文档视界 最新最全的文档下载
当前位置:文档视界 › SUPER 304H 及HR3C 选用镍基焊材的焊接工艺及实际操作研究

SUPER 304H 及HR3C 选用镍基焊材的焊接工艺及实际操作研究

SUPER 304H 及HR3C 选用镍基焊材的焊接工艺及实际操作研究
SUPER 304H 及HR3C 选用镍基焊材的焊接工艺及实际操作研究

SUPER 304H 及HR3C 选用

镍基焊材的焊接工艺及实际操作研究

史文渊

张兆弟 冯建辉 严正 刘文虎

(天津电力建设公司,天津市300041)

摘 要:本文主要就SUPER 304H 及HR3C 采用多种镍基焊接材料进行焊接工艺试验,分别从工艺及操作方面进行对比研究,从而确定镍基焊接材料焊接SUPER 304H 及HR3C 的可行性,并结合现场焊接过程中出现的缺陷及解决措施的分析及研究。

关键词:SUPER 304H; HR3C; 镍基焊接材料; 工艺及操作

1 引言

SUPER 304H及HR3C两种钢材匹配的焊接材料国外已研发并应用,国内也有应用,但国内尚未见国产化或进行相关研究的报道。因此,有必要寻找性价比好并可以替代的焊接材料,镍基焊接材料在新型奥氏体不锈钢,特别是在奥氏体与铁

素体异种钢的焊接中得到研究、认可和应用[1]

这里主要针对本公司在对两种钢材进行的多项焊接工艺评定过程中收集到的数据、资料、实验结果等进行分析、对比,并结合现场焊接中发现的问题研究其解决措施。

2 钢材化学成分及性能

HR3C 耐热钢(25Cr-20Ni-Nb-N)中的溶解氮及NbCrN 氮化物的充分沉淀大大提高了600℃~750℃温度下的蠕变断裂强度,同条件下,其蠕变断裂强度要比TP347、TP310系列耐热钢高。另外,由于高的Cr 含量,其抗高温腐蚀和抗蒸汽氧化的能力强于18-8系列不锈钢,同310系列不锈钢相当。

SUPER304H(ASME CODE CASE2328-1 0.1C-18Cr-9Ni-3Cu-Nb-N)的强度比ASME SA-213 Grade TP347H 高20%,富Cu 相在使用过程中在奥氏体基体上的沉淀使其具有较好的高温蠕变性能,耐腐蚀性和细晶TP347H 相当,SUPER304H 已经写入了日本的MITI 标准,并广泛应用于电站锅炉的过热器管。其化学成分和力学性能分别

见表1和表2[2]

表1 化学成分(mass%)

` 成分 C Mn Si Cr Cu N Ni Al B Nb S P min 0.07 -- -- 17.0 2.50.057.500.0030.0010.30 -- -- SUPER 304H max 0.13

1.00 0.30 19.0 3.50.1210.50.0300.0100.60 0.010 0.040min 0.04

-- -- 24.0--0.1517.0-- -- 0.20 -- -- HR3C

max 0.10 2.00 0.75 26.0--0.3523.0--

--

0.40 0.030 0.030

3 焊材选用

两种材质共选用5种牌号的焊材,其中SUPER 304H 和HR3C 各4种牌号的焊材,焊材的类别及生产厂家见表3。

表3 焊接材料型/牌号

序号型号(牌号)

规格

(mm)

用于钢材材质 1 T-304H Φ2.4 SUPER 304H 2 T-HR3C Φ2.4 HR3C 3 Thermanit

617(ERNiCrCoMo-1) Φ2.4

SUPER 304H、HR3C 4

Metrode 61-70 TIG

(ERNiCrCoMo-1) Φ2.4

SUPER 304H、HR3C 5

ERNiCr-3 (BOEHLER

NIBAS 70/20-1G)

Φ2.4

SUPER 304H、HR3C

4 焊材化学成分对比分析

五种焊材的化学成分对比见表4。 从表1和表4可以看出,匹配焊材的化学成

标准 Rm MPa

Re MPa 率Z

% 度 HB SUPER

304H 590 235 35 219HR3C

655

295

30

256

455

This is trial version https://www.docsj.com/doc/d711512576.html,

分和母材的化学成分大部分元素基本相似,只有部分元素不同,如HR3C 母材中不含Cu,但焊材中含有2.98%的Cu,还有两种焊材中均加入了Mo (T-304H 含有0.87%、T-HR3C 含有0.86%);

两种ERNiCrCoMo-1焊材,和母材及匹配焊材相比,均加入了大量的Co、Mo。因ERNiCrCoMo-1属于镍基合金焊材,所以与母材及匹配焊材相比,Ni 的含量占总含量的一半以上,其他元素基本上和母材相当。

BOEHLER NIBAS 70/20-1G 焊材的化学成分与AWS A5.14标准值相比加入了少量的Co 和Mo,未加入Ti 元素。

有关化学成分的加入考虑了以下因素[3]

: Ni:Ni 属于奥氏体稳定元素,能降低奥氏体化温度,对焊缝的回火温度有较大影响,并提高钢的韧性;

Co:适量的加入Co 可有效替代Ni 的作用而使焊缝金属获得稳定的室温冲击韧性,并可提高其蠕变强度;

Mo:Mo 的加入,有利于形成碳化物,使焊缝具有高温稳定性,并提高焊缝的高温强度;

Cu:Cu 属于微量元素,在匹配焊材中加入量较多,但在其他几种焊材中加入量较少,其主要作用为在奥氏体钢中形成强化项,提高抗腐蚀性能,但易形成红脆性,应控制其含量。

5 焊接工艺

5.1焊接工艺参数

各项目焊接工艺参数对照见表5。 5.2 焊接操作过程对比

两种钢材匹配的焊接材料国外已研发并应用,国内也有应用,在这里不做讨论,主要对比几种镍基焊材的可操作性。

相同点:三种焊材焊接过程中均在熔滴过渡时,熔滴上附着一层薄膜,使熔滴过渡比较困难,金属薄膜产生的细小颗粒,粘着在焊道的表面,难于清理,直接影响到焊道与焊道之间的熔合,只能采用机械方法将其打磨掉。

不同点:

(1) Thermanit 617焊丝在熔滴过渡过程中和Metrode 61-70 TIG相比,过渡比较困难,包

裹的薄膜厚,熔池结晶过程中浮出的金属氧化物杂质比较多,打磨量也比较大;

(2) Thermanit 617焊丝容易出现未熔合,主要集中在焊道夹角处及打底层最后收头处,特别是在打底层最后收头处,呈“肚脐状”未熔合,另外这种焊丝的熔化和流淌性稍差一些,在送丝过程中,焊丝添加量稍多,便会形成背面焊道上的“褶皱样”未熔合;

(3) Thermanit 617焊丝焊接过程中电流要比焊接普通不锈钢的电流要大,操作难度比较大;

(4) Metrode 61-70 TIG焊丝焊接过程中比Thermanit 617相对较好,虽有氧化现象,但对正常操作过程影响不大,熔池较清晰、易观察;

(5) BOEHLER NIBAS 70/20-1G焊丝焊接操作性略优于其他两种焊丝,焊接过程中薄膜析出较少,但随着温度的升高,其薄膜的析出程度会加剧。

6 试验结果

6.1 拉伸试验结果

表6 为五种焊丝焊制的SUPER 304H、HR3C 管接头试件,按照GB/T2651-1989《焊接接头拉伸试验方法》所得拉伸试验结果。

表6 几种焊丝的接头强度对比

母材

材质

试验焊材 抗拉强度Rm MPa 断后伸长率 A% 断口位置

725 39.6 T-304H 735 41.6 619 35 Thermanit 617 631 36 631 35 Metrode 61-70 TIG 641 38 711 39 SUPER 304H

BOEHLER NIBAS 70/20-1G 713 43 725 40 T-HR3C 745 41 700 30 Thermanit 617 717 31 687 30 Metrode 61-70 TIG 703 33 675 36 HR3C

BOEHLER NIBAS 70/20-1G

669

44

母材

456

标准分享网 https://www.docsj.com/doc/d711512576.html, 免费下载

This is trial version https://www.docsj.com/doc/d711512576.html,

超(超)临界锅炉用钢及焊接技术协作网第二次论坛大会论文集

T -304H 材质单 0.10 0.19

3.29

0.0060.00416.0418.70— 0.872.94— — — 0.67 0.0040.21

T -H R 3C 材质单 0.05 0.29

1.40

0.0010.00119.7227.05— 0.862.98— — — 0.44 0.0020.29

标准

0.05~ 0.15 M A X 0.5

M A X 1.0 M A X 0.020M A X 0.015M I N 50.020.0~24.010.0~ 15.0 8.0~10.0M A X 0.5 M A X 0.6 0.80~1.50M A X 3.0 —

T h e r m a n i t 617

材质单 0.058 0.17

0.04

0.0030.00157.8020.1811.37 6.390.010.360.7660.33—

标准

0.05~ 0.15 M A X 0.5

M A X 1.0

M A X 0.020M A X 0.015M I N 50.020.0~24.010.0~ 15.0 8.0~10.0M A X 0.5 M A X 0.6 0.80~1.50M A X 3.0 —

M e t r o d e 61-70 T I G

材质单 0.05 0.1

0.1

0.0010.00158.420.510.3 8.6<0.10.481.020.3

标准

M A X 0.10 M A X 0.5

2.5~

3.5 M A X 0.03M A X 0.015M I N 67.018.0~22.0—

— M A X 0.5 M A X 0.75—

M A X 3.0

2.0~

3.0

B O E H L E R N I B A S 70/20-1G

材质单 0.003 0.09

3.18

0.0020.00273.1420.370.020 0.010.01— — 0.102.62

表5 焊接工艺对照表

评定编号 母材 材质 焊接方法

母材规格(m m )

焊接材料

焊接位置 坡口形式 对口间隙(m m ) 焊接电流范围(A )

电压范围(V )

焊接速度范围(m m /m i n )

B 236

Φ50.8×8

T -304H

6G V 4~5

80~110

8~12

50~80

B 244

Φ51×7

T h e r m a n i t 617

6G V 4~5

80~110

8~12

50~100

B 257 Φ50.8×6

M e t r o d e 61-70 T I G

6G V 4~5

80~110

8~12

50~100

B 267

S U P E R 304H W s

Φ50.8×6

B O E H L E R N I B A S 70/20-1G

6G V

4~5

80~110

8~12

50~100

B 234

Φ50.8×8

T -H R 3C

6G V

4~5

85~100

10~14

70~90

B 243

Φ48×6

T h e r m a n i t 617

6G

V

4~5

80~110

8~12

50~90

B 258

Φ48×6

M e t r o d e 61-70 T I G

6G

V

4~5

80~110

8~12

50~90

B 266

H R 3C W s

Φ48×6

B O E H L E R N I B A S 70/20-1G

6G

V

4~5

80~110

8~12

50~100

注1:表中电流参数为评定报告中参数,在实际焊接中,蒂森焊材(M e t r o d e 61-70 T I G )比其他三种焊材应稍大一些,尽量偏向于电流参数要求范围的上限。

457

This is trial version https://www.docsj.com/doc/d711512576.html,

6.2 金相试验

6.2.1 SUPER 304H 四种焊材金相比较 (见图1)

HAZ(T-304H)奥氏体 HAZ(Thermanit 617)奥氏体

HAZ(Metrode 61-70 TIG)奥氏体 HAZ(BOEHLER NIBAS 70/20-1G)奥氏体

焊缝(T-304H)奥氏体 焊缝(Thermanit 617)奥氏体

焊缝(Metrode 61-70 TIG)奥氏体 焊缝(BOEHLER NIBAS 70/20-1G)

458

标准分享网 https://www.docsj.com/doc/d711512576.html, 免费下载

This is trial version https://www.docsj.com/doc/d711512576.html,

母材(T-304H)奥氏体 母材(Thermanit 617)奥氏体

母材(Metrode 61-70 TIG)奥氏体 母材(BOEHLER NIBAS 70/20-1G)奥氏体

图1 SUPER 304H钢四种焊材的焊接接头金相组织

6.2.2 HR3C 四种焊材金相比较 (见图2)

HAZ(T-HR3C)奥氏体 HAZ(Thermanit 617)奥氏体

HAZ(Metrode 61-70 TIG)奥氏体 HAZ(BOEHLER NIBAS 70/20-1G)奥氏体

459

This is trial version https://www.docsj.com/doc/d711512576.html,

焊缝(T-HR3C)奥氏体 焊缝(Thermanit 617)奥氏体

焊缝(Metrode 61-70 TIG)奥氏体 焊缝(BOEHLER NIBAS 70/20-1G)奥氏体

母材(T-HR3C) 奥氏体 母材(Thermanit 617)奥氏体

母材(Metrode 61-70 TIG)奥氏体 母材(BOEHLER NIBAS 70/20-1G)奥氏体

图2 HR3C钢四种焊材的焊接接头金相组织

6.3 其他试验如弯曲均符合相关标准要求

7 现场问题研究及解决措施

7.1 现场焊接问题

在现场施工过程中,采用Metrode 61-70 TIG (ERNiCrCoMo-1)焊材进行焊接,在焊接过程中,

460

标准分享网 https://www.docsj.com/doc/d711512576.html, 免费下载

This is trial version

https://www.docsj.com/doc/d711512576.html,

打底层最后收头处,呈现“肚脐状”的凹坑,深度较浅的在底片上呈现浅灰色图像、深度较大的在底片上呈现黑灰色图像,形成缺陷。

7.2缺陷产生原因分析

7.2.1 充氩保护效果不好

实际焊接时无法实现整体充氩,只能在焊口两端用可溶纸封堵,从焊口间隙处通过针孔或细铜管进行局部充氩,当打底层还剩1/5焊道时需将针孔或铜管拔除焊接,这样会造成管道内壁氩气浓度降低,影响保护效果。

7.2.2 组对间隙过小

现场焊接过程中组对间隙在2~3mm之间,焊接过程中会产生轴向收缩造成最后的1/5焊道间隙变小,不利于管道内表面熔池向坡口两侧的过渡,易产生未熔合。

7.2.3 定位焊焊道厚度过高

当接头处的焊道厚度过高时,需要提供较大的热能来熔化接头处的焊道,这样会造成接头区域焊接热输入减少,引起未熔合。

7.3 缺陷的预防措施

(1) 打底时坡口内侧焊道的厚度尽量要薄,但保证根部尽可能突出以利于接头,钨极与熔池保持1mm~1.5mm,熔池边缘各熔化焊道两边坡口钝边1.5mm~2mm;

(2) 打底时接头处的修磨成斜坡状;

(3) 打底焊最后收口拔出气针前,先将氩气流量开至最大,保证收口时有足够的氩气保护;

(4) 收口时焊接电流应比正常焊接电流增大10A左右;炉上充氩采用双层可溶纸封堵,用φ8mm~10mm×0.5mm~1mm的铜管,铜管前端凿平封死且成楔子状,并在上面打φ1mm~1.5mm的梅花状密集小孔(越密越多越好,以有利于充氩效果保护)。

8 结论

(1) 经试验采用三种镍基焊接材料 Thermanit 617(ERNiCrCoMo-1)、Metrode 61-70 TIG (ERNiCrCoMo-1) 、BOEHLER NIBAS 70/20-1G (ERNiCr-3)焊接新型18-8 奥氏体不锈耐热钢SUPER304H和HR3C是可行的。

(2) 采用Thermanit 617(ERNiCrCoMo-1)、 Metrode 61-70 TIG (ERNiCrCoMo-1)、BOEHLER NIBAS 70/20-1G(ERNiCr-3)焊丝焊制的SUPER304H、HR3C焊接接头常温理化性能符合相关技术条件要求,且与匹配焊接材料焊接接头性能相当。

(3) SUPER304H及HR3C钢从焊接过程操作性表明,焊丝Metrode 61-70 TIG (ERNiCrCoMo-1)的焊接可操作性略优于焊丝Thermanit 617(ERNiCrCoMo-1),而BOEHLER NIBAS 70/20-1G (ERNiCr-3)的操作性优于前两种焊材,在三种焊材中操作性最好。

(4) 焊接时严格按照上述预防措施进行处理,能很好的避免出现的“肚脐状”凹坑缺陷。

参考文献

[1] 朱平,赵建仓,柴晓岩,等. SUPER 304H奥氏体耐热钢焊接材料匹配与接头性能研究[A]. 超(超)临界锅炉用钢及焊接技术协作网. 第二次论坛大会论文集[C].西安,2007:230-234.

[2] 杨 富,章应霖,任永宁,等.新型耐热钢焊接[M].北京:中国电力出版社,2007.

[3] 束国刚,赵彦芬,张路. 超(超)临界锅炉用新型奥氏体耐热钢的现状及发展[A]. 超(超)临界锅炉用钢及焊接技术协作网. 第一次论坛大会论文集[C].苏州,2005:37-43

作者简介

史文渊(1981—):天津电力建设公司,助理工程师,主要从事焊接技术研究及焊工培训工作。天津市,300380,电话022-********,传真022-********,电子邮箱wenyuan0626@https://www.docsj.com/doc/d711512576.html,;

张兆弟(1981—):天津电力建设公司,助理工程师,主要从事焊接技术研究及焊工培训工作。天津市,300380,电话022-********,传真022-********,电子邮箱zhaodi821@https://www.docsj.com/doc/d711512576.html,;

冯建辉(1970—):天津电力建设公司,工程师,主要从事电力建设焊接技术管理工作。天津市,300041,电话022-********,传真022-********,电子邮箱fengrunze@https://www.docsj.com/doc/d711512576.html,;

严正(1952—):天津电力建设公司,高级工程师,主要从事焊接管理及无损检验工作。天津市,300041,电话022-********,传真022-********,电子邮箱yz390@https://www.docsj.com/doc/d711512576.html,;

刘文虎(1974—):天津电力建设公司,高级技师,主要从事焊接技术研究及焊工培训工作。天津市,300380,电话022-********,传真022-********,电子邮箱wenhu1974@https://www.docsj.com/doc/d711512576.html,。

461

This is trial version https://www.docsj.com/doc/d711512576.html,

镍基焊条

基焊条 目录 镍基焊条的分类与用途 镍基焊材的选用 镍基合金焊条成份对比 镍基焊条的分类与用途 镍及镍合金焊条可分为五大类,即工业纯Ni、Ni-Cu、Ni-Cr-Fe、Ni-Mo 和Ni-Cr-Mo。每一类可分为一种或多种型号的焊条。这类焊条主要用于焊接镍或高镍合金,有时也可用于异种金属的焊接或堆焊. 镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7

用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们 与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金 纯镍焊条 A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接 200 、 201 镍合金以及镀镍钢板; - 钢与镍异种材料的焊接; - 钢的表面堆焊。

镍基焊条选用

镍基焊材的选用 镍基焊丝 镍基焊条图片 [1] ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接 ERNiCrFe-7 用于焊接ASTM B163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接 ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7 用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTM B160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 镍基焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 ENiCu-7 主要用于镍铜合金自身及其与钢之间的异种焊接 ENiCrFe-7 用于690(UNS N06690)镍铬铁合金自身的焊接 ENiCrMo-4 用于焊接C-276合金及大多数其它镍基合金 ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接 ERCuNi 焊接锻造或铸造的70/30,80/20,90/10铜镍合金 ENiCrMo-13 用于焊接低碳镍铬钼合金 ENiCrMo-11 用于焊接低碳镍铬钼合金纯镍焊条A5.11 ENi-1 EL-NiTi3 ≥ 92 - - Ti2.5 - 焊接200 、201 镍合金以及镀镍钢板;- 钢与镍异种材料的焊接;- 钢的表面堆焊。

钢桶焊接工艺研究..

钢桶的焊接工艺研究 辛巧娟 在钢桶生产中,焊接工序是钢桶生产的主要质量控制工序,焊接质量的好坏,将直接影响钢桶的质量。现在全世界的钢桶焊接几乎都是采用电阻焊技术。 一、钢桶电阻焊焊接原理 钢桶电阻焊是将被焊桶件压紧于两电极之间,并能以电流,利用电流流经桶件接触及邻近区域产生的电阻热将其加热到熔化或塑性状态,断电后,在压力继续作用下,使之形成牢固接头的金属结合的一种方法。 电阻焊的主要方法有4种。即点焊、缝焊、凸焊、对焊。在钢桶生产中应用最频繁的是点焊和缝焊。 1.钢桶电阻焊的特点 钢桶电阻焊有两个显著特点: ·采用内部热源——利用电流通过焊接区的电阻产生的热量进行加热。 ·必须施加压力——在压力的作用下,通电加热、经过水冷或风冷冷却后,形成接点。 由此可见,要获得适当的电阻热,必须有外加电源,并始终在压力的作用下进行焊接。所以,焊接电流IW,电极压力Fw是形成电阻焊接头的最基本条件。至于焊接过程中这两个参数如何变化,则要根据焊件的材料、结构特点、性能及焊接设备而定。 2.电阻(焊接)热的产生及影响产热的因素 焊接时产生的热量可由下式计算: Q=I2Rt (1) 式中Q-产生的热量(J); I——焊接电流(A); R——电极间电阻(Q);

t——焊接时间(S)。 电阻R及影响R的因素式(1)中的电极问电阻包括桶件本身电阻Rw,两桶件间接触电阻Rc电极与桶件间接触电阻Rw(图1)。 R = 2Rw + Rc + 2Rew (2) 当桶件和电极已定时,桶件的电阻取决于它的电阻率。因此,电阻率是被焊钢桶材料的重要性能指标。电阻率高的材料其导热性差,电阻率低的材料其导热性好。这是因为,电阻率与电阻成反比。 电极压力的变化将改变桶件与桶件、桶件与电极间的接触面积,从而也将影响电流线的分布(参见图1)。随着电极压力的增大,电流线的分布将较分散,因此桶件电阻将减小。 图1 点焊时的电阻分布和电流线 熔核开始形成时,由于溶化区的电阻增大,将迫使更大部分电流从其周围的压接区(塑性焊接环)流过。使该区再陆续熔化,熔核不断扩大,但熔核直径受电极端面直径的制约,一般不超过电极端面直径的20 070,熔核过分扩大,将使塑性焊接因失压而难以形成,从而导致熔化金属的溅出(飞溅)。 接触电阻R是桶件与桶件之间接触通电时所形成的电阻。当桶件和电极表面都清理得十分洁净时,接触电阻仅在通电开始极短的间内存在,随后就会迅速减小以至消失。 接触电阻尽管存在的时间极短,但在以很短的加热时间点焊薄钢板时,对熔核的形成和焊点强度的稳定性仍有非常显著的影响

镍基焊丝

镍基焊丝、焊条、ERNiCrMo-4、 镍基焊丝、焊条、ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 镍基焊丝ERNiCrMo-13、ENiCrMo-3 用于焊接低碳镍铬钼合金焊条ENiCrMo-3 用于焊接镍铬钼合金,如625,800,8 01,825和600 镍基焊丝ENiCrFe-3、ENiCrFe-2 用于镍铬铁合金自身的焊接及与碳钢的焊接ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接, 还可用于9%镍合金的焊接 镍基焊丝ENiCu-7 、ENiCrFe-7 主要用于镍铜合金自身及其与钢之间的异种焊接ENiCrFe-7 用于690(UNS N 06690)镍铬铁合金自身的焊接 镍基焊丝ENiCrMo-4 、ENiCrCoMo-1 用于焊接C-276合金及大多数其它镍基合金ENiCrCoMo-1 用于焊接镍铬钴钼合金以及各种的高温合金间的异种焊接ERCuNi 焊接锻造或铸造的70/30,80/2 0,90/10铜镍合金 镍基焊丝ENiCrMo-13、ENiCrMo-11 用于焊接低碳镍铬钼合金ENiCrMo-11 用于焊接低碳镍铬钼合金产品描述:镍铁型铸铁焊丝Techalloy 55

用于铸铁辊堆焊修复和铸铁焊补等。硬度高于Techalloy 99,需用碳化物刀具加工。产品描述:825 镍基合金焊丝Techalloy 825 焊接825 (N08825)合金和其它类似镍铁铬钼铜合金。.耐有机酸、热硫酸、磷酸和硫化氢腐蚀。广泛应用于化工装备。产品描述: 82镍基合金焊丝Techalloy 606 应用最广的镍基合金焊丝, 可用于焊接600,601,690,800,800HT等镍合金。或用于不锈钢与低合金钢的异材焊接。该填充金属强度高,耐腐蚀,高温下抗氧化抗蠕变。并适合超低温工况应用。化学成分和力学性能(典型值): 产品描述:纯镍型铸铁焊丝、焊条Techalloy 99 广泛用于灰铸铁焊补和堆焊,可加工性好。化学成分和力学性能(典型值): 产品描述: 蒙乃尔合金焊丝焊条、Techalloy 418 用于N04400,R405,K500等镍铜合金焊接。在钢上堆焊时,需要先堆一层纯镍过渡。还用于蒙乃尔合金与镍200或铜镍合金的异材焊接。具有良好的强度和热导性,耐海水腐蚀,耐多种酸碱盐。大量应用于海洋工程,水面和水下船舶,化工电力行业的热交换器、蒸发器、容器等。化学成分和力学性能(典型值): 产品描述: 镍625合金焊丝焊条、Techalloy 625 用于焊接UNS N06625合金及601、800、825、25-6Mo、9%Ni钢等,还可用于异材焊接和堆焊。高温和超低温机械性能优异,在宽泛的氧化和还原媒质中耐强腐蚀,耐应力腐蚀裂纹,点蚀和隙蚀。产品描述: C276哈氏合金焊丝条Techalloy 276 用于焊接UNS N10276镍基合金,可用于异材焊接镍合金与钢或不锈钢,也用于在钢上堆焊镍铬钼合金复合层。该合金耐各种酸类和酸蒸气腐蚀。由于含钼较高,

Inconel600镍基合金焊接方案

1.1Inconel600镍基合金焊接方案 本工程中有Inconel600镍基合金管道36.8m,数量不多,但焊接要求严格。 由于气化装置是把煤转化水煤气等过程,整个系统是在较高温度和压力下操作,工艺介质中含有CO、CO2、H2S、H2、COS、NH2等可燃性、有毒介质,所以对管道材质要求较高。因此,我们特编写了镍合金管道的焊接方案,具体施工时将根据设计说明及技术要求再对本方案进一步的修改和补充。 1.1.1编制依据: 1) 《青海中浩60万吨/年甲醇项目建筑安装工程施工招标文件》; 2)《石油化工鉻镍奥氏体钢、铁镍合金和镍合金管道焊接规程》SH/T3525-199; 3)《现场设备、工业管道焊接工程施工验收规范》GB50236-1998; 4)《石油化工剧毒、可然介质管道工程施工及验收规范》SH3501。 1.1.2材料验收 焊接材料应有出厂质量证明书,其中焊条应符合《镍及镍合金焊条》GB/T13814的规定,焊丝应符合《镍及镍合金焊丝》GB/T15620的规定。 焊接材料应进行验收。验收合格后,应作好标示,入库储存。 焊接材料的储存、保管应符合下列规定: 焊材库必须干燥通风,库房内不得有有害气体和腐蚀介质。 焊接材料应存放在架子上,架子离地面的高度和墙壁的距离均不得小于300mm。 焊接材料应按种类、牌号、批号、规格和入库时间分类放置,并应有标示。 焊材库内应设置温度计和湿度计,保持库内温度不抵于5℃,相对湿度不大于60%。 焊接用的氩气纯度不应低于99.6%。 1.1.3焊前准备 管子切割及坡口加工宜采用机械方法,若采用等离子切割,应清理其加工面。 坡口加工后应进行外观检查,坡口表面不得有裂纹、分层等缺陷。

纯镍管道的焊接

Ni200纯镍管道的焊接 中国化学工程第十六建设公司廖翼翔 山东滨州化工集团公司陈文玮李鹏 摘要:通过对Ni200纯镍的理化性能和焊接性进行分析,制定了该材料的焊接工艺并在工程中成功进行了应用。采用TIG焊接方法和大电流、快速焊工艺以及进行严格的焊前清理和低温环境必须焊前预热是保证纯镍管道焊接质量的关键。 关键词:热裂纹气孔未熔合焊缝成形焊前清理氩弧焊预热 1、前言 山东省滨州化工集团5万吨/年离子膜片碱装置采用瑞士博特公司(Bertrams Chemical Plant Ltd)技术,其主要原理是通过一、二段蒸发和三段浓缩将32%的NaOH 溶液制成99.99%的熔融烧碱,再通过结片机冷却、刮削制成片碱。整个工艺过程所涉及的关键设备和管道组成件均从瑞士博特公司进口。 由于烧碱溶液在蒸发、浓缩过程中随着浓度、温度的升高,腐蚀性越来越强,对工艺设备和管道材质选材要求也越来越高,当烧碱溶液浓度≥50%时,不锈钢材料已不能满足耐腐蚀性要求,必须选用具有良好的耐苛性碱腐蚀性能的纯镍材料。该装置一段蒸发以后的设备和烧碱溶液管道实际采用了Ni200材料,管道总长240多米,焊口260多个。管道最小规格为DN25mm,最大为DN800mm,壁厚3.05~4.31mm。 在强腐蚀性的苛刻使用条件下,纯镍管道焊接质量好坏关系到整套装置能否长期安全稳定运行,且由于纯镍材质理化性能和焊接性特殊,焊接操作难度大,焊接技术要求很高,业主和博特公司专家对纯镍管道的焊接十分重视,焊接质量检验全部采用瑞士标准。纯镍管道的焊接也成为该项目施工的关键。 2、纯镍的化学成分和物理性能 2.1化学成分 2.2物理性能

铝及铝合金焊接工艺的研究

哈尔滨理工大学荣成学院专科生毕业设计 题目:铝及铝合金焊接工艺研究专业年级: 09焊接技术及自动化 学生姓名:金杰 学号:0930150223 指导教师:杨丽丽 哈尔滨理工大学荣成学院 完成时间:2012年6月25日

专科生毕业设计(论文)评语 学院:荣成学院专业:焊接技术及自动化任务起止时间:2012年5月13日至2012年6月25日 毕业设计(论文)题目: 铝及铝合金焊接工艺研究 指导教师对毕业设计(论文)的评语: 指导教师签名:指导教师职称: 评阅教师对毕业设计(论文)的评语: 评阅教师签名:评阅教师职称: 答辩委员会对毕业设计的评语: 答辩委员会评定,该生毕业设计(论文)成绩为: 答辩委员会主席签名:职称: 年月日

专科生毕业设计(论文)任务书 学生姓名:金杰学号:0930150223 学院:荣成学院专业:焊接技术及自动化 任务起止时间:2012年5月13日至2012年6月25日 毕业设计(论文)题目: 铝及铝合金焊接工艺研究 毕业设计工作内容: 铸钢是生产中常用的材料,但是由于其成分中含有杂质较多,铸造过程中冷却缓慢,使其组织粗大偏析比较严重给焊接带来困难.本文通过对ZG270-500及其焊接接头的常见缺陷进行分析,选用适当的焊接工艺参数进行焊接,并对焊后裂纹进行探伤及修补。 1、了解毕业设计的内容,查阅资料(5月13日—5月17日) 2、对铸钢的焊接性及焊接工艺进行分析,总结ZG270-500的焊接工艺及修补措施.撰写题纲(5月17日-5月19日) 3、撰写论文(5月20日-5月21日) 资料: 1.中国机械工程学会焊接学会.焊接手册(第一卷)焊接方法与设备【M】.北京:机械工业出版社,2001 2.美国焊接学会黄静文等[译].焊接手册(第二卷)焊接方法【M】.北京:机械工艺出版社(第七版).1988 3.关桥.刘方君.董春林.高能束流焊接技术的应用与发展趋势【C】.第九次全国焊接会议论文集.1999 4.李亚江.王娟.有色金属焊接及应用.北京:化学工艺出版社.2006 指导教师意见: 签名: 年月日系主任意见: 签名: 年月日

镍基合金INCONEL 625的焊接

镍基合金INCONEL 625的焊接 引言:在石油化工建设工程中,常会遇到镍基合金这种材料,因这种材料具有耐活泼性气体、耐苛性介质、耐还原性酸介质腐蚀的良好性能,又具有强度高、塑性好、可冷热变形和可加 工成型及可焊接的特点,广泛应用于石油化工中。例如:在安徽铜陵六国化工合成氨装置 气化工段中,就有这种材料,它的具体名称为INCONEL 625,用于输送氧气介质。 关键词:镍基合金焊接热裂纹 1 镍基合金INCONEL 625的化学成分及对焊接性能的影响 为了研究INCONEL 625的焊接,我们有必要对这种材料的化学成分进行了解。镍基合金INCONEL 625的化学成分见表1: 在Ni中添加Al、Cr、Fe、Mo、Ti能引起较强的固溶强化,Mo可改善镍基合金的高温强度,Nb 则可以稳定组织,细化晶粒,改善材料性能,Cr在Ni中的固溶范围约为35%~40%,而Mo在Ni中的固溶范围大约为20%。Cr、Mo等合金材料的添加不但增加其耐蚀性,而且对材料的焊接性能没有不利影响。添加Ti、Mn、Nb则可提高材料的抗热裂纹和减少气孔。Si在钢中是脱氧剂和抗氧化剂。而C的含量很小,因Ti和Nb的存在一般不会产生晶间腐蚀。 镍基合金的焊接性对S则较为敏感,S不溶于Ni,在焊接凝固时可形成低熔点的共晶体,易产生热裂纹。P在镍基合金中也会增加裂纹的敏感性。 2 镍基合金INCONEL 625的焊接特点 2.1 焊接热裂纹镍基合金INCONEL 625在焊接时具有较高的热裂纹敏感性。热裂纹分为结晶裂纹、液化裂纹和高温失塑裂纹。结晶裂纹最容易发生在焊道弧坑,形成火口裂纹。结晶裂纹多半沿焊缝中心线纵向开裂。液化裂纹则易出现在紧靠融合线的热影响区中,有的还出现在多层焊的前层焊缝中。高温失塑裂纹既可能出现在热影响区中,也可能发生在焊缝中。各种热裂纹有时是宏观裂纹,或宏观裂纹伴随微观裂纹,也有时仅仅是微观裂纹。热裂纹发生在高温状态,常温下不再扩展。2.2 污染物的影响焊件表面的清洁性是保证镍基合金INCONEL 625焊接质量的一个关键。焊件表面的污染物主要是表面氧化皮和引起脆化的元素。镍基合金INCONEL 625表面氧化皮的熔点比母材高得多,常常可能形成夹渣或细小的不连续的氧化物,S、P、Pb、Sn、Zn、Bi、Sb及As等凡是能和Ni形成低熔点共晶体的元素都是有害元素。这些有害元素大大增加了镍基合金焊接时的热裂纹倾向。这些元素常常存在于预制过程中使用的材料中,例如:油脂、油漆、测温笔和记号笔的墨水常含有这些元素。因此,在焊接前,必须彻底清除,包括坡口外50mm范围内均属于清除范围。 清除方法取决于污染物的种类,对于油脂类物质,可采用蒸汽脱脂,或用丙酮清洗。对于油漆类物质,可采用氯甲烷、碱液、甲醇清洗,也可采用打磨的方法清除。 2.3 焊接热输入的影响采用高热输入会使焊缝接头产生一定程度的退火,并伴随晶粒长大,而使组织发生相变,降低材料的机械性能。此外,高热的输入,还可能使晶相组织产生过度的偏析,碳化物沉淀并析出,从而引起热裂纹,并降低耐蚀性。 在选择焊接方法和焊接工艺时,必须考虑到这一点,因此,在实际操作时采用小电流,窄焊道,多层焊较为合理。 需要指出的是,有些镍基合金焊接加热后对靠近热影响区的焊缝组织会产生不良影响。例如Ni-Mo合金焊接后需通过退火处理来消除这种影响,恢复其耐蚀性。但对于INCONEL 625这种合金来说属于Ni-Cr-Mo合金, 象奥氏体不锈钢一样,镍基合金的显微组织也是奥氏体,固态情况下不发生相变,母材和焊缝金属的晶粒不能通过热处理细化,因此,镍基合金INCONEL 625不需要进行热

镍基合金焊接材料

镍基合金焊接材料 镍及镍合金焊条

产品名称:镍及镍基合金焊材 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15 Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0

焊接工艺试验研究

HS367M焊丝焊接OCr13Ni4-6M0材料的焊接工艺 试验研究 摘要:本文通过HS367M焊丝用于OCr13Ni5M0材料的焊接工艺性试验及焊接接头性能试验,并对试验结果进行分析,进一步验证HS367M焊丝的可靠性,从而得出该焊丝适用于我厂推广使用的结论。 关键词可靠性综合机械性能 一、前言 我厂焊接OCr13Ni4-6M0马氏体不锈钢材料传统工艺都是使用A307不锈钢焊条,由于该焊条的焊缝组织和机械性能均与OCr13Ni4-6M0材料有较大差别,往往不能保证产品的耐磨,耐腐蚀,汽蚀及强度要求。为了提高产品的质量,我厂特从哈尔滨焊接研究所引进了用于焊接OCr13Ni4-6M0材料的专用焊丝HS367M,为了验证该焊丝的可靠性,在我厂现有条件下进行了焊接工艺性能试验。 1焊丝工艺性试验 1.1 焊接试板 焊接试板为130×20×400×2件OCr13N i5M O板材,采用两块板“×”坡口对接(坡口由机加工成形)试板焊后经590°±10℃退火,保温8小时,出炉温度≤150℃。 1.2选择最佳工艺规范:为了满足焊接过程中飞溅小,电弧燃烧稳定,焊缝成型良好,无工艺缺陷,根据焊丝使用规范要求,经多次反复试验得出最佳焊接工艺规范:焊接电流200—230A,电压25—28V,旋焊速度30cm/min,焊接使用保护气体为95%Ar十5%CO2混合气体。 本试验用焊机为CO2焊机,焊缝清根焊透,焊缝打磨与母材表面平齐,焊缝经超声波探伤无缺陷后进行接头性能试验取样。2焊接接头性能试验及结果分析 焊接接头性能试验的取样位置,试样尺寸,试验要求及方法按工艺文件及相应国家标准由我厂质检处理化室进行试验,分别进行了拉伸试验,冲击试验,硬度试验,弯曲试验。试验结果如下: 2.1 焊接接头的拉伸试验 共5根拉伸试样,编号为C1-C5,试验设备WE-600(60吨万能材料试验机),试验方法按GB228-87)进行,试验结果见表1

镍及镍基合金焊材选用

镍及镍基合金焊材选用 镍是一种用途广泛的重要有色金属,具有熔点高﹑耐腐蚀性好﹑力学性能优良等特性。镍基合金是含镍量大于50%并含有多良其他元素的合金,镍基比铁基能固熔更多的合金元素,所以镍基合金不但保持了镍的良好特性,有兼有合金化组分的良好特性,既可耐高温,又可耐腐蚀。工程上将其分为两大合金类型,即耐热用镍基合金(有称高温合金)和耐腐蚀用镍基合金。前者主要用于航空﹑航天等高温工作构件;后者则用于化学﹑石油﹑核工业等苛刻腐蚀环境。 ⑴镍基高温合金:它是以镍﹑铬固熔体为基体并天家多种合金元素进行固熔强化而得到的合金。焊接结构常用的镍基高温合金的强化机制分为固熔强化和时效沉淀强化两大类。固熔强化是加入Cr ﹑Co ﹑W﹑Mo﹑Nb﹑Ta 等元素,以提高原子间结合力,产生点阵畸变,阻止位错运动,提高再结晶度等来强化固熔体。这类合金具有优良的抗氧化性,塑性较高,易于焊接,但热强性相对较低。时效强化是在固熔强化的基础上,天家较多的Al﹑Ti﹑Nb﹑Ta 等元素,他们与镍结合成共格稳定﹑成分复杂的金属间化合物,使合金的热强性大大提高。但是,Al﹑Ti ﹑Nb等元素的加入使焊接性变差,故这类元素的加入 总量宜限制在6%以下。固熔强化和时效强化的形变镍基高温合金牌号有30 个左右,如GH3030 ( Ni-20Cr-0.25Ti )﹑GH4033(Ni-20Cr-2.5Ti-0.8Al) 等。焊接时有可能产生凝固﹑液化裂纹或应变时效裂纹,Al ﹑Ti 等时效强化元素越多,裂纹敏感性越大。 ⑵镍基耐蚀合金:为提高镍基耐蚀合金的耐腐蚀性能,也加入Cr﹑W﹑Mo等合金元素;且要求碳量 越低越好;Ti ﹑Nb 等含量较低,主要作用是抑制碳的有害影响,以提高耐腐蚀性能,这均是与高温合金的重要区别。我国的耐腐蚀合金牌号标准见GB/T15007-1994 。镍基耐腐蚀合金也有固熔和沉淀两种强化 方式,但成分类型与镍基高温合金不同,有如下几种类型;Ni 系,近于纯镍,如Ni200 等;Ni-Cu 系,如蒙乃尔 ( monel) 400(66Ni31Cu);Ni-Cr 系和Ni-Cr-Fe 系,如因康镍( Inconel )600(76Ni15Cr8Fe) ﹑因康镍 718(53Ni19Cr3Mo5Nb18Fe);Ni-Fe-Cr 系,如因康洛依( Incoloy ) 800(32Ni46Fe21Cr);Ni-Mo 系和Ni-Cr-Mo 系,如哈斯特洛依( Hastelloy ) C (64Ni16Cr16Mo4W);Ni-Cr-Mo-Cu 系,含Cu 在3%以上。镍基耐蚀合金在焊接时可能产生热裂纹﹑焊缝气孔等问题,有的合金烈性(如Ni-Cr ﹑Ni-Mo﹑Ni-Cr-Mo 系)焊接接头还存在晶间腐蚀和应力腐蚀问题。 镍基合金具有耐活泼性气体﹑耐苛性介质﹑耐还原性酸介质腐蚀的良好性能,又经验有强度高﹑塑性好﹑可冷热变形和加工成型及可焊接的特点,因此,广泛应用于石油化工﹑冶金﹑原子能﹑海洋开发﹑航空﹑航天等工业中,解决一般不锈钢和其他金属﹑非金属材料无法解决的工程腐蚀问题,是一类非常重要的耐腐蚀金属材料。 镍基及铁镍基耐腐蚀合金的化学成分列于表1,哈氏系列耐腐蚀合金化学成分典型值列于表 2。

镍基高温合金激光焊接工艺研究

镍基高温合金激光焊接工艺研究 镍基高温合金激光焊接工艺研究 1 绪论 1.1 选题的依据及意义 高温合金是航空发动机的关键材料,而镍基及镍铁基高温合金是目前高温合金结构材料的重要组成部分,镍基高温合金由于具有优异的耐热性及耐腐蚀性,被称之为“航空发动机的心脏”,具有组织稳定、工作温度高、合金化能力强等特点,目前已成为航空航天、军工、舰艇燃气机、火箭发动机所必须的重要金属材料,同时在高温化学、原子能工业及地面涡轮等领域得到了广泛的应用。据统计,在国外一些先进的飞机发动机中,高温合金的用量已达发动机重量的55%~60%。用于制造涡轮叶片的材料主要是镍基高温合金,同时镍基高温合金还是目前航空发动机和工业燃汽轮机等热端部件的主要用材,在先进发动机中这种合金的重量占50%以上。 在镍基高温合金的焊接上,目前主要采用氩弧焊、电子束焊、钎焊与扩散焊等。激光焊具有高能量密度、深穿透、高精度、适应性强、不需要真空装置,热输入小,热影响区小且焊缝深宽比大,焊后变形小,表面光洁,可自冷淬火,焊接工艺参数调节比较容易等特性,因此非常适用于镍基高温合金的焊接。 1.2 国内外的研究概况及发展趋势 1.2.1 镍基高温合金的发展及现状 高温合金的发展与航空发动机的进步密切相关。1929年,英美Merica、Bedford和Pilling等人将少量的Ti和Al加入到soNi一ZoCr电工合金,使该合金具有显著的蠕变强化作用,但这并未引起人们的注意。1937年,德国 HanS von ohain涡轮喷气发动机Heinkel问世,1939年英国也研制出whittle涡轮喷气发动机。然而,喷气发动机热端部件特别是涡轮叶片对材料的耐高温性和应力承受能力具有很高要求。1939年英国Mond镍公司(后称国际镍公司)首先研制成一种低C且

30CrMo焊接工艺研究

30CrMo焊接工艺研究 前言 30CrMo为中碳调质钢,由于其自身具有较高的强度、硬度,且具有一定的冲击韧性,多应用于大型工程机械、压力容器、潜艇制造等。在中型机械制造业中主要用于制造截面较大、在高应力条件下工作的调质零件,如轴、主轴以及受高负荷的操纵轮、螺栓、双头螺栓、齿轮等;在化工工业中用来制造焊接零件、板材与管材构成的焊接结构和在含有氮氢介质中工作的温度不超过250℃的高压导管;在汽轮机、锅炉制造业中用于制造450℃以下工作的紧固件,500℃以下受高压的法兰和螺母,尤其适于制造300大气压、400℃以下工作的导管。 公司生产的重点产品主油缸,其缸体和缸盖均为30CrMo,属于较高载荷的焊接结构件,且工作条件恶劣,承受一定的压力,在使用过程中,由于运动产生强烈摩擦,因此,要求材质必须具有足够的强度和良好的抗疲劳性能,以保证产品的使用寿命。 1 试验前期准备 1.1焊接性分析 30CrMo的化学成分及力学性能如表1、表2所示。 表3 GHM70+GM70熔敷金属化学成分(%)根据国际焊接学会推荐的碳当量计算公式:Ce=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15(1) 根据式(1)及表1可知,30CrMo的碳当量为0.52%~0.73%。随碳当量增加,冷裂纹敏感性增大。当合金元素含量处于下限时,焊接性相对较好,越接近上限淬硬倾向逐渐加大,产生冷裂纹的倾向增大,焊接性逐渐变差。30CrMo合金结构钢又是在调质状态下焊接,热影响区的冷裂倾向会表现得更突出,其焊接性差。如焊接工艺不合理,存在焊接热影响区脆化、热应变脆化及产生焊接延迟裂纹的危险。只有采取合理的焊接工艺措施,才能保证焊接质量。 1.2 焊接方法及焊接材料 本产品拟采用埋弧自动焊进行焊接。参照表3,并结合焊缝与母材等强度、等韧性的原则,选择焊丝GHM70 +GM70,其性能如表4所示。

铁镍基高温合金的焊接性及焊接工艺

铁镍基高温合金的焊接性及焊接工艺 一、焊接性 对于固熔强化的高温合金,主要问题是焊缝结晶裂纹和过热区的晶粒长大,焊接接头的“等强度”等。对于沉淀强化的高温合金,除了焊缝的结晶裂纹外,还有液化裂纹和再热裂纹;焊接接头的“等强度”问题也很突出,焊缝和热影响区的强度、塑性往往达不到母材金属的水平。 1、焊缝的热裂纹 铁镍基合金都具有较大的焊接热裂纹倾向,特别是沉淀强化的合金,溶解度有限的元素Ni和Fe,易在晶界处形成低熔点物质,如Ni—Si,Fe—Nb,Ni—B等;同时对某些杂质非常敏感,如:S、P、Pb、Bi、Sn、Ca等;这些高温合金易形成方向性强的单项奥氏体柱状晶,促使杂质偏析;这些高温合金的线膨胀系数很大,易形成较大的焊接应力。 实践证明,沉淀强化的合金比固熔强化合金具有更大的热裂倾向。 影响焊缝产生热裂纹的因素有: ①合金系统特性的影响。 凝固温度区间越大,且固相线低的合金,结晶裂纹倾向越大。如:N—155(30Cr17Ni15Co12Mo3Nb),而S—590(40Cr20Ni20Co20Mo4W4Nb4)裂纹倾向就较小。 ②焊缝中合金元素的影响。 采用不同的焊材,焊缝的热裂倾向有很大的差别。如铁基合金Cr15Ni40W5Mo2Al2Ti3在TIG焊时,选用与母材合金同质的焊丝,即焊缝含有γ/形成元素,结果焊缝产生结晶裂纹;而选用固熔强化型HGH113,Ni—Cr—Mo系焊丝,含有较多的Mo,Mo在高Ni合金中具有很高的溶解度,不会形成易熔物质,故也不会引起热裂纹。含Mo量越高,焊缝的热裂倾向越小;同时Mo还能提高固熔体的扩散激活能,而阻止形成正亚晶界裂纹(多元化裂纹)。 B、Si、Mn含量降低,Ni、Ti成分增加,裂纹减少。 ③变质剂的影响。 用变质剂细化焊缝一次结晶组织,能明显减少热裂倾向。 ④杂质元素的影响。 有害杂质元素,S、P、B等,常常是焊缝产生热裂纹的原因。 ⑤焊接工艺的影响。 焊接接头具有较大的拘束应力,促使焊缝热裂倾向大。采用脉冲氩弧焊或适当减少焊缝电流,以减少熔池的过热,对于提高焊缝的抗热裂性是有益的。 2、热影响区的液化裂纹 低熔点共晶物形成的晶间液膜引起液化裂纹。 A—286的晶界处有Ti、Si、Ni、Mo等元素的偏析,形成低熔点共晶物。 液膜还可以在碳化物相(MC或M6C)的周围形成,如Inconel718,铸造镍基合金B—1900和Inconel713C。 高温合金的晶粒粗细,对裂纹的产生也有很大的影响。焊接时常常在粗晶部位产生液化裂纹。因此,在焊接工艺上,应尽可能采用小焊接线能量,来避免热影响区晶粒的粗化。 对焊接热影响区液化裂纹的控制,关键在于合金本身的材质,去除合金中的杂质,则有利于防止液化裂纹。 3、再热裂纹 γ/形成元素Al、Ti的含量越高,再热裂纹倾向越大。 对于γ/强化合金消除应力退火,加热必须是快速而且均匀,加热曲线要避开等温时效的温度、时间曲线的影响区。 对于固熔态或退火态的母材合金进行焊接时,有利于减少再热裂纹的产生。 焊接工艺上应尽可能选用小焊接线能量,小焊道的多层焊,合理设计接头,以降低焊接结构的拘束度。

镍基合金焊接材料(参考模板)

镍基合金焊接材料 · 产品名称:镍及镍基合金焊材 · 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。 用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0 说明:低氢型Ni70Cr15耐热耐蚀合金焊条,焊缝中有适量的钼、铌等合金元素,熔敷金属具有良好的抗裂性,采用直流反接。 用途:用于焊接有耐热、耐蚀要求的镍基合金,也可用于一些难焊合金、异种钢的焊接及堆焊。

镍焊接方案

化工分公司整体搬迁及综合技术改造项目 10万吨/年片碱装置 镍管道安装施工方案 审批: 审核: 编制: 中国化学工程第十六建设公司 滨化工程项目经理部 二○一三年三月

目录 1.编制说明 (3) 2、编制依据 (3) 3、低碳镍管道焊接工程量见表1 (4) 4、低碳镍管道和焊材的领用管理 (4) 5、低碳镍管道的施工 (5) 6、低碳镍管道的下料加工 (5) 7、低碳镍管道的坡口尺寸和组对要求 (6) 8、低碳镍管道的焊前准备 (6) 9、低碳镍管道的焊接 (7) 10、焊接质量控制和检验 (9) 11、人员机具和物料消耗 (10) 12、镍管焊接进度安排 (10) 13、质量保证措施 (10)

1.编制说明 化工公司搬迁及综合技术改造项目10万吨/年片碱装置中的熔融烧碱等部分管道选用了低碳镍材质,系全部从国外公司进口,规格为1″~4″不等,材质为LC―Ni99.2(NO:2.4068)。满足业主的进度要求,特编制本方案作为施工指导性技术文件。 2、编制依据 2.1. 化工公司搬迁及综合技术改造项目10万吨/年片碱装置施工图; 2.2.《工业金属管道安装工程施工及验收规范》GB50235-2010; 2.3.《现场设备、工业管道焊接施工及验收规范》GB50236-2011; 2.4.《中化十六公司焊接工艺评定报告》;

3、低碳镍管道焊接工程量见表1 表1低碳镍管道焊接工程量 4、低碳镍管道和焊材的领用管理 由于低碳镍易受S的腐蚀,当其温度在300℃时,S在Ni中存在的微小颗粒都能导致镍的破坏,形成的镍化硫渗入到镍的晶界处,使镍的抗腐蚀能力大大下降,而S的来源主要是油、油脂、垃圾、油漆、漆、标记墨水、胶布带、胶、焦油或油纸等脏物和指纹(汗渍)、脚印以及大气中含S的工业空气。因此为了保证镍管的洁净,在镍管材的领用过程中必须做到: 4.1.参与领用镍材的人员必须穿干净的工作服、戴干净的手套。 4.2.领用镍的运输工具(汽车、板车等)必须经过处理,确保镍材不与钢铁、有污染的隔垫(指木板等)相接触,可在干净干燥的木板上铺一层干净的白布或用不锈钢钢板进行隔离。 4.3.领回的镍材及时安装,随领随用。当天未用完的镍材退还给工地仓库。

焊材选用表

常用母材与焊材选用表

珠光体耐热钢焊接时,如何正确地选用焊接材料? 总的原则是根据化学成分的要求,即熔敷金属的化学成分应与母材相当来选用焊接材料。具体选用,见表12。 中碳钢焊接时,如何正确地选用焊条? 中碳钢的焊接目前大都采用手弧焊。为提高焊接接头的抗裂性,应选用低氢型焊条。个别情况下,也可采用钛钙型和钛铁矿型酸性焊条,但此时应采取严格的工艺措施,如焊前预热、减少熔合比(降低焊缝含碳量)等。 中碳钢手弧焊时焊条的选用,见表6。

特殊情况下,中碳钢焊接时可采用铬镍不锈钢焊条,如E0-19-10-16(A102)、E0-19-10-5(A107)、E1-23-13-16(A302)、E1-23-13-15(A307)、E2-26-21-16(A402)、E2-26-21-15(A407)等,因奥氏体焊缝金属的塑性良好,可以减小焊接接头应力,即使焊件焊前不预热,也可避免热影响区产生冷裂纹。 焊条的保管 焊条保管的好坏对焊接质量有直接影响,尤其在野外工作时要特别注意。每个焊工,保管员和技术人员都应该知道焊条存储、保管规则。焊条和其它涂料在很多情况下会遭到破坏:1)运输、搬运、使用时受到损伤;2)被水浸泡或吸潮;3)受油或其它腐蚀介质污染。 1)损伤:虽然焊条在一般情况下具有抗外界破坏能力,但不能忽视由于保管不好很容易遭受损坏。焊条是一种陶质产品,他不能象钢芯那样耐冲击,所以装货和卸货时不能摔他。用纸盒包装的焊条不能用不能用挂钩搬运。某些型号焊条如特殊烘干要求的碱性焊条涂料比正常焊条更要小心轻放。 2)吸潮:在焊条涂料中含有太高的水分时很危险的,由于很多工人不了解焊条是湿的,焊完时焊缝表面用肉眼不一定看得见气孔,但是经X射线检查就显示出气孔来。当焊条出厂时,所有的焊条有某一含水量,它根据焊条的型号而变,这个含水量是正常的,即对形成气孔有一个含水量的安全系数,对焊缝质量没有影响。所有得焊条在空气中都能吸收水分,在相对湿度为90%时,焊条涂料吸收水分很快,普通碱性焊条露在外面一天受潮旧很严重,甚至相对湿度为70%时涂料水分增加也较快,只在相对湿度为40%或更低时,焊条长期储存才不首影响。 由于昼夜湿度之间的差别很大,空气水分在早上很容易凝结成露水,很容易潮湿焊条包装。焊

焊接材料选用的原则

焊接材料选用的原则 公司各工地、项目部经常询问焊材选用的问题,而且大多为检修、技改工程急用。现将焊接材料选用的原则做以下描述: 焊接材料是指焊接时消耗材料的通称(包括:焊条、焊丝、焊剂、气体、电极等),这里描述的是指焊条和焊丝 1 焊接材料如何选用 1.1 根据母材的化学成份、力学性能、焊接性能并结合工件的结构特点和使用条件综合考虑,选用焊接材料。 1.2 合理的经济性,选用焊材时应在保证以上条件的基础上应选用价格便宜的焊材,以降低成本,如:重要承压部件应优先选用碱性低氢型焊条,因为该焊条脱硫脱氧充分,且含氢量低,焊缝金属抗裂性及冲击韧性能好,而对于一些非常重要部位不是重要承压的焊缝可选用酸性焊条,因为酸性焊条在强度上完全能满足焊缝的性能要求,而且工艺性能良好,价格便宜。 1.3 在焊接之前仅通过焊接工艺评定确定焊接材料的使用也是不全面的,如:Q345R钢的焊接,如评定中用了J507焊条,在施工中就用J507焊条也不完全合适。因J506、J507R、J507G、J507RH、J507DF等焊材,都在这个评定适用范围之内,所以在选用焊材之前应考虑诸多因素。 (1)从焊接设备,J506交直流焊机两用,J507只能使用于直流电源。 (2)从抗裂性能方面,J507RH大于J507。 (3)安全方面,J507DF(低尘)要好于J507,(尤其在封闭、空气不流通的环境焊接)。 (4)生产效率方面,J507Fe(铁粉焊条)生产效率高于J507,所以要综合考虑后确定焊材的选用。 2 相同钢号的焊接 2.1 通常要求焊缝金属与母材等强度,应选用熔敷金属抗拉强度等于或稍高于母材的焊条,对于合金钢主要应选合金成分与母材相同或接近,抗拉强度相同应以保证焊缝力学性能,且不超过母材规定的抗拉强度上限为原则的焊材。 2.2 铬钼低合金耐热钢的焊材选用应保证焊缝金属的化学成份,使用温度且保证力学性能。 2.3 低温钢用焊材选用时应保证焊缝金属低温状态下的冲击韧性和力学性能。 2.4 高合金钢的焊材首先应保证焊缝金属的耐腐蚀及其它特殊要求,且应保证焊缝的力学性能。不同钢号的镍铬奥氏体钢的焊接宜按照合金含量数低的母材选用焊材。 2.5 不锈复合钢板基层的焊材选用应保证焊缝金属应保证力学性能且控制抗拉强度的上限,

相关文档