和半产品,而后进一步加工成一系列化工产品的工业。从广义上讲,还包括以煤为原料的合成燃料工业,在煤的各种加工过程中,焦化是应用最早且至今仍然重要的方法,目的是制取焦炭同时副产煤气和煤焦油。电石化学是煤化工中一个重要的领域,用电石发生乙炔,生产一系列有机化工产品和炭黑。煤气化在煤化工中占有特别重要的地位,现在煤气化主要用于生产城市煤气和各种工业用燃料气,也用于生产合成气制取合成氨,甲醇等化工产品,通过煤的液化和气化成产各种液体燃料和气体燃料。利用碳一化学技术合成各种化工产品,随着世界石油资源的不断减少,煤气化技术的改进,煤化工有具广阔的前景。 煤化工主要原料就是煤,而煤主要由碳、氢、氧、氮、硫和磷等元素组成,碳、氢、氧三者总和约占有机质的95%以上,是非常重要的能源,也是冶金、化学工业的重要原料,有褐煤、烟煤、无烟煤、半无烟煤这几种分类。在煤化工工艺生产中,主要生产成品有煤气化、煤焦油、生产天然气、尿素、甲基萘等化工产品。 一、煤气化【7】

相关文档