文档视界 最新最全的文档下载
当前位置:文档视界 › 水箱水位控制系统设计方案

水箱水位控制系统设计方案

水箱水位控制系统设计方案
水箱水位控制系统设计方案

水箱水位控制系统设计方案

1 绪论

1.1 水箱水位控制系统研究背景及意义

1.1.1 水箱水位控制系统研究背景

水是动植物体内和人的身体中不可缺少的物质,也可以说,如果没有水就没有生命的存在。同时,工农业生产中也不能离开水,水是工农业生产中的重要原料。在工农业的生产中,经常需要控制各类液体的水位。随着我国工业的迅猛发展,水位控制技术已被广泛应用到石油、化工、医药、食品等各行各业中。低温液体(液氧、液氮、液氩、液化天然气和液体二氧化碳等)得到广泛的应用,作为贮存低温液体的容器一定要保证能承受其载荷;在发电厂、炼钢厂中,保持正常的锅炉汽泡水位、除氧器水位、汽轮机凝气器水位、高、低压加热器水位等,是设备正常安全运行的保证;在教学与科研中,也经常遇到需要进行水位控制类的实验。

1.1.2 水箱水位控制系统研究意义

大型水箱是许多公司生产过程中必不可少的部件,它的性能和工作质量的优良不仅仅对生产有着巨大的影响,而且也关系着生产的安全问题。在原来的工厂里,对水箱的多数操作是由相应的人员进行操作的,这样原始的人工操作方式带来了很大的弊端,比如水位的控制,实时监控水箱的环境,夜间的监控等等,一旦操作员稍有疏忽,或者某个监则器件的损坏,都将带来无法弥补的损失,更严重的会危机到生产人员的人身安全。所以,对水箱的控制,如果能够使用精密而又会严格按照生产规定运行的自动化系统,就可以最大限度的避免事故的几率,同时也能节省资源,并有效地提高了生产效率。

如果从节约能源方面考虑,以往的人工控制在多数情况下,会造成资源的不必要浪费,而大部分原因都是水箱内部水位的情况没有及时反馈到操作员那里,从而使控制上有了一定的延迟,从而造成了水量过多或没有及时补水而导致的资源浪费

甚至生产出现异常。而对水箱水位的实时监控以及自动化系统的引入可以很好的改善补水过多和及时补水的情况,又可以很好的节约水资源,有效的降低了生产成本。

单片机,一块小小的芯片上集成了一台微型计算机的各个组成部分,它的诞生使许许多多的自动化控制系统得以变成现实。80C51以它功能强大,设计简单,成本廉价,支持指令集较多的各大优点,应用到众多嵌入式系统的开发中。

因此,基于51单片机的水箱水位控制系统的研究有着非凡的意义。

水位控制一般指对某一水位进行有目的的控制调节,使其达到所要求的控制精度。而液体水位的自动控制,是近几年新开发出来的一项全新技术,它是由微型计算机软件、硬件、自动控制等几项技术紧密结合的产物,工程方面的作业采用的仍是微机控制和原有的仪表控制,微机控制有以下几点明显的优势:

1)直观并集中显示运行参数,能显示当前的水位状态。

2)在运行过程中可以随时修改各种各样的运行参数的控制值,并能方便的修改系统的控制参数,可以随意的修改水位的上限、下限。

3)具有水位控制的自动化处理以及监控软件优良的人机界面,操作人员可以在监控计算机上根据控制效果来及时的修改运行参数,这样能有效地减少工作人员的疲劳和降低失误,提高了生产过程的实时性、安全性。

综上的几点优势,便可预见计算机控制系统的普及是各大行业的大势所趋。单片机在一块小小的芯片上集成了一台微型计算机所需的CPU、存储器、输入、输出等各个部件。自单片机问世以来,它的性能就不断提高和完善,体积小、速度快、功耗低等特点使单片机的应用领域日益广泛。目前,多数工业控制系统的工作环境较差,干扰性强,利用单片机的自动控制就能轻松解决这些缺点。因此,推广单片机在控制领域的应用,使用单片机自动控制是一个很好的选择。

1.2水箱水位控制系统国内外研究现状

目前,水箱控制系统的应用已不仅仅局限于大型的电厂、煤炭、钢铁等大型企业,它以自身的控制系统的安全优势,已经逐渐深入到一些民用产品。但就目前阶段来讲,它的制作成本还很高。比如把一台普通的家用水箱改装成自动化控制的水箱,从整个硬件的设计和铺设,对于民用类产品实施的性价还是比较高的。因此大

规模的普及仍受到一些经济上的限制。不过,从长远来看,随着自动化技术的完善和硬件成本的降低,以及人们对现有资源的重视。水箱自动控制系统仍然有着广阔的前景。

虽然我国仍处于发展中国家,但几乎在能源相关的所有领域中,水箱都是一个不可或缺的部件,这一点,即便是发达国家也不例外。水箱自动控制系统性能的优良与否直接关系到了企业的生产安全和效益。近些年,伴随着我国嵌入式技术的不断发展,我国的自动控制系统技术已然达到国际水平,但在很多中小型企业以及民用产品,大量的水箱控制仍然是采用人工控制的。随着我国单片机技术的日趋成熟,以及单片机生产成本的逐渐下降,基于单片机的水箱自动控制系统已经应用到中小型以及民用产品的领域中。而且现在越来越多的水箱生产厂商都已经开始聘用单片机的开发人员和电路设计人员,控制系统已成为水箱设计的一部分,来提高自身产品的安全系数和高科技含量借以提高产品在整个市场中的竞争力。

世界上一些发达国家在单片机的新型研究、制造和应用上,早已积累了很多的经验,奠定了一定的基础。进入了国际市场,我国在系统研究、制造、应用和经验这些方面,与那些发达国家相比,还存在着一些差距。不过,我国的研究人员已经克服重重困难,在不断地摸索前进,有望在单片机这个领域很快赶上甚至超越发达国家的技术水平,这已然是我国的发展趋势。

1.3水箱水位控制系统研究发展方向

纵观生活中的各个领域,从追踪导弹的导航装置,到飞机上的各种仪表控制,从计算机的网络通讯与数据传输,到工业自动化生产过程中的实时控制和数据处理,以及我们日常生活中经常使用的各种智能IC卡等,这些全都离不开单片机控制。在过去没有单片机的时候,虽然这些东西也能做,但是只能使用极其复杂的模拟电路来实现,然而这样做的代价是:产品不仅体积巨大,而且成本较高,而且由于长期的使用,元器件会不断老化,控制的精度就会逐渐达不到标准。而在单片机诞生后,我们就可以把控制这些东西变为智能化,我们只需在单片机的外围接入一些简单的接口电路,核心部分由人为的编写程序来完成。这样,不仅产品的体积变小了,成本也降低了很多,再长期使用也不用担心精度达不到了。所以,单片机的

应用会越来越普及,在不久的将来会有更多的人来使用它。据统计,我国的单片机年产量已达到3亿片,并且每年还以大约20%的速度增长,但相对于国际市场我国的占有率还不到1%。特别是沿海地区的各类民用产品多数都用到单片机,并不断地蔓延向内地。所以,单片机行业在我国是有着十分广阔前景的。

2 系统设计

2.1系统设计任务和主要内容

本系统主要研究基于单片机的水箱水位控制系统。实现水位显示和报警,自动控制等功能。操作方便、性能良好。

主要内容如下:

1、当水箱水位低于20%时,启动主,备电机给水;当水箱水位高于20%而低于80%时,启动主电机给水,备用电机停止给水;当水箱水位高于80%时,主、备电机同时停止给水。

2、当水位低于10%的时候,由传感器经变送器发送信号,系统水位低报警;当水位高于10%而低于80%的时候,系统水位不报警;当水位高于80%的时候,由传感器经变送器发送信号,系统水位高报警。

主电机备电机

图2.1 系统结构设计图

2.2系统方案

2.2.1总体思路

①水位高度的检测:利用水位传感器完成。

②传感器输出信号处理:传感器输出信号,有直流电压和直流电流之分。设计

中需将这一信号进行处理,以便单片机能够接收和处理。

③单片机控制:单片机将由前级输入的检测信号进行分析和处理,从而产生相应的控制信号。

④数码显示、电机驱动和报警电路根据单片机产生的控制信号,作出相应的动作。

⑤电机控制电路根据电机驱动电路的状态作出相应的动作。

2.2.2设计方案

水位自动控制电路是通过水位传感器将水位高度转换为0—10V的直流电压,再经过A/D转换后,将转换所得的8路并行数字量送入单片机进行处理来达到对水位进行自动控制的目的。通过对电压和水位的转换关系,最终利用单片机进行精确的控制,实现对水位高度的显示、主/备电机和报警装置的控制。

水位自动控制器由6个部分组成,即水位传感器、A/D转换、单片机、数码显示、电机控制、报警控制部分,其总框图如图2.2.2所示。

图2.2 设计总框图

2.3系统方案选取

2.3.1传感器选择方案

传统的水位检测通过设检测点来完成对水位的检测。通常,由于受检测点物理

体积的影响,水位检测点的数目有限,从而影响了后续电路控制的精度。本设计采用新型水位传感器,可以达到对水位高度的精确检测,以利于提高后续电路控制的精度。

2.3.2 A/D转换方案

通过对传感器的选择,可知由传感器输出的水位高度信号是0~10V的直流电压。在设计中,可以通过采样、保持电路对这一信号进行处理,将模拟信号转换为多个采样点信号。但这种处理方法由于受电路规模和采样精度的影响,不可能对水位信号做出精确的处理,近而也无法对电机、水位高度显示和报警做出精确的控制。因此,本设计中采用集成芯片ADC0809对0~10V的直流电压进行处理。可以达到:

①电路简洁、明了。

②高转换精度。

③高控制精确。

2.3.3单片机复位方案

RST/VPD:复位/备用电源线,可以使单片机处于复位(即初始化)工作状态。通常,单片机的复位有自动上电复位和人工按钮复位两种,图2.3给出了它们的电路。考虑到,水塔与居民生活密切相关,当因特殊原因导致单片机掉电,需单片机立即自动复位(如:夜间短时间停电,导致本系统停止工作),故本设计采用上电复位方式。

图2.3 复位电路

2.3.4单片机起振方案

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器,石晶振荡和陶瓷振荡均可采用。也可以采用外部时钟源驱动器件。考虑到设计、使用的方便,本设计中采用片内时钟驱动。即XTAL1和XTAL2只需外接晶振(配上相应的电容),便可以给单片机提供相应的时钟频率。

2.3.5水位显示驱动方案

本设计中需将水塔水位高度在数码管中进行显示,有两种方案选择:

①利用MAX7219进行驱动:MAX7219是一种高集成化的串行输入/输出的共阴极LED显示驱动器。每片可驱动8位7段加小数点的共阴极数码管,可以数片级联,而与微处理器的连接只需3根线。MAX7219内部设有扫描电路,除了更新显示数据时从单片机接收数据外,平时独立工作,极大地节省了MCU有限的运行时间和程序资源。

②利用74LS48驱动数码管:与单片机连接较为复杂,需占用单片机8个端口。且在与数码管连接时需附加上拉电阻,用以完成数码管的驱动。

考虑到本设计中,需显示的位数较少(两位),若利用MAX7219驱动数码管,将造成资源浪费,且MAX7219芯片价格较高,采用后大大提高成本支出。同时,随着MAX7219的使用(对MAX7219的编程)将提高源程序的复杂度,对编译、调试和单片机运行效率都将造成影响。故设计中采用74LS48驱动数码管显示。

2.3.6电机驱动方案

利用单片机驱动交流接触器,进而驱动电动机的运转。其中,在单片机的输出端到交流接触器间需接驱动模块。该驱动模块,可以由分离元件组成放大电路来实现对交流接触器的驱动,也可以单使用一块芯片实现。本设计中,采用一块芯片实现对交流接触器的控制。以达到使电路简洁,调试方便,易于维修的目的。

2.3.7电机选择方案

电动机有支流、交流之分。异步电动机属于交流电机的一种;另一种交流电机是同步电机。异步电机由于结构简单,维护方便,价格便宜,所以应用最为广泛。本设计中,采用交流电机,为了克服沿程阻力损失和高度差所产生的静压力,供水水泵的扬程应根据实际情况有所变化。

3 系统硬件设计

3.1单元模块设计

3.1.1 A/D转换设计

当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1个时

钟脉冲的下沉之前DI端必须是高电平,表示启始信号。在第2、3个脉冲下沉之前DI端应输入2 位数据用于选择通道功能。

当此2 位数据为“1”、“0”时,只对CH0 进行单通道转换。当2位数据为“1”、“1”时,只对CH1进行单通道转换。当2 位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。当2 位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1 作为正输入端IN+进行输入。到第3 个脉冲的下沉之后DI 端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。从第4个脉冲下沉开始由DO端输出转换数据最高位DATA7,随后每一个脉冲下沉DO端输出下一位数据。直到第11个脉冲时发出最低位数据DATA0,一个字节的数据输出完成。也正是从此位开始输出下一个相反字节的数据,即从第11个字节的下沉输出DATA0。随后输出8位数据,到第19 个脉冲时数据输出完成,也标志着一次A/D转换的结束。最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了。

图3.1 A/D转换电路

3.1.2起振电路设计

石英晶振起振后,应能在XTAL2线上输出一个3V左右的正弦波,以使AT89C51片内的OSC电路按石英晶振相同频率自激振荡。通常,OSC的输出时钟频率FOSC 为0.5~16MHz,典型值为12MHz或11.0592MHz。电容C1和C2可以帮助起振,典型值为30pf,调节它们可以达到微调FOSC的目的。本设计中,晶振采用12MHz,

CI和C2取30pf。其连接电路如图3.2起振电路所示。

图3.2 起振电路

3.1.3液晶显示设计

显示部分采用LCD1602液晶显示,它是一个独立的显示模块。其基控制器大部分为HD44780,分为有背光和无背光两种,两者在应用中并无差别。LCD1602显示模块是一个慢显示器件,所以在执行每条指令之前一定要确认模块的忙标志为低电平,表示不忙,否则此指令失效。每次输入指令前都要判断液晶模块是否处于忙的状态。1602液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形,如图3.3所示,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等。

图3.3 字符代码与字符图形对应关系

3.1.4电机驱动设计

电感线圈是一种感性负载,当流过线圈的电流发生变化时线圈会发生很大的反电动势,这个反电动势有可能损坏驱动器中的输出晶体管。因此,为了防止驱动器损坏,线圈两端必须加箝位二极管。图3.4为采用SN75467驱动交流继电器的电路图。

当AT89C51在P2.0上输出低电平时,SN75467相应的输出晶体管导通,继电器线圈中有电流流过,继电器吸合;当AT89C51在P2.0上输出高电平时,驱动器相应输出晶体管截止,继电器线圈中无电流流过,继电器不吸合,触电常开。在图3.4中,二极管用于箝位线圈两端可能出现的反电动势。

图3.4 电机驱动

3.1.5电机控制

①三相电动机单向启动控制:图3.5为三相电动机单向启动控制图。图中左侧是主电路图,右侧是辅助电路图。主电路构成:三相交流电源开关QS->熔断器FU1->交流接触器主触头KM->热继电器发热元件FR->电动机M。控制电路的构成:停止按SB1->启动按钮SB2->接触器线圈KM->热继电器动断触头FR构成回路。从该电路图可以知道。

⑴启动、停止按钮控制电动机启动或停止。

⑵热熔器作为短路保护。

⑶热继电器作为过载保护。

图3.5 三相电动机单向启动控制

②三相电动机单向控制(工作原理):异步电动机接入电网的瞬间,启动电流大约是额定电流的4~7倍。过大的启动电流会造成电网电压的变化过大;对于启动时间较长的电机,过大的启动电流对电机会造成损害。所以除了小型异步电动机外,大多数异步电动机采用压降启动方式,以减小启动电流。常见的降压启动方式有Y/△降压启动、沿边三角形降压启动、自耦变压器降压启动等。本设计采用自耦变压器降压启动,其工作原理如下图所示:

启动 KM主触点闭合电机M得电运行按下SB2 KM线圈得电

KM常开触点闭合实现自保

停止 KM主触点复位电机M断电停止按下SB1 KM线圈失电

KM常闭触点断开自保解除

3.1.6报警电路

报警电路,如图3.6所示。当AT89C51的P1.4管脚有低电平输出时,蜂鸣器就会发出报警声。

图3.6 报警

3.2系统整机分析

本设计是通过水位传感器对水位高度百分比(0%~100%)进行采样、量化后,输出0~10V的直流电压。再经过信号处理电路将这一直流模拟量转换为8位的并行数字量,并送入单片机进行处理。在单片机中将输入的8位数字量进行量化数为100的量化处理,并根据这一量化将水位高度控制转化为对状态00~99的控制,其中状态00对应0%、状态01对应1%、…状态99对应99% 。根据这一对应关系,设置三个水位控制点,分别为:10、20、80 。

①:当状态在00~10时:主、备电机工作,低水位报警电路工作。

②:当状态在10~20时:主、备电机工作,报警电路停止工作。

③:当状态在20~80时:主电机工作、备电机停止工作,报警电路停止工作。

④:当状态在80~99时:主、备电机停止工作,高水位报警电路工作。

⑤:根据状态00~99的不同,分别将00~99输出到数码显示部分。

根据上述状态,即可分别对数码显示、蜂鸣器和电动机(主、备)实现单片机的自动化控制。

4 系统软件设计

4.1 程序概要设计

本系统的程序设计开发,使用的语言为C语言。需要利用C语言进行编程,来实现水位高度的检测;通过传感器进行输出信号的处理,再由传感器输出信号,单片机接收;然后,单片机将刚接收输入的检测信号进行分析和处理,从而产生相应的控制信号;此时,液晶显示、电机驱动和报警电路部分,都根据单片机产生的控制信号,作出相应的动作。

设计的中心思想是:水位自动控制电路是通过水位传感器将水位高度转换为0—10V的直流电压,再经过A/D转换后,将转换所得的8路并行数字量送入单片机进行处理来达到对水位进行自动控制的目的。通过对电压和水位的转换关系,最终利用单片机进行精确的控制,实现对水位高度的显示、主/备电机和报警装置的控制。

按照以上的种种要求,设计的软件程序必须实现:

1 当水箱水位低于20%时,由传感器检测到这一水位值,同时发送信号给单片机,单片机进行分析处理之后,给出指令,启动主,备电机给水;而当水箱水位高于20%而低于80%时,经过一系列的分析处理,启动主电机给水,备用电机停止给水;当水箱水位高于80%时,则根据指令让主、备电机同时停止给水。

2 当水位低于10%的时候,由传感器经变送器发送信号,单片机分析处理,系统识别出水位已经过低,报警器则报警;而当水位高于10%而低于80%的时候,系统水位处于设定的正常值范围之内,报警器不报警;当水位高于80%的时候,由传感器经变送器发送信号,单片机处理后作出指令,系统水位已经过高,报警器此时马上报警。

4.2 详细流程图4.2.1主程序

如图4.2.1—程序所示:首先对单片机写入外围端口地址(INT0和F8H),并开中断1,且定义中断为边缘触发方式。再将INT0的端口地址写入F8H(ADC0832的端口地址),

即可启动ADC0832。随后,单片机进入等待中断状态。

4.2.2 中断子程序

中断子程序如图4.2.2—中断所示:在中断到来后,程序转到中断子程序。在中断子程序中,实现单片机对ADC0832转换所得的8路并行数据的接收。并通过高度子程序实现对接收所得的并行数据的量化,其量化数为100。通过量化,将输入数据变为0~99种状态,为下一步处理作好准备。

4.2.3 水位高度子程序

如图4.2.3—水位高度子程序所示。通过乘法指令实现数据的转换:将输入的0~10转换为0~99,为查表指令的实现作好准备工作。

4.2.4查表子程序

如图4.2.4—查表子程序所示,本设计通过查表指令对0~99种状态进行处理。

在处理过程中,关键是rel的初始值必须为0(因AJMP为双字节指令,当rel为0、2、…198时,可进行查询),以便能够顺利的对表中数据进行查询,并通过查询结果作出相应的处理。在高度子程序中,将输入数据处理为以0开始的100种状态,正是出于这一考虑。

4.2.5状态子程序

根据查表所得的结果,可以转到不同的子程序中,如图4.2.5—表00~99所示。通过这些控制子程序(ROUT00~ROUT 99),可以对输入数据做出不同处理,

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

一种简单实用的水位自动控制系统设计

一种简单实用的水位自动控制系统设计 发表时间:2010-03-10T16:21:22.827Z 来源:《中小企业管理与科技》2010年2月上旬刊供稿作者:周玲钟义广[导读] 近年来对城市供水提出了更高的要求,水塔水位控制自动化系统被不断地改造,以适应社会的发展和人民生活水平的提高周玲钟义广(广西机电职业技术学院) 摘要:本文介绍一种简单实用的水箱水位自动控制系统的基本组成及工作原理,通过对该系统组装测试,达到预期效果,正式应用于乡镇供水系统中。实践证明,该水位控制系统设计方案合理,运行效果好,具有低成本、高使用价值的优点。关键词:水位自动控制系统 0 引言 近年来对城市供水提出了更高的要求,水塔水位控制自动化系统被不断地改造,以适应社会的发展和人民生活水平的提高,满足及时、准确、安全和保证充足供水。目前水位自动控制系统有很多成熟的产品,控制手段主要有单片机监控、比较电路监控、利用PLC和传感器构成水塔水位恒定的控制系统等,运行可靠,可实现远程监控和无人值守。在许多偏远地区,特别是居住相对分散的农村地区,供水问题也待解决。如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障。本文针对乡镇和偏远农村家庭供水的特点,设计一款简单实用、符合要求的水位自动控制系统。 1 水箱水位自动控制系统的组成 针对偏远农村分散居住,取水不方便(包括从水井取水)的特点,考虑到农民生活消费水平不高,设计的供水系统必须是既方便农民的生活,又经济实惠等特点的水箱水位自动控制系统。水箱水位自动控制系统的组成。 由图中可知,水位自动控制系统电路主要由主电路和控制电路两大部分组成。主电路是一台抽水水泵,由220V交流电源电压供电。控制电路由包括整流、滤波、稳压电路、感应电路及限流限压电路组成。 2 水箱水位自动控制系统的设备 水位自动控制系统的设备只需选用价格低廉、安全可靠的设备。 由设备表可知,所有的设备都是简单而常用的小型设备,价格低廉,控制和维护简单易于掌握,对远离城市的偏远地区非常适用。传统的水位控制系统通常使用传感器进行上、下限控制,以保证水位在上、下限之间。此设计中只用三根导线来代替传感器放置在上、下限水位之间,利用水的导电特性完成上、下限水位的自动控制,节省了购买传感器的费用,也不必考虑传感器的故障,进一步降低成本,提高系统的可靠性。 常见的生活用水供应系统工作形式是由外来补充水源(一次水源)向一个高位水塔和一个低位水池补水,再由高位水塔和低位水池(二次水源)向各用户供水。此设计主要考虑针对家庭供水系统(或者某些单独取用水之处),因此只需用(储)水箱而非水塔供水。系统供水是由水箱直接供应,不用考虑由位置高度所形成的压力来进行供水,不用气压供水,不必在屋顶上设置水箱,也不用单独建筑水塔,仅在厨房或需用水的地方放置一足够大的(储)水箱即可满足供水要求。 3 水箱水位自动控制系统的控制原理 该水箱水位自动控制系统结构简单,控制原理如下:系统上电后,交流电源经整流、滤波、稳压后,由电位器调节获得12V直流工作电压。当水箱水位低于下限时,接触器线圈失电,其常闭触头使水泵接通工作,抽水到水箱中;当水位上升到上限时,接触器线圈得电,常闭触头断开,常开触头闭合,水泵停止抽水。 V1、V2用来保护LM317输出端电压为安全电压,使其免受短路电流的影响;V3用来保护三极管,同时避免触电事故的发生。水位的上、下限可通过调整三根导线的位置设定。 4 测试应用 该设计经安装调试,结合实验室给排水系统进行测试,效果良好。正式应用于某乡镇几个家庭的日常用水装置中已将近两年,至今未发生故障。该系统在运行期间稳定性高,完全符合预先规定的标准,只需将控制电路稳压输出调整在10V-12V之间,可投入使用。可用交流变压器供电,也可以用直流供电。 5 结束语 设计的水箱水位控制系统因价格便宜,结构简单,使用方便,不易发生故障,可用于要求不高的给排水系统中,特别适用于城镇及偏远山区取水装置。 参考文献: [1]布挺,王帆.基于西门子PLC的水塔水位自动控制系统[J].科技信息,2009年第12期. [2]曹琦.一种节能的变压变频供水系统[J].变频器世界,2006(7):133-137. [3]朱晓青主编.过程检测控制技术与应用.北京,冶金工业出版社,2002年.

液位自动控制系统设计及调试

等级: 课程设计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

水箱自动控制系统设计原理图及程序

课程:创新与综合课程设计 电子与电气工程学院实践教学环节说明书 题目名称水箱水位自动控制装置 学院电子与电气工程学院 专业电子信息工程 班级 学号 学生姓名 起止日期13周周一~14周周五

水箱液位控制系统是典型的自动控制系统,在工业应用上可以模拟水塔液位、炉内成分等多种控制对象的自动控制系统。 本次课程设计思路是以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本维持不变。 一、设计题及即要求 1、设计并制作一个水箱水位自动控制装置,原理示意图如下: 2、基本要求:设计并制作一个水箱水位自动控制装置。 (1)水箱1 的长×宽×高为50 ×40 ×40 cm;水箱2 的长

×宽×高为40×30 × 40 cm(相同容积亦可);水箱1 的放在地面,水箱2 放置高度距地0.8-1.2m。 (2)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤1cm。 (3)水箱 2 中要求的水位高度及上下限可以通过键盘任意设置; (4)实时显示水箱2 中水位的实际高度和水泵、阀门的工作状态。 3、发挥部分: (1)在出水龙头各种开度状态下装置能够自动控制水箱 2 中水位的高度不变, 误差≤0.3 cm。 (2)由无线远程控制器实现基本要求,无线通讯距离不小于10 米。远程控 制器上能够同步实现超限报警显示。 (3)其他创新。 二、设计思路: 以单片机为控制中心,对水位传感器、电机驱动模块、按键及显示进行控制。通过按键设置水位传感器的位置,在水龙头及阀门的各种开度下,通过控制水泵工作或不工作来维持水箱二的液面高度基本

汽包水位自动控制系统设计

一、课程设计(综合实验)的目的与要求 锅炉是工业生产及人民生活的主要的动力及能源。汽包水位是工业蒸汽锅炉安全、稳定运行的重要指标,水位过高会导致蒸汽带水进入过热器,并在过热管内结垢,影响传热效率,严重的将引起过热器爆管;水位过低又将破坏部分水冷壁的水循环引起水冷壁局部过热而爆管。高性能的锅炉产生的蒸汽流量很大,而汽包的体积相对来说较小,水位的时间常数很小。大容量锅炉若给水不及时,数秒之内就可能达到危险水位,所以锅炉汽包水位的控制显得非常重要。因此,必须采取有效、精确的自动调节,严格控制汽包水位在规定范围内。 影响汽包水位变化的因素很多,如燃煤量、给水量和蒸汽流量。燃煤量对水位变化的影响是比较缓慢的,容易克服。因此,主要考虑给水量和蒸汽流量对水位的影响。水位过高会影响汽包内汽水分离,饱和水蒸汽温度急剧下降,该过热蒸汽作为汽轮机动力的话,将会损坏汽轮机叶片,影响运行的安全性和经济性。水位过低,则由于汽包内的水量转少,而负荷很大时,如不及时调节就会使汽包内的水全部液化,导致水冷壁烧坏,甚至引起爆炸。因此,锅炉汽包水位必须严加控制。 二、设计(实验)正文 1控制系统的整体分析: 1.1影响汽包水位的主要因素 1)给水流量W 2)主蒸汽流量D 3)燃料量B 1.2控制指标 保证给水流量W和主蒸汽流量D保持平衡,维持汽包水位H在较小范围内波动。1.3汽包水位控制对象的动态特性分析 做各种主要影响因素的阶跃扰动,记录并分析汽包水位的响应曲线 1)给水扰动: Matlab仿真如图1:

图1:给水扰动Matlab仿真 运行结果如图2: 图2:给水扰动下的水位响应曲线 由被控对象在给水量扰动下的水位阶跃响应曲线,可以看出该被控对象无自平衡能力,且有较大的迟延,因此应采用串级控制,将给水流量的扰动消除在采用带比例作用的副调节回路中,以保证系统的稳定性。 2)蒸汽扰动: Matlab仿真如图3: 图3:蒸汽扰动Matlab仿真 运行结果如图4:

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

单容液位控制系统设计

单容液位控制系统设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

目录1系统设计认识 (1) 前言 (1) 2系统方案确定、系统建模和原理介绍 (1) 控制方案确定 (1) 控制系统建模 (1) (1) (2) 3系统构成 (4) 控制系统结构 (4) 控制系统方框图 (4) 4系统各环节分析 (5) 调节器PID控制 (5) 执行器分析 (6) 检测变送环节分析 (6) 被控对象分析 (6) 5系统仿真 (7) 系统结构图以及参数整定 (7) 6仪器仪表选型 (10)

PID调节器选择 (10) 执行器选择 (11) (11) (11) (12) 差压变送器的选择 (12) 7课程设计结束语 (14) 参考文献 (15)

一、系统设计认识 前言 过程控制早已在矿业、冶金、机械、化工、电力等方面得到了广泛应用。在液位控制方面,比如:水塔供水、工矿企业排给水、锅炉汽包液位控制、精馏塔液位控制等更是发挥着重要作用。在这些生产领域里,基本上都是劳动强度大或者操作有一定危险性的工作,极易出现操作失误引起事故,造成厂家的经济损失。可见,在实际生产中,液位控制的准确程度和控制效果直接影响着工厂的生产成本、经济效益以及设备的安全系数。所以,为了保证安全条件、方便操作,就必须研究开发先进的液位控制方法和策略。 本设计以单容水箱的液位控制系统为研究对象。由于单回路反馈控制系统结构简单、投资少、操作方便,且能满足一般的生产过程要求,在液位控制中得到了广泛的应用,所以本设计单容水箱的液位控制系统采用的就是单回路反馈控制。它的控制任务就是使水箱液位保持在给定值所要求的高度,并且减少或消除来自系统内部和外部扰动的影响。通过系统方案的选择,完成系统的工艺流程图设计和方框图的确定,各环节仪表仪器的选型,控制算法的选取,系统的仿真以及控制参数的整定等工作。 二、系统方案确定、系统建模和原理介绍 控制方案确定 如前言所介绍,由于单回路反馈控制系统结构简单、投资少、操作方便,且能满足一般的生产过程要求,在液位控制中得到了广泛的应用,故采用单回路反馈控制。 液位控制的实现除模拟PID调节器外,还可以采用计算机PID算法控制。由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,变成数字信号后输入计算机中;在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值传送到单片机中,由单片机将数字信号转换成模拟信号;最后,由单片

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。图1-1为单容水箱液位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。图1-2是单容液位控制系统结构图。 图1-1 单容水箱液位控制系统的方块图系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定

值无偏差存在。图1-2 是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。 图1-2 单容液位控制系统结构图 比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图1-3中的曲线①、②、③所示。 图1-3 P 、PI 和PID 调节的阶跃响应曲线 二、单容水箱液位控制系统建模 .

水池水位自动控制系统设计

水池水位自动控制系统设计与制作 摘要 根据物体在水中漂浮的性质,可以用一个浮球来感知水塔里水位的升降,用来控制水泵,使水泵能自动对水池上水,水满时能自动断电停止,真正做到了水池的全自动控制功能,解决了人们日常用水的诸多不便。 本毕业论文范文写的是水池水位自动控制电路的作用是根据水位的高低,自动地控制水泵的启动与停止。水泵和水位的高低是相互反馈的。这样就可以实现水位自动控制的目的。我所设计的水位制动控制装置是有以下几部分组成:水位自动控制电路,高低水位报警器,数码显示。水位自动控制在一定范围内(如 2 -6 米),当水位低至2米时使水泵启动上水;当水位升至6米时,使水泵停止工作。因特殊情况水位超限(如高至7米、低于2米)报警器报警。设有手动按键,便于随机控制。由数码管直观显示当前水位。本系统可以随时的控制水位的高低,防止过量放水或来水无人打开关。 关键词:水池;浮子开关;自动上

Abstract According to the nature of an object floating in the water, you can use a float to sense the water level in the lift tower to control the pump, the pump automatically to the water tower, Sheung Shui, water, power off automatically when full stop pumping water tower, and truly automatic control tower to solve the inconvenience of daily water. Pham Van of the thesis is written in the role of water level automatic control circuit is based on the level of the water level, automatic control of pump start and stop. Pumps and water level is the level of mutual feedback. This level can automatically control. I designed the brake control device is the water level has the following components: automatic water level control circuit, high and low water level alarm, digital display. Automatic water level control within a certain range (eg. 2-6 meters), when the water level as low as 2 meters, the Sheung Shui to start the pump; when the water level to 6 meters, the pump stopped working. Water level gauge due to special circumstances (such as up to 7 meters, as low as 2 meter) alarm to the police. With manual buttons, easy to stochastic control. Visual display by the LED current level. The system can control the water level at any level, to prevent excessive drainage or runoff and no open relations Keywords:water tower; float switch; automatic pumpin

单片机水箱水位控制系统设计

单位代码0 2 学号 分类号TH6 密级 课程设计说明书 水箱水位控制系统设计 院(系)名称机械工程学院 专业名称机械设计制造及其自动化学生姓名 指导教师 2015年10 月27 日

黄河科技学院课程设计任务书 机械工程学院机械系机械设计制造及其自动化专业12 级1 班学号1200000000 姓名指导教师 题目: 水箱水位控制系统设计 课程:单片机应用技术 课程设计时间2015 年10 月13 日至10 月27 日共 2 周课程设计工作内容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1. 设计要求 在高塔的内部我们设计一个简易的水位探测传感器用来探测三个水位,即低水位,正常水位,高水位。低水位时送给单片机一个高电平,驱动水泵加水,红灯亮;正常范围的水位时,水泵加水,绿灯亮;高水位时,水泵不加水,黄灯亮。 2. 设计任务与要求(完成后需提交的文件和图表等) 1〉系统硬件电路设计 根据该系统设计的功能要求选择所用元器件,设计硬件电路。要求用Proteus 绘制整个系统电路原理图。 2〉软件设计 根据该系统设计的功能要求进行软件设计,要求用VISIO软件绘制整个系统及各部分的软件流程图。并根据流程图编写程序并汇编调试通过。列出软件清单,软件清单要加以注释。 3〉Proteus仿真 用Proteus对系统软硬件进行仿真调试通过。 4〉软硬件实际调试 5〉编写设计说明书一份,内容包括任务书、设计方案分析、硬件设计部分要绘制整个系统电路原理图,对各部分电路设计原理做出说明。软件设计部分要绘制整个系统及各部分的软件流程图,并列出软件清单,软件清单要求加注释,并在各功能块前加程序功能注释。调试结果整理分析及设计调试的心得体会。3.工作计划(进程安排) 第1周基本完成软、硬件的设计(分散在教学过程中完成)。第二周2天绘

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

水箱液位单回路控制系统

水箱液位单回路控制系统 一、控制目的 根据设定的控制对象和管道配置,运用计算机和INTOUCH组态软件,设计一套监控系统,并通过调试使得水箱液位维持恒定或保持在一定的误差范围内。 二、性能要求 1、要求水箱液位恒定,液位设定值SP自行给定。 2、无扰动时,水压基本恒定,由变频器控制水泵实现。 3、扰动因数:水箱出水流量允许波动。 4、预期性能:响应曲线为衰减震荡;允许存在一定误差。调整时间尽可能短。 三、方案设计、控制规律选择 简单控制系统一般是单回路控制系统。由于其结构简单并且能够满足大多数控制质量的要求,因此在生产过程控制中得到了广泛的应用,是生产过程控制中最基本的一种控制系统。一个单回路反馈系统是由测量变送器装置、控制器、和被控对象所组成,按其被控变量类型的不同可以分为温度控制系统、压力控制系统、流量控制系统、液位控制系统等。 控制系统设计时针对某一特定生产对象进行的,当系统安装完成之后,控制效果主要取决于控制器的参数设定整定。选择合适的比例度、积分时间、微分时间是保证和提高系统控制质量的主要途径。 单回路水箱的原理,系统地输入变量为进水阀门、出水阀门的开度,输出变量为水箱液位。单回路PID控制的被控制量是水位,控制量是进水门、出水门开度。通过调节PID控制器的比例增益、积分时间、微分时间三个参数得到比较好的控制效果。 PID 调节器构成的闭环控制回路一般原理如图1 所示

图1 控制系统方框图 控制系统草稿图如图2 图2 控制规律选择:目前工业上常用的控制规律主要有:比例控制、比例积分控制和比例积分微分控制等。本方案采用比例积分微分控制。 比例控制——克服干扰能力强、控制及时、过渡时间短。是最基本的控制规律。但在终了时会存在余差,负荷变化越大余差越大。使用于滞后较小、负荷变化不大、允许被控变量存在余差的场合。 比例积分控制——在比例作用下引用积分作用,虽然会使系统的稳定性降低,但没有余差。适用于控制通道滞后较小、负荷变化不大、不允许被控变量存在余差的场合。 比例微分控制——引入了微分作用,具有超前控制作用,在被控对象具有较大滞后时,会有效的改善控制质量。但对于滞后小干扰作用频繁,含有高频噪声的系统,将可能使系统产生振荡,甚至失控。 比例积分微分控制——综合了比例、积分、微分控制规律的优点。适用于容量滞后较大、负荷变化大、控制要求高的场合。 该方案的控制目标是使水位达到平衡状态,通过控制电动调节阀改变阀门开度,来控制流量的大小,从而来控制水位。选择阀门开度为控制量,水位为被控量。控制规律选择PID控制规律。 四、测要求试:

(完整版)水位控制系统设计

课题名称:水箱水位控制系统设计专业:电气工程及其自动化学号: 姓名:

水箱水位控制系统设计 摘要 本设计主要基于单片机的硬件电路设计,实现一种能够实现水位自动控制、具有自动保护、自动声光报警功能的控制系统。本控制系统由A/D转换部分、单片机控制部分、数码显示部分、电机驱动部分、电机控制部分等构成。同时对各个部分进行了详细的论述。在设计中对水塔水位控制原理进行分析,选用AT89C51单片机作为控制水塔水位的处理芯片,由AT89C51的P1口直接来控制.设计方案采用模块化程序设计方法,结合程序流程图,编写程序代码,最后利用KEIL公司的u Vision3软件及伟福仿真软件进行仿真实验,达到单片机自动控制水塔水位变化的目的. 关键词:单片机,水塔水位控制原理,AT89C51,伟福仿真软件

目录 前言 (1) 第1章设计内容 (2) 1.1 设计要求 (2) 1.2 方案设计 (2) 第2章硬件电路设计 (3) 2.1 系统框图设计 (3) 2.2 系统原理 (4) 第3章水塔水位控制系统的硬件电路设计 (5) 3.1 水位检测电路 (5) 3.2 水位显示电路 (5) 3.3电机控制电路 (6) 3.4振荡电路和复位电路 (7) 3.5声光报警电路 (7) 第4章软件程序设计 (8) 4.1 系统主程序流程图 (8) 4.2编写C程序 (9) 第5章硬件制作与调试 (10) 结论 (11) 附录 (12) 仿真总图 (12) 源代码 (13)

前言 水塔是在日常生活和工业应用中经常见到的蓄水装置,在我们的生活中起到了重要的作用,而水基于单片机的水塔水位控制系统使水塔水位自动保持在一定的位置,通过对其水位的控制对外供水,以满足需要。塔里面的水位控制是一个水塔发挥作用的关键。该系统使用水位传感器对水塔水位进行检测并将检测到的信号传给单片机来进行处理,通过调整定时器的定时时间来增大或者缩小占空比,并编写程序加以控制,从而实现电机的调速。最后,使用液晶屏显示当前水位状态以及电动机的转速。该系统通过了报警模块来实现了过低水位蜂鸣器鸣笛报警、过低警戒水位自动处理、正常水位蜂鸣器鸣笛报警以及正常水位处理。本系统适应在不同的用水场合下的用水速度需要,节省工作时间,提高了整体工作的效率,实现水塔水位的自动控制。 液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

双水箱水位控制系统

****大学《控制系统仿真与设计》总结报告基于MATLAB的双水箱液位控制系统仿真 学生姓名: 院系班级: 学号: 联系电话: Email: 2018年5月26日

一、单水箱模型仿真及控制 1.水箱液位仿真 1.1液位表达式的转化 由流量方程表达式:Adh = (qin ? q1)dt;q1=k; 得dh与dt关系式:dh = (qin ? k)dt S;其中dt为仿真时间步长,h为当前液位 高度,dh为进行一步后液位变化量,累加即得实际液位。 1.2程序流程图 1.3程序代码 S=15;%截面积 k=1.5;%流量系数 qin=2;%输入流量 T=1000;%仿真时间 dt=1;%步长 h=zeros(1,T/dt);%初始化液位数组 h(1,1)=0;%液位初值 for i=1:T/dt-1 q1=k*sqrt(h(1,i)); dh=(qin-q1)*dt/S; h(1,i+1)=h(1,i)+dh; end t=0:dt:T-1;%时间坐标 plot(t,h);%绘图 xlabel('t(s)'),ylabel('h(m)'); title('A水箱液位仿真(未添加控制)'); legend('h');

1.4仿真结果 液位初值0 液位初值2 2.PID仿真模型构建 2.1PID传递函数结构图 由PID控制器传递函数:G(s) = K p+ + Kd * s 利用Simulink绘制结构图: 2.2由结构图建立子系统 选中结构图,建立subsystem

参数设定窗口设置: 即可通过双击子系统修改PID参数 3.PID控制的实现及参数整定 3.1建立原系统结构图并仿真 设置仿真时间为1000,得到仿真结果: 可见该结果与1.4结果相同。

PLC水箱水位控制

实用标准文案 自动化系统集成与调试 实训报告 本课程为自动化集成与调试,实际上就是让我们用PLC控制水箱打水。由于实训前接触过类似的程序与硬件,所以做起来相对简单。第一周实训,一开始长江老师让我们重新复习之前所学。我们组并没有急着开始做项目,而是认真的检查电源,传感器,变频器等硬件是否完好。然后再由徐同学与李同学完成硬件的接线,张组长则与吴同学完成程序的编写。 一、接线图: S7-300模拟量输入输出模块、S7-300数字量输入输出模块、传感器以及变频器的接线(注意:用灰色细线将变频器3号端子接PLC数字量输出端子,变频器7号端子接PLC的M端,变频器9号端子接PLC模拟量输出端子,变频器10号端子接PLC模拟量COM端;用红、蓝、黑三种粗线将水箱抽水泵和变频器的U、V、W、PE端子对应接好)。

二、项目要求: 我们所做的项目如下 (一)项目一、PLC控制变频器打水 本项目总任务是通过PLC、变频器控制水泵打水。 任务一、G110变频器参数设置及快速调试 任务二、PLC控制变频器打水的组态、编程及仿真 任务三、S7-300模拟量输出模块与接线 任务四、现场实际调试与运行 (二)项目二、水箱液位的测量 本项目总任务是通过PLC、变频器控制实现水箱液位的测量 任务一、水箱液位测量的组态、编程及仿真 任务二、现场接线 任务三、现场实际调试与运行 (三)项目三、水箱液位两位式调节 本项目总任务是通过PLC、变频器、传感器监测水位控制水泵打水,当测量值大于高限值,变频器停止,水泵停止打水;当测量值小于低限值,变频器启动,水泵打水,当测量值在高限值与低限值之间时,变频器保持原状态。 任务一、水箱液位两位式调节的组态、编程及仿真运行

水箱液位控制系统的设计及实物调试

自动控制系统课程设计 1、设计题目:水箱液位控制系统的设计及实物调试 2、设计目的 1、加强对自动控制原理这门课程的认识,初步认识工程设计方法。 2、通过对水箱液位控制系统的设计,进一步理解书本知识,提高实践能力,增强分析问题,解决问题的能力。 3、学习并掌握Matlab的使用方法,学会用Matlab仿真。 4、学会对仿真结果进行分析,计算,并应用到实践设计中去。 3、设计设备 1、ACCC—Ⅰ型自动控制理论及计算机控制技术实验装置 2、数字式万用表 3、示波器 4、MATLAB软件 4、设计任务 (1)复习有关教材、到图书馆查找有关资料,了解水箱液位控制系统的工作原理。 (2)总体方案的构思 根据设计的要求和条件进行认真分析与研究,找出关键问题。广开思路,利用已有的各种理论知识,提出尽可能多的方案,作出合理的选择。画出其原理框图。 (3)总体方案的确定 可从频域法、跟轨迹法分析系统,并确定采用何种控制策略,调整控制参数。(4)系统实现 搭建系统上的硬件电路,实现开环控制,记录实验数据。引入闭环控制,将设计好的控制策略实现其中,根据实际响应效果调整参数直至最优,并记录数据

5、设计要求 1.分析系统的工作原理,进行系统总体设计。 2.选择系统主电路各元部件,进行主电路设计,并完成系统调试。 3.构成开环系统,并测其动态特性。 4.测出各环节的放大倍数及其时间常数。 5.分析单闭环无差系统的动态性能。 6.比较开环时和闭环时的动态响应。 7.构成水箱液位闭环无静差系统,并测其动态性能指标和提出改善系统动态性能的方法,使得系统动态性能指标满足s t s t s r 5.0,2.0%,5%<<≤σ。 6、MATLAB 软件仿真 6.1 软件仿真部分设计要求 1、参考文献【1】完成对电机的数学建模,拉普拉斯变换后得到系统的传递函数; 2、带入表中的水箱液位系统参数,求出系统的开环传递函数; 3、绘制出系统的开环传递函数的单位阶跃响应,分析系统的单位阶跃响应,得到相关性能指标; 4、分步骤实现系统的PID 校正,分别进行比例控制(P )校正,比例微分控制(PD )校正,比例积分控制(PI )校正和比例积分微分控制(PID )校正; 5、运用《自动控制原理》知识分析系统的性能特征,从阶跃响应性能指标,频域特性等角度分析系统校正前和校正后的性能; 6、设计后的系统满足如下性能指标:s t s t s r 5.0,2.0%,5%<<≤σ; 7、改变输入信号,将阶跃信号分别换成方波信号,信号的周期设置为4s ,幅值为5V 。 6.2 模型建立 1. “水箱系统”的液位控制工艺过程原理图 参考文献【1】,可以得到水箱液位控制系统的工艺过程原理图如图6.2.1所示

相关文档