文档视界 最新最全的文档下载
当前位置:文档视界 › 遥感中均值平滑和中值滤波的计算方法

遥感中均值平滑和中值滤波的计算方法

遥感中均值平滑和中值滤波的计算方法

中值滤波与均值滤波

四川大学电气信息学院微机原理与接口技术 实验报告 实验名称:中值滤波与均值滤波 实验地点:二基楼A514 年级: 2014级 姓名:宋雅婕 学号: 2014141443030 实验时间:2016年5月27日

一、实验内容 1.在数据段设变量数组TADA1和TADA2,并存入假设的两组采样值作为某一 采样周期的采样值。 ⒉设计中值滤波程序求出测量值。 ⒊设计均值滤波程序求出测量值。 ⒋每个程序应能将结果显示在屏幕上。 ⒌在计算机上调试程序,并获得正确结果。 二、程序框图 1. 2.中值滤波:

三、程序清单 1、中值滤波: DATAS SEGMENT TADA1 DB 65,72,33,84,43 N EQU $-TADA1 DATAS ENDS CODES SEGMENT ASSUME CS:CODES,DS:DATAS START: MOV AX,DATAS MOV DS,AX ;给DS段赋值 MOV CX,N-1 ;设置N-1轮比较次数 MOV DX,1 ;设置比较的轮次 AG: CALL MP ;调用子程序 INC DX LOOP AG MOV SI,0 XOR AX,AX ;将AX清零 MOV AL,TADA1[SI+(N-1)/2] ;取出中值 MOV BL,10 DIV BL PUSH AX ADD AL,30H MOV DL,AL MOV AH,2 INT 21H ;输出十进制数的高位POP AX ADD AH,30H MOV DL,AH MOV AH,2 INT 21H ;输出十进制数的低位 MOV AH,4CH INT 21H MP PROC ;冒泡法(从小到大排列) PUSH CX MOV CX,N SUB CX,DX MOV SI,0 RECMP: MOV AL,TADA1[SI]

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三中值滤波和均值滤波实验报告

数字图像处理实验三 均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班 一、实验目的: 1)熟悉均值滤波、中值滤波处理的理论基础; 2)掌握均值滤波、中值滤波的计算机实现方法; 3)学习VC++ 6。0 的编程方法; 4)验证均值滤波、中值滤波处理理论; 5)观察均值滤波、中值滤波处理的结果。 二、实验的软、硬件平台: 硬件:微型图像处理系统,包括:主机, PC机;摄像机; 软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验内容: 1)握高级语言编程技术; 2)编制均值滤波、中值滤波处理程序的方法; 3)编译并生成可执行文件; 4)考察处理结果。 四、实验要求: 1)学习VC++确6。0 编程的步骤及流程; 2)编写均值滤波、中值滤波的程序;

3)编译并改错; 4)把该程序嵌入试验二给出的界面中(作适当修改); 5)提交程序及文档; 6)写出本次实验的体会。 五、实验结果截图 实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会 本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。本次实验更加增加了对数字图像处理的了解与学习。 七、实验程序代码注释及分析 // HistDemoADlg.h : 头文件 // #include "ImageWnd.h" #pragma once // CHistDemoADlg 对话框 class CHistDemoADlg : public CDialogEx { // 构造

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

中值滤波和均值滤波代码

%均值滤波 clc,clear; f=imread('2.bmp'); subplot(221),imshow(f); f1=imnoise(f,'gaussian',0.002,0.0008); subplot(222),imshow(f1); k1=floor(3/2)+1; k2=floor(3/2)+1; X=f1; [M,N]=size(X); uint8 Y=zeros(M,N); funBox=zeros(3,3); for i=1:M-3 for j=1:N-3 funBox=X(i:i+3,j:j+3); s=sum(funBox(:)); h=s/9; Y(i+k1,j+k2)=h; end; end; Y=Y/255; subplot(223),imshow(Y); 注意:在matlab中,我们常使用imshow()函数来显示图像,而此时的图像矩阵可能经过了某种运算。在matlab中,为了保证精度,经过了运算的图像矩阵I其数据类型会从unit8型变成double型。如果直接运行imshow(I),我们会发现显示的是一个白色的图像。这是因为imshow()显示图像时对double型是认为在0~1范围内,即大于1时都是显示为白色,而imshow显示uint8型时是0~255范围。而经过运算的范围在0-255之间的double型数据就被不正常得显示为白色图像了。 那么如何解决这个问题呢?笔者曾经用fix()函数把图像矩阵由实数形式转化成整数形式,但这样仍无法改变图像矩阵是double型的事实。 通过搜索,找到两个解决方法: imshow(I/256); ----------将图像矩阵转化到0-1之间 imshow(I,[]); -----------自动调整数据的范围以便于显示(不明白原理!) PS:imshow(I,[]),将I的最小值看作0,最大值看作255,所以黑白明显

快速均值滤波算法—C代码

static void meanfilter32(int *imSrc,const int windows,const int width,const int height,int *Acol,int *imDst) { int i,j,k,r,n,sum; r=(windows-1)/2; // int Acol[20]={0}; for(i=0; i0 && i<=r) { for(k=0; kr && i

中值滤波算法的滤波效果分析报告

题目中值滤波算法的滤波效果分析报告 学院:信息科学与技术学院 专业:控制科学与工程 学生:X X 指导教师:XXX 2014 年12月07日

1、中值滤波算法原理 中值滤波是一种对干扰脉冲和点状噪声有良好抑制作用,而对图像边缘能较好保持的非线性图像增强技术。中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。常用的中值滤波有线状、圆形、十字形、圆环形等形状;常用的中值滤波有3x3、5x5等区域。图像为二维信号,中值滤波的窗口形状和尺寸对滤波器效果影响很大,不同图像内容和不同应用要求往往选用不同的窗口形状和尺寸。 2、滤波效果分析 本文基于Matlab编程实现对含有噪声的图像进行中值滤波处理,中值滤波的基本步骤分为: (1)将滤波模板(含有若干个点的滑动窗口)在图像中遍历,并将模板中心与图中某个像素位置重合; (2)读取模板中各对应像素的灰度值; (3)将这些灰度值从小到大排列; (4)取这一列数据的中间数据,将其赋给对应模板中心位置的像素。如果窗口中元素为奇数,中值取元素按灰度值大小排序后的中间元素灰度值。如果窗口中元素为偶数,中值取元素按灰度值大小排序后,中间两个元素灰度的平均值。中间值代替该点的像素值。 调用Matlab中的中值滤波函数medfilt2()对添加噪声的图像进行滤波处理,分别添加高斯白噪声和椒盐噪声,分别使用3x3、5x5的窗口对添加噪声的图像进行滤波,其运行结果如下: 图2.1 原始图像

在原图像中添加0.002的高斯白噪声与椒盐噪声,噪声图像如图2.2所示。 图2.2 噪声图像 使用3x3、5x5的滤波窗口对高斯白噪声图像进行滤波处理,其结果如图2.3所示。 图2.3 白噪声图像滤波效果 使用3x3、5x5的滤波窗口对椒盐噪声图像进行滤波处理,其结果如图2.4所示。 图2.4 椒盐噪声图像滤波效果

滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法 作者:浙江大学王青松 关键词:整流电路,电压型变频器,纹波 摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。 0 引言 虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。 直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。 对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。 l 三相变频器直流中间电路电解电容的计算 1.1 变频器及直流中间电路结构框图 变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形 三相输入线电压220V及整流后的电压波形如图2所示。 图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。 1.3 分析过程 1.3.l 整流后电压的计算 对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

数字图像处理实验三中值滤波和均值滤波实验报告材料

数字图像处理实验三 均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202班 一、实验目的: 1)熟悉均值滤波、中值滤波处理的理论基础; 2)掌握均值滤波、中值滤波的计算机实现方法; 3)学习VC++ 6。0 的编程方法; 4)验证均值滤波、中值滤波处理理论; 5)观察均值滤波、中值滤波处理的结果。 二、实验的软、硬件平台: 硬件:微型图像处理系统,包括:主机, PC机;摄像机; 软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++ 6.0 三、实验内容: 1)握高级语言编程技术; 2)编制均值滤波、中值滤波处理程序的方法; 3)编译并生成可执行文件; 4)考察处理结果。 四、实验要求: 1)学习VC++确6。0 编程的步骤及流程; 2)编写均值滤波、中值滤波的程序;

3)编译并改错; 4)把该程序嵌入试验二给出的界面中(作适当修改); 5)提交程序及文档; 6)写出本次实验的体会。 五、实验结果截图 实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。

六、实验体会 本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。本次实验更加增加了对数字图像处理的了解与学习。 七、实验程序代码注释及分析 // HistDemoADlg.h : 头文件 // #include "ImageWnd.h" #pragma once // CHistDemoADlg 对话框 class CHistDemoADlg : public CDialogEx { // 构造

数字图像处理实验报告[邻域平均法和中值滤波法]

数字图像处理实验报告 班级: 姓名: 学号: 日期: 邻域平均法和中值滤波处理

一、实验目的 图像变换是数字图像处理中的一种综合变换,如直方图变换、几何变换等。通过本实验,使得学生掌握两种变换的程序实现方法。 二、实验任务 请设计程序,分别用邻域平均法,其模板为:和中值滤波法对testnoise图像进行去噪处理(中值滤波的模板的大小也设为3×3)。 三、实验环境 本实验在Windows平台上进行,对内存及cpu主频无特别要求,使用VC或者MINGW(gcc)编译器均可。 四、设计思路 介绍代码的框架结构、所用的数据结构、各个类的介绍(类的功能、类中方法的功能、类的成员变量的作用)、各方法间的关系写。在此不进行赘述。 五、具体实现 实现设计思路中定义的所有的数据类型,对每个操作给出实际算法。对主程序和其他模块也都需要写出实际算法。 代码: <邻域平均法>(3*3) #include

#include #include #include "hdr.h" /*------定义结构指针------*/ struct bmphdr *hdr; //定义用于直方图变量 unsigned char *bitmap,*count,*new_color; /*------main() 函数编------*/ int main() { //定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数 int i, j ,nr_pixels,nr_w,nr_h; //定义两个文件指针分别用于提取原图的数据和生成直方图均衡化后的图像 FILE *fp, *fpnew; //定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。// argc=3; // argv[1]="test.bmp"; // argv[2]="testzf.bmp"; //参数输入出错显示 /* if (argc != 3) { printf("please input the name of input and out bitm ap files\n");

中值滤波

机械与电子工程学院信号分析与处理 课程设计报告 题目:图像信号的中值滤波 题号:1-14 小组成员:赵鑫、陈超、尹庆宇 班级:15电科1班 字数:4040 完成日期:2018年6月29日

目录 1引言 (1) 1.1设计目的 (1) 1.2章节组织 (1) 2设计原理 (1) 2.1中值滤波的基本原理 (1) 2.2中值滤波的特点 (2) 2.2.1对某些输入信号中值滤波的不变性 (2) 2.2.2中值滤波去噪声性能 (2) 2.2.3中值滤波的频谱特性 (2) 3设计内容 (2) 3.1中值滤波算法分析 (2) 3.2中值滤波在图像处理中的MATLAB实现 (3) 4设计结果分析 (5) 4.1中值滤波与均值滤波的比较 (5) 4.2中值滤波与均值滤波的进一步讨论 (6) 4.2.1中值滤波输出方差 (6) 4.2.2均值滤波输出方差 (8) 4.3结果分析 (8) 5总结 (8) 6参考文献 (9)

1引言 1.1设计目的 1.熟悉MA TLAB的使用方法包括函数、原理和方法的应用。 2.增强在通信系统设计方面的动手能力与自学能力。 3.进一步熟悉图像中值滤波的原理和方法。 4.比较中值滤波同其它滤波的实现效果 1.2章节组织 报告共分六章。第一章为引言,主要介绍本课程的设计目的;第二章为设计原理,给出了图像的中值滤波的基本原理;第三章为设计内容,给出了中值滤波的算法实现;第四章为设计结果分析,比较中值滤波同其它滤波的实现效果;第五章为总结,对报告的要点进行了总结;第六章为参考文献,给出了报告的主要参考资料。 2设计原理 2.1中值滤波的基本原理 中值滤波是一种比较常见的非线性信号处理技术,它以排序理论为基础,能够有效地抑制噪声。这种领域运算和卷积类似,它主要是排序领域中的像素,接下来再选择排序后的数据组中的中间值作为最终输出的像素值。其基本原理为:首先针对以一个像素为中心点的具体领域进行研究,领域也被称为窗口,可以是方形,十字形,圆形或其他类似的形状,然后对领域中的每个像素值按照灰度值的大小进行排序,最后再将这组数的中值作为中心点像素灰度的真值进行输出。序列中值的具体定义如下: 若x1,x2,…,xn为一组序列,先把这组序列按大小排序为xi1≤xi2≤xi3…≤xin,则该序 列的中值y为 实现时一般取一长度为L=2n+1的滤波窗口,n为正整数。将窗口在数据上滑动,中值滤波输出就是窗口正中所对的像素值用窗口内各像素的中值代替,

一些经典的滤波电路

有源滤波电路 滤波器的用途 滤波器是一种能使有用信号通过,滤除信号中无用频率,即抑制无用信号的电子装置。 例如,有一个较低频率的信号,其中包含一些较高频率成分的干扰。

有源滤波器实际上是一种具有特定频率响应的放大器。它是在运算放大器的基础上增加一些R 、C 等无源元件而构成的。 低通滤波器(LPF ) 高通滤波器(HPF ) 带通滤波器(BPF ) 带阻滤波器(BEF )有源滤波电路的分类

低通滤波器的主要技术指标 (1)通带增益A v p 通带增益是指滤波器在通频带内的电压放大倍数,性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压放大倍数基本为零。(2)通带截止频率f p 其定义与放大电路的上限截止频率相同。通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好。

一阶有源滤波器 电路特点是电路简单,阻 带衰减太慢,选择性较差。 1 01R R A A f VF + == ) (11)(s V SRC s V i P ?? +=∴SRC A s V s V s A VF +==11 )()()(0S A =02.传递函数 当 f = 0时,电容视为开路,通带内的增益为1.通带增益

3. 幅频响应 一阶LPF 的幅频特性曲线 ) (1)()()(0 0n i j A j V j V j A ωωωωω+= =n i S A s V s V s A ω+= =1)()()(0 02 0) (1) () ()(n i A j V j V j A ωωωωω+= =

简单二阶低通有源滤波器 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好。 二阶LPF二阶LPF的幅频特性曲线

均值滤波改进算法

《DSP图像处理》课程学习报告 姓名郭鑫 学号 08211083 通信0804班 同组成员胡婷婷 宋顾洋 霍万明 陈友为 指导教师申艳老师 时间 2010-10-15

均值滤波的改进算法 一、算法描述:一般的均值滤波的阈值是一个固定值,而我们采用 了自适应的方法,使阈值根据不同的图像会有不同的数值,计算公式是 二、实验箱实验过程和结果分析 (1)、c语言程序 /*均值滤波处理*/ void AverageFilterEdge() { int i,j,k; Uint8 bTemp; float fAverg; k=(intALines-1)*(intAPixels-1); for(i=intALines;i

快速中值滤波算法

南昌大学实验报告 学生姓名:洪僡婕学号:6100411159 专业班级:数媒111班 实验类型:■验证□综合□设计□创新实验日期: 4.29 实验成绩:一、实验项目名称 数字图像处理 二、实验目的 实现快速中值滤波算法 三、实验内容 用VC++实现中值滤波的快速算法 四、主要仪器设备及耗材 PC机一台 五、实验步骤 // ImageProcessingDoc.cpp : implementation of the CImageProcessingDoc class// #include "stdafx.h" #include "ImageProcessing.h" #include "ImageProcessingDoc.h" #include "GreyRatio.h" #include #define PI (acos(0.0) * 2) #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ///////////////////////////////////////////////////////////////////////////// // CImageProcessingDoc IMPLEMENT_DYNCREATE(CImageProcessingDoc, CDocument) BEGIN_MESSAGE_MAP(CImageProcessingDoc, CDocument) //{{AFX_MSG_MAP(CImageProcessingDoc) ON_COMMAND(ID_HISTOGRAM_ADJUSTIFCATION, OnHistogramAdjustifcation) ON_COMMAND(ID_FFT, OnFft) ON_COMMAND(ID_SALT_PEPPER_NOICE, OnSaltPepperNoice) ON_COMMAND(ID_RANDOM_NOISE, OnRandomNoise) ON_COMMAND(ID_MEDIAN_FILTERING, OnMedianFiltering) ON_COMMAND(ID_DCT, OnDct) ON_COMMAND(ID_FWT, OnFwt)

电源滤波电路公式

電源供應器(二) 濾波(Filtering) 的基本概念 在開始討論濾波之前有一點要先聲明: Filter 是一門較深奧的理論, 要徹底研究filters 少不了要用到“轉移函數”(transfer function) 之類的工具, 只好暫時割愛了. 等以後有機會時再來討論克希赫夫定律(Kirchhoff’s theorem), 網路與節點分析(mesh and nodal analysis), 拉普拉斯變換(Laplace transform). 對這些題材感興趣的朋友請您參考: Valley, Wallman: Vacuum Tube Amplifiers 第一章. (或是電路學的書籍, 如: Chua, Desoer, Kuh: Linear and Non-Linear Circuits, 第八章.) 1. 基本方法. 在上次的討論中, 我們知道一個整流子的輸出還不是穩定的直流. 現在我們要來處理整流子的輸出. 處理的越小心, 越精密, 會越接近完美的直流源。 最簡單的處理辦法是利用電容儲存能量及緩慢放電的特性. 將全波整流子的輸出並聯一個電容: 讓我們來看這個電容在這裡產生的功能: 整流子的輸出是一個100/120 Hz, 上下振盪的訊號. 當電壓升高時, 電容開始充電, 電壓降低時電容開始緩慢放電, 在完全放電之前, 又再度開始下一波充電與放電的程序. 所以並聯一個電容的效果是把一個在0 伏特與V 伏特間劇烈振動的訊號變成一個振幅較小的漣波(ripple). 這個電容越大, 漣波的振幅dV越小, 也就是說越接近直流. 理論上, 如果這個電容的電容值是無限大, 那麼這個濾波電容的輸出就是一個完美的直流. 但是, 世界上沒有完美的事物, 也因為物物皆有缺陷, 所以才會產生各種不同的方法, 想要補償不足, 科技才會不停的進步.對於這個漣波, 為了將來的需要, 我們把它分解成:

几种中值滤波去噪方法分析

几种中值滤波去噪方法分析 在数字图像的转换、存储和传输等过程中,经常性由于电子设备工作环境的不稳定,由于设备中含有一些污染物等原因,导致数字图像中一些像素点的灰度值发生非常大的变化,变得非常小或者非常大;而且大气环境很容易干扰无线数据传输,从而让传输信号混入噪声,接收到的无线信号恢复成传输过来的数字图像较原图像相比也会有很大的不同。在这些过程中,椒盐噪声很容易就会对数字图像造成感染。客户满意的数字图像尽可能少或者没有受到椒盐噪声的污染。所以我们需要去噪处理。 在现阶段处理椒盐噪声方面的研究成果方面,因为中值滤波有其非线性的特性,对比其他线性滤波方法可以取得更好的效果,同切同时还可以更好的保留图像的边缘信息。很多学者在研究通过中值滤波消除椒盐噪声的影响,希望可以得到更好的去噪效果。 第一节标准中值滤波方法 标准中值滤波是把这个窗口内的像素点按灰度值大小进行排列,把灰度值的平均值当作标准值。 我们以一个8位的图像作为例子,因为椒盐噪声会让受影响的像素点灰度值改为亮点,即灰度值为255;或者暗点,即灰度值为0。我们在排序的时候,把收到污染的像素点的灰度值大小排列出来,取中间值为所有噪点值,那么就可以消除噪声污染对这个点的影响。其具体步骤如下: ①把窗口在图像中滑动,然后让窗口中心与某一像素点重合 ②记录下窗口中所有像素点的灰度值 ③将这些灰度值从小到大排序 ④记录下该灰度值序列中间的值 ⑤将所记录下的中间值替代窗口中心像素点的灰度值 因为中值滤波的输出灰度值大小是由窗口的中值大小所决定的,所以中值滤

波对于窗口内脉冲噪声远远没有均值滤波敏感。因此相对于均值滤波,中值滤波可以在有效去除脉冲噪声的同时,减小更多的模糊图像。由于由于中值滤波所采用的窗口大小会直接决定去噪效果和图像模糊程度,而且图像去噪后的用途也就决定了窗口的形式。以5*5窗口为例,常见的形状如图2.1所示: 图 2.1 常见的尺寸为5*5的中值滤波窗口 尽管标准中值滤波方法称得上是现在市面上的一种最简单有效的去除椒盐噪声的方法。但是它判断像素点是否被噪声影响的机制不明确,尽管采用该方法时已经对所有像素点进行了一次滤波操作,还是会在一定程序上对图像的边缘、细节信息产生破坏。 第二节带权值的中值滤波方法 Brownrigg提出了一种改进的中值滤波方法:带权值的中值滤波方法。这个滤波的步骤和SM基本一样,不同的地方在于:WM在排序取中值的时候要在

均值滤波和中值滤波

均值滤波与自适应中值滤波的仿真与实现 摘要 图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵,然而在图像使用和传输过程中,不可避免会受到噪声的干扰,因此为了恢复原始图像,达到好的视觉效果,需要对图像进行滤波操作。根据噪声种类不同,可以采用不同的滤波方法,均值滤波是典型的线性滤波算法,能够有效滤波图像中的加性噪声,而中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但传统中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。本文首先对不同均值滤波器在处理不同噪声方面的优缺点进行了分析,然后分别用中值滤波器和自适应中值滤波器对被椒盐噪声污染的图像进行了滤波操作,发现自适应中值滤波方法不仅可以有效滤波椒盐噪声,同时还可以有效地克服中值滤波器造成图像边缘模糊的缺点。 1.均值滤波 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素点和其本身像素点。再用模板中的全体像素的平均值来代替原来像素值。均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其邻近的若干像素组成,求模板中所有像素

的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度

值g(x,y),即g(x,y)=1/m ∑f(x,y), m为该模板中包含当前像素在内的像素总个数。均值滤波能够有效滤除图像中的加性噪声,但均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊。均值滤波主要有算术均值滤波,几何均值滤波,谐波均值滤波以及逆谐波均值滤波,本文只对算术均值滤波,几何均值滤波和逆谐波均值滤波进行研究。其中几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中丢失更少的图象细节。逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。下面分别对算术平均滤波,几何平均滤波和逆谐波均值滤波对不同噪声的滤波效果进行仿真分析。

中值滤波算法

中值滤波算法 本文提出一种中值滤波算法,该算法充分地利用相邻两次中值滤波窗口内数据的相关性。中值滤波算法在运算过程中通过对有序序列快速的对半查找和内插操作,重构有序序列,占L面得到各中值算法很大地提高了运算效率-计算机模拟寝明该方法是有效的。 在数字信号处理中,经常会遇到对信号数据作平滑处理。局部平均滤波是常用的一种算法,若是对具有随机脉冲噪声的信号进行处理,虽然脉冲噪声有所衰减,但它对滤波结果仍有显著的影响。中值滤波却是对窗内数据进行大小的排序,取结果的中间项对应的值,这样脉冲噪声就不起作用,不影响中值结果 所以,中值滤波在有随机脉冲噪声的情况下,能较好地保护原始信号。 中值滤波的主要运算就是对窗口内的信号数据序列进行排序。文[4]提出的二维中值滤波快速算法,只适用于幅度量化级为极其有限的数据(如:数字图象处理中的象素幅度,若是用单字节(8位二进制存贮单元)存放,共有28=256个灰度级),原因是要给每个量化级设置一个作为计数器的存贮单元。文[5—8]的方法也是针对于幅度量化级为有限的数据。若是数据为任意大小或精度的浮点数,则以上的方法不适用,通常采用每次对窗内数据排序并 输出相应的中值。假设原始信号数据序列的长度为 ,表示为{ (O),x(1),?,x(M-1)},窗口长度为2^r+1,表示为{ (O), (1),?, (2Ⅳ)},共需要 一2N次对长度为2N+l的窗内数据序列分别进行排序。要进行排序,就必须对序列中数据元索做比较和交换.数据元素问的比较次数是影响排序速度的一个重要因素。一般认为,对 个元素进行排序时,所需的比较次数在理论上的最小值为 0(n|og。n) 当原始信号数据序列较长或窗口较大时,用 这种传统中值滤波方法是十分费时的。文[9]提出把相邻两次的中值滤波合并为一次进行,只做一次排序。从而,总的排序次数减少一半,运算时间节省约一半本文提出一种中值滤波的快速算法,避免了反复对无序序列排序,而只对有序序列进行数据元素的快速查找和内插,实现中值滤波. 中值滤波的快速算法 本文提出的中值滤波的快速算法的基本思想是:原始数据序列上中值滤波的滑窗在移动过程中,当前窗只要删除其最早的元素,加入窗后的新元素,即成为下一窗的内容。下一窗的中值滤波实现可利用上次中值滤波的排序结果,新元素的插人位置用有序序列快速查找算法求得,新元素插人与最早的元素删除的实现采用独特的数据结构,将是新元素覆盖最早的元素,即是插人兼并了删除。 设置(2N+1)个连续存贮单元(存放浮点数){ (。)t (1),?, (2Ⅳ)}组成的循环序列用来存放窗内的数据元素 按照先进先出的原则,后来的数据元素总是替换当前最早存放的数据元素。设置(2/'/+1)个连续存贮单元(存放整数){ (。), (1),? ,s(2N)}顺序存放的是,若上述窗内元素从小至大排序后,顺序的元素在Ⅳ 序列中的下标值,即满足 ( (。))≤w(s(1))≤ ?≤ w( (2Ⅳ))。设置(2Ⅳ+1)个连续存贮单元(存放整数){a(0),n(1),?,a(ZN)}分别存放s序列中存有其下标的存贮单元的下标值,即满足 (。(f)), =O,1,?2N。可以这样认为,把Ⅳ 序列和n序列中具有同一下标的两个存贮单元当作独立结构单元,s序列中一存贮单元指向上述某一结构单元,这个结构单元中的。存贮单元值表示了这个结构单元指向该s存贮单元。下面实现中值滤波的快速算法。首先,令Ⅳ 序列中的存贮单元值全为零,s序列和n序列中的存贮单元分别存放各自的下标值,即 (f)=0, (f)=f,n(f)=f,f=O,1 。,2N。另外,设置下标 =0. 第一步,求当前准备进入窗的数据元素x(ra)在s序列中的内插位置,用对半查找算法实现脚,如图1所示。在图1中,有序序列对半查找的区问下界为工,上界为h,中部为 ,通过比较 (s(1))与待查量 (m),若不相等,则调整L或h,使下次查找的区问比前次的减少一半。输出的 反映

中值和均值滤波论文(附代码)

基于MATLAB 的带噪图像的中值和均值滤波 摘要:图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。本文将纯净的图像加入椒盐噪声,然后采用中值和均值滤波的方法对其进行去噪。在图像处理中,中值和均值滤波对滤除脉冲干扰噪声都很有效。文章阐述了中值和均值滤波的原理、算法以及在图像处理中的应用。MATLAB 是一种高效的工程计算语言,在数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。 关键词:图像,中值滤波,均值滤波,去噪,MATLAB 1. 引言 20世纪20年代,图像处理首次得到应用。上个世纪60年代中期,随着计算机科学的发展和计算机的普及,图像处理得到广泛的应用。60年代末期,图像处理技术不断完善,逐渐成为一个新兴的学科。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。 为了改善图像质量,从图像中提取有效信息,必须对图像进行去噪预处理。根据噪声频谱分布的规律和统计特征以及图像的特点,出现了多种多样的去噪方法。经典的去噪方法有:空域合成法,频域合成法和最优合成法等,与之适应的出现了许多应用方法,如均值滤波器,中值滤波器,低通滤波器,维纳滤波器,最小失真法等。这些方法的广泛应用,促进数字信号处理的极大发展,显著提高了图像质量。 2. 中值滤波 中值滤波是一种典型的低通滤波器,属于非线性滤波技术,它的目的是保护图像边缘的同时去除噪声。所谓中值滤波,是指把以某点(x,y )为中心的小窗口内的所有象素的灰度按从大到小的顺序排列,若窗口中的象素为奇数个,则将中间值作为(x ,y)处的灰度值。若窗口中的象素为偶数个,则取两个中间值的平均值作为(x ,y)处的灰度值。中值滤波对去除椒盐噪声很有效。中值滤波器的缺点是对所有象素点采用一致的处理,在滤除噪声的同时有可能改变真正象素点的值,引入误差,损坏图像的边缘和细节。该算法对高斯噪声和均匀分布噪声就束手无策。 设有一个一维序列1f ,2f ,…,n f ,取窗口长度为m(m 为奇数),对此序列

简单滤波电路计算公式

介绍几个简单而有用的滤波电路---如何应用及计算公式 2009-09-16 17:24:32| 分类:老师傅盖电子 | 标签: |字号大 中 小订阅 基本型的音频RC滤波电路 最常用的滤波电路应该是很基本的RC滤波,不管是高通型或是低通型,公式都是一样的如下所示: Freq-6dB = 1 / 2πRC 但是在应用上,却很少去考虑这个公式是可以活用的。在整个电路上,当然会有很多的RC 组合,如果每个都套用这个公式,那最后的频率响应不就是衰减了几十dB去了。如果全部都让它所有音频通过,只留下一个RC滤波来控制频率响应,那么区除杂讯的效果就变差了。 举例说,如果有三组低通滤波电路,我们需要设计在 -6dB为20 KHz。每一组在20 KHz的频率点,只能有2dB的衰减量。那么公式就要修正为 Freq-2dB = (1 / 2πRC) * 1.6 也就是电阻或电容的数值,必须减少1.6倍。(6dB – 2dB = 4dB = 1.6) 高衰减度的音频陷波器 再来要介绍很有名的双T型滤波电路,能够针对特定的音频频率点产生很高的衰减度,用来做简易的音频失真仪更是好用,因为失真仪是很昂贵又很容易损坏的仪器。只要在交流微伏表的输入端,加装可切换的双T型滤波电路,就可以当音频失真仪使用。例如未经双T型滤波电路的电表读数为0 dBm, 但是经过双T型滤波电路后为 -40 dBm, 则失真率为 1 %。(因为相差40 dB为100倍) 陷波器的频率点为:Freq-trap = 1 / 2πRC 数值设定为:R1 = R2 = R, C1 = C2 = C, C3 = 2C, R3 = R/2 理论上如果RC数值搭配准确时,可达到60 dB的衰减度。但是如此Q值太高,会使滤波的有效频宽太窄,容易产生频率偏差。一般建议故意将数值偏差,使Q值降低到40-46 dB的衰减

相关文档
相关文档 最新文档