文档视界 最新最全的文档下载
当前位置:文档视界 › 氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析
氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析

摘要:本文通过分析氧化锆陶瓷材料热膨胀性和相变特征,重点讨论了利用相变提高氧化锆材料抗热震性能的方法,对改善材料抗热震性的途径进行了探讨。

关键词:氧化锆,陶瓷,热震能,膨胀性,相变特征

Abstract: through analysis of zirconium oxide ceramic material thermal expansion and phase change features were discussed, and the use of phase change materials improve zirconia thermal shock resistance methods, to improve material thermal shock resistance of the methods are discussed.

Keywords: zirconia, ceramic, thermal shock can, the dilatability, phase change characteristics

1引言

陶瓷材料中热应力大小取决于材料的力学性能和热学性能,并且还受构件几何形状和环境介质等因素的影响。所以,作为陶瓷材料抵抗温度变化能力大小标志的抗热震性,也必将是其力学性能和热学性能对应于各种受热条件的综合表现。陶瓷材料抗热震能力的研究始于20世纪50年代,迄今已经提出了多种抗震性的评价理论,但都不同程度地存在着局限性和片面性。

2氧化锆陶瓷材料抗热震性的理论分析

陶瓷材料的热震破坏分为热冲击作用下的瞬间断裂和热冲击循环作用下的开裂、剥落。据此,脆性陶瓷材料抗热震性的评价理论也相应分为两点观点。一种是基于热弹性理论。它是指材料固有强度不足以抵抗热震温差引起的热应力时就导致材料“热震断裂”。根据这一理论,陶瓷材料同时具有高的强度、热导率和低的热膨胀系数、杨氏弹性模量、泊松比、热辐射系数及黏度,才能具有高的抗热震断裂的能力。此外,适度降低材料密度和热容也有利于改善陶瓷材料的抗热震性能。

另一种是基于断裂力学的概念,即材料中的热弹性应变能足以裂纹成核和扩展而新生表面所需的能量时,裂纹就形成并扩展,从而导致材料热震损伤。根据这一理论抗热震损伤性能好的材料应该具有尽可能高的弹性模量和尽可能低的强度。不难看出,这些要求与高抗热震断裂能力的要求截然相反。此外,增大陶瓷材料的断裂能、改善材料的断裂韧性,对提高其抗热震损伤能力显然是有益的。再有,适量微裂纹存在也将有助于改善抗热震损伤性能,例如气孔率为10%~20%

氧化锆陶瓷

112 40 氧化锆陶瓷 编辑 白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。 目录 1简介 2种类特点 3粉体制备 4生产工艺 5应用 6增韧方法 1简介

氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 2种类特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆 (t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 温度密度 单斜(Monoclinic)氧化锆(m-ZrO2) <950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2) 1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 上述三种晶态具有不同的理化特性,在实际应用为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,如部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、 MgO、Y2O3时,分别表示为Ca-PSZ、 Mg-PSZ、 Y-PSZ等。由亚稳的t- ZrO2组成的四方氧化锆称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrysta,TZP)。当加入的稳定剂是Y2O3 、CeO2,则分别表示为Y-TZP、Ce-TZP等。 3粉体制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。粉体加工方法有共沉淀法、溶胶一凝胶法、蒸发法、超临界合成法、微乳液法、水热合成法网及气相沉积法等。 4生产工艺

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状/高燕等 ??51?? 高 燕12,张富强12 1上海交通大学医学院附属第九人民医院,上海200011;2上海 市口腔医学研究所,上海200011 与传统牙科陶瓷材料相比,以氧化钇Y2O3为稳 定剂的四方氧化锆t- ZrO2多晶陶瓷Y-TZP由于存在介稳的四方氧化锆向单斜氧化锆m- ZrO2 的应力诱导相变增韧作用,具有较高的韧性,而受到了普遍关注。主 要从材料性能、加工性、美学性能等方面对Y-TZP在牙科领域的研究现状作一综述。氧化锆 Y-TZP 挠曲强度 CAD-CAM Application Status and Development Tendency of Yttria-stabilized Tetragonal Zirconia PolycrystalsY-TZP GAOYan ZHANG Fuqiang 1 Department of Prosthetic Dentistry Shanghai 9th People’Hospital Shanghai 200011;2.Shanghai Jiaotong University and Shanghai Institute of Stomotology Shanghai 200011 Abstract Compared with traditional dental ceramic Y-TZP is becoming more and more popular between dentists and patients due to its stress induced t–m ZrO2 transformation. This paper introduces the mechanical propertymachinable and aesthetic property of Y-TZP. Key words zirconiaY-TZPflexture strengthCAD-CAMt 0 与传统的金瓷修复体比较,全瓷冠桥修复体因其在美学和生物相容性方面性能的改善而受到普遍的关注13。不论是玻璃陶瓷,高铝含量的玻璃渗透陶瓷都不能满足后牙固定局

氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析 摘要:文章通过对氧化锆陶瓷材料的热膨胀性以及相变的特征进行分析,着重探讨有效利用氧化锆的相变提高氧化锆材料实际抗热震性能的具体方法,以及如何提高材料抗热震性的可行性办法。 关键词:氧化锆陶瓷材料抗热震性能 材料具有的热学性能以及力学性能决定了陶瓷材料当中热应力的大小,另外构件的几何形状以及环境的介质等也会影响陶瓷材料的热应力的大小。因此,抗热震性代表着陶瓷材料抵抗温度变化能力的大小,也肯定是它热学性能以及力学性能相对应各种受热条件时一个全面的反映。关于陶瓷材料在抗热震能力方面的研究开始于上个世纪五十年代,到目前形成了很多关于抗震性的相关评价理论,不过都在一定程度上有着片面性和局限性。 一、陶瓷材料的抗热震性具体理论分析 陶瓷材料热震破坏包括:在热冲击的循环直接作用下发生的开裂和剥落;在热冲击的作用下瞬间的断裂。基于此,有关脆性的陶瓷材料具体的抗热震性相关的评价理论也涵盖了两个观点。首先是基于热弹性的理论。其说的是材料原本的强度无法抵抗热震温差导致的热应力的时候,就造成了材料的“热震断裂”。通过这个理论,陶瓷材料需要同时具备热导率、高强度和低热膨胀系数、泊松比、杨氏弹性模量、黏度以及热辐射的系数,这样方能够具备较高的抗热震断裂能力。另外,想要提高陶瓷材料实际的抗热震能力,还可以通过对材料的热容以及密度进行适当的降低。 另一理论基于断裂力学的具体概念,也就是材料当中热弹性的应变能完全能够裂纹成核以及扩展而新生的表面需要的能量的时候,裂纹形成并且开始扩展,进而造成了材料热震的损伤。按照该理论,在抗热震损伤性能方面比较好的材料应当符合越高越好的弹性模量以及越低越好的强度。以此能够发现,以上要求和高抗热震断裂的能力具体的要求完全对立。另外,将陶瓷材料实际的断裂能提高以及对材料的实际断裂韧性进行改善,很明显有助于提高材料的抗热震的损伤能力。另外,存在一定量的微裂纹也对提高抗热震的损伤性能有很大的帮助,比如:在气孔率是10%到20%之间的非致密的陶瓷当中,热扩展裂纹的形成通常会遭受来自气孔的抵制,存在的气孔能够帮助钝化裂纹以及减小应力的集中。 作为氧化锆陶瓷材料,有着极为鲜明的常温力学的性能,熔点比较高、在化学稳定性以及热稳定性上都比较好。所以,其的使用经常处于高温的条件之下,因而其抗热震性的性能也是判断其性能的关键指标。氧化锆的许多性质都非常的特殊,比如:氧化锆能够以单料以及四方、立方这三种具体晶型共同存在,还有它特殊的相变特性,这么多特性都可以被我们所利用,用来提高其热膨胀的行为,加强其的抗热震方面的性能。

氧化锆陶瓷(材料科学概论论文)

氧化锆陶瓷 摘要:本文介绍了氧化锆的基本性质、氧化锆超细粉体的制备方法、高性能氧化锆陶瓷材料的成型工艺以及其在各领域的应用情况。 关键词:氧化锆;高性能陶瓷;制备;应用 材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的材料是十分重要而急迫的任务,氧化锆就是具有这种功能的智能材料! 一、名称:氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 二、种类及特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜氧化锆(m-ZrO2)、四方氧化锆(t-ZrO2)和立方氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 单斜(Monoclinic)氧化锆(m-ZrO2)<950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2)1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2)>2370℃ 6.27g/cc 三、增韧原理 氧化锆增韧的方法,主要是利用氧化锆的相变才能达到的!. 部分稳定ZrO2陶瓷在烧结冷却过程中,t-ZrO2晶粒会自发相变成m-ZrO2,引起体积膨胀,在基体中产生微裂纹,相变诱导的微裂纹会使主裂纹扩展时分叉或改变方向而吸收能量,使主裂纹扩展阻力增大,从而使断裂韧性提高。这种机理称微裂纹增韧。主要增韧方法有:应力诱导相变增韧、微裂纹增韧、残余应力增韧、表面增韧以及复合增韧等。 其中t-ZrO2转化为m-ZrO2相变具有马氏体相变的特征,并且相变伴随有3%~5%的体积膨胀。不加稳定剂的ZrO2陶瓷在烧结温度冷却的过程中,就会由于发生相变而严重开裂。解决的办法是添加离子半径比Zr小的Ca、Mg、Y等金属的氧化物。 材料中的t-ZrO2晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。 对氧化锆材料压裂而产生裂纹,在300℃热处理50h后,因为t相转变为m 相过程中产生的体积膨胀补偿了裂纹空隙,可以再弥合,实现了材料的自修复。 四、氧化锆粉体的制备 ZrO2超细粉体的制备技术 锆英石的主要成分是ZrSiO4,一般均采用各种火法冶金与湿化学法相结合的工艺,即先采用火法冶金工艺将ZrSiO4破坏,然后用湿化学法将锆浸出,其中间

热震性试验方案

热震性试验方案 试验用材HG4169、GH202、GH586热冲击试样尺寸40×40×5mm,耐热试样尺寸Φ20×15;喷涂前试样表面采用喷砂粗化处理,采用等离子喷涂电源,以工业用αAl2O3喷涂粉末,以NiCoCrAlY或NiCrAlY复合粉末作为底层。 热冲击试样采用单面喷涂,工作涂层的厚度0.3mm,热冲击试样加热至1100℃保温10分钟后迅速淬入20~25℃中的水中急冷,记录涂层表面出现第一次裂纹的次数及涂层剥落1、2的次数,每个数据取三个试样的平均值。 喷涂工艺参数 前人的研究表明; 1、具有过渡层涂层的热震性明显高于无过渡层的涂层,; 2、无论有无过渡层纯的αAl2O3涂层的热震性均高于内填有 +ZrO2、TiO2和Cr的复合涂层。 3、涂层的剥落与涂层对基底层氧化的保护作用有关。 4、对αAl2O3+10%ZrO2涂层重熔处理热震处理97次才发生剥 落现象。 资料来源:阎殿然,Al2O3涂层陶瓷抗高温冲击性能研究,河北工学院学报.1994第4期,:12~17

试验方案一等离子喷涂(外涂层αAl2O3,以NiCrAlY复合粉末作为底层)+激光重熔 试验用材HG4169、GH202、GH586热冲击试样尺寸40×40×5mm,耐热试样尺寸Φ20×15;喷涂前试样表面采用喷砂粗化处理,采用等离子喷涂电源,以工业用αAl2O3喷涂粉末,以NiCrAlY 复合粉末作为底层。Y在涂层中的质量分数一般控制在1%一下。 基体温度150~200℃ 底层涂层厚度控制在50~70μm 面涂层控制在0.15~0.13mm 喷涂工艺参数 1、首先确定底层喷涂工艺参数,确定合理厚度大约需要试样 10块,在确定厚度优化参数后进行面层喷涂工艺参数,厚度控制在50~70μm 主要以测试硬度为主,考察薄膜层的质量。 2、在优化的底层试样基体上进行Al2O3涂层最佳厚度的试验, 大约也需要5块; 热冲击试样加热至1100℃保温10分钟后迅速淬入20~25℃中的水中急冷,记录涂层表面出现第一次裂纹的次数及涂层剥落1、2的次数,每个数据取三个试样的平均值。

氧化铈基耐高温IRLEC抗热震性能的研究

目录 第一章绪论 (1) 1.1 红外低可探测技术 (1) 1.2 红外低可探测的基本原理 (1) 1.3 飞机的红外辐射 (2) 1.3.1飞机红外辐射的特点 (2) 1.3.2飞机高温部件红外辐射波段 (2) 1.3.3抑制飞机发动机红外辐射特性的主要技术途径 (4) 1.4 耐高温红外低发射率涂料 (5) 1.4.1耐高温填料 (5) 1.4.2耐高温粘合剂 (7) 1.4.3耐高温添加剂(助剂) (8) 1.4.4耐高温红外低发射率涂层研究现状 (8) 1.5 涂层抗热震性能研究进展 (9) 1.6 本文的选题背景及研究内容 (9) 1.6.1选题背景 (9) 1.6.2研究内容 (10) 第二章涂层界面结合机理及抗热震性能研究方案 (11) 2.1 引言 (11) 2.2 涂层与基板结合界面 (11) 2.2.1 涂层与基体间结合界面类型 (11) 2.2.2涂层与基体界面间的结合力 (12) 2.3 影响涂层界面结合的因素 (13) 2.3.1粘合剂对涂层界面结合的影响 (13) 2.3.2润湿性对涂层界面结合的影响 (14) 2.3.3基体的预处理对涂层界面结合的影响 (15) 2.3.4热应力对涂层界面结合的影响 (16) 2.3.5制备工艺对涂层界面结合的影响 (17) 2.4氧化铈基耐高温IRLEC抗热震性能设计方案 (17) 2.4.1添加剂对涂层抗热震性能的影响 (17) III

2.4.1.1金属氧化物对涂层抗热震性能的影响 (17) 2.4.1.2 悬浮助剂对涂层抗热震性能的影响 (18) 2.4.2填料的表面改性对涂层抗热震性能的影响 (19) 2.4.3添加剂和填料表面改性协同作用对涂层抗热震性能的影响 (20) 2.5 耐高温低发射率涂层的制备方案设计 (20) 2.6 技术路线 (20) 第三章添加剂对氧化铈基耐高温IRLEC抗热震性能影响 (22) 3.1 引言 (22) 3.2 金属氧化物对涂层抗热震性能的影响 (22) 3.2.1实验部分 (22) 3.2.1.1实验原料 (22) 3.2.1.2 实验内容 (23) 3.2.1.3测试与表征 (23) 3.2.2实验结果与分析 (25) 3.2.2.1 氧化物种类对涂层抗热震性能的影响 (25) 3.2.2.2 氧化物含量对涂层抗热震性能的影响 (26) 3.2.3本节小结 (29) 3.3 锂基膨润土对涂层抗热震性能的影响 (30) 3.3.1实验部分 (30) 3.3.1.1实验原料 (30) 3.3.1.2 实验内容 (30) 3.3.1.3 测试与表征 (30) 3.3.2实验结果与分析 (31) 3.3.3本节小结 (33) 3.4 添加剂配方初步确定 (33) 3.4.1引言 (33) 3.4.2实验部分 (33) 3.4.2.1 实验原料 (33) 3.4.2.2 实验内容 (34) 3.4.2.3 测试与表征 (34) 3.4.3实验结果与分析 (34) 3.4.4本节小结 (36) IV

氧化锆陶瓷

氧化锆陶瓷 一.简介 1.氧化锆的性质: (1)含锆的矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2); (2)颜色:白色(高纯ZrO2);黄色或灰色(含少量杂质的ZrO2),常含二氧化铪杂质;(3)密度:5.65~6.27g/cm3; (4)熔点:2715℃。 (5)氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 2.氧化锆晶型转化和稳定化处理: 在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化,如表1。ZrO2四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。因此,纯ZrO2制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2 转变为m-ZrO2的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2等)后,可以降低c-ZrO2 t-ZrO2→m-ZrO2的相变温度,使高温稳定的c-ZrO2 和t-ZrO2相也能在室温下稳定或亚稳定存在。当加入的稳定剂足够多时,高温稳定的c-ZrO2可以一直保持到室温不发生相变。进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展,氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷。 晶态温度密度 <950℃ 5.65g/cc 单斜(Monoclinic)氧化锆 (m-ZrO2) 四方(Tetragonal)氧化锆 1200-2370℃ 6.10g/cc (t-ZrO2) 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 表1 在常压下纯ZrO2三种晶态 (1)当ZrO2中稳定剂加入量在某一范围时,高温稳定的c-ZrO2通过适当温度下时效处理使c-ZrO2大晶粒(c相)中析出许多细小纺锤状的t-ZrO2(t相)晶粒,形成c相和t 相组成的双相组织结构。其中c相是稳定的而t相是亚稳定的并一直保存到室温。在外力诱导下有可能诱发t相到m相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。这种陶瓷称之为部分稳定氧化锆,当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。 (2)当ZrO2中稳定剂加入量控制在适当量时可以使t-ZrO2以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(。在外力作用下可相变t-ZrO2发生相变,增韧不可相变的ZrO2基

钇稳定氧化锆纳米粉体制备技术解析

第25卷第6期硅酸盐通报 Vol . 25No . 62006年12月BULLETI N OF THE CH I N ESE CERAM I C S OC I ETY December, 2006 钇稳定氧化锆纳米粉体制备技术研究进展 王洪升, 王贵, 张景德, 徐廷鸿1211 (1. 山东大学材料液态结构及其遗传性教育部重点实验室, 济南250061; 2. 济南大学泉城学院, 济南250061 摘要:纳米YSZ 是一种新型的高科技材料, 有着广泛而重要的用途。本文根据国内外最新研究现状及其发展趋势, 综述了纳米级YSZ 的制备技术, 特别就目前研究比较多的水热法和反胶团法给予了重点阐述, 并就目前制备过程中存在的问题, 解决方法及发展方向作了介绍。 关键词:YSZ; 纳米粉体; 团聚; 制备 The Prepara ti on Progresses of Y SZ Nanom WAN G Hong 2sheng , WAN G Gui , J , XU 2. Quancheng College of J China 1211(Keb Lab . of L iquid Structure and Heredity of MaterialsM J inan 250061, China; Abstract:U ltrafine ne advanced material, which has wide and significant uses . methods of YSZ powder were revie wed in this paper on the basis of ne w op trends, es pecially the hydr other mal method and the reverse m icelles were described in The p r omble m s that need t o be s olvoed and the directi on in the future were given . Key words:YSZ; nanometer powder; aggregati on; p reparati on

陶瓷材料的抗热震性的改善与应用

陶瓷材料的抗热震性改善与应用 摘要: 本文总结了陶瓷材料抗热震的理论基础以及抗热震陶瓷材料的分类与应用,基于理论提出了改善陶瓷材料抗热震性的策略,为制作高抗热震陶瓷材料提供了可借鉴的工程技术途径。 关键词: 陶瓷 材料 抗热震性 改善措施 应用 引言: 陶瓷材料因具有极高的熔点、高的化学和物理稳定性及优异的抵抗极端环境的能力而闻名。但陶瓷材料由于其固有的脆性,抗热震性能较差,热冲击是造成陶瓷材料破坏的重要原因。因此,改善陶瓷材料的抗热震性能历来就是陶瓷材料研究的重大课题之一。 1. 陶瓷抗热震性的理论基础 陶瓷抗热震性指陶瓷在温度剧变情况下抵抗热冲击的能力。陶瓷抗热震性能经典理论主要有两种,即Kingery 抗热震断裂理论和Hasselman 抗热展损伤理论和Andersson 等提出一种新模型——压痕淬冷法。 (1) Kingery 基于热弹性理论,提出了抗热震断裂理论。由热震温差引起热应力与材料固有抗拉强度之间的平衡作为抗热震断裂判据,导出抗热震断裂参数: (1f R E = ασ-μ) 式中:f σ为强度极限,E 为弹性膜量,μ为泊松比,α为热膨胀系数, 根据上式,要使陶瓷材料具有优异抗热震性,需要陶瓷弹性模量低,强度极限高,泊松比低。一些材料R 的经验值见下表。 R 的经验值 f σ(MPa ) μ -6-1α(?10K ) ()E GPa R (℃)

23Al O 345 0.22 7.4 379 96 SiC 414 0.17 3.8 400 226 热压烧结SiC 310 0.24 2.5 172 547 HPSN 690 0.27 3.2 310 500 4LAS 138 0.27 1.0 70 1460 (2) Hasselman 基于断裂力学理论,从能量观点出发,提出了抗热冲击理论.分析材料在温度变化下裂纹成核、扩展动态过程。以弹性应变能与断裂表面能之间平衡作为抗热震损伤判据,导出抗热震损伤参数 122st 20 R ()G E λ=α 式中:E 0是材料无裂纹时的弹性模量,G 为弹性应变能释放率,α为热膨胀系数,R st 大,裂纹不易扩展,热稳定性好。 裂纹长度及强度与热震温差的函数关系 上图为理论上预期的裂纹长度以及材料强度随T ?的变化。假如原有裂纹长度l 0相应的强度为0σ,当c T T ??,强度同样连续地降低。这

什么是耐火材料的抗热震性

什么是耐火材料的抗热震性 https://www.docsj.com/doc/d518056292.html, 和田玉,和田玉器,新疆和田玉,和田玉籽料,和田玉鉴别,新疆和田玉鉴别,和田玉籽料鉴别,和田玉疯了,和田玉挂件,和田玉手镯,和田玉原石,和田玉商城https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, 南阳艾条艾条南阳艾条批发 https://www.docsj.com/doc/d518056292.html, 艾灸减肥艾灸疗法艾灸的作用 https://www.docsj.com/doc/d518056292.html,/膜结构膜结构公司河南膜结构公司张拉膜https://www.docsj.com/doc/d518056292.html, 珍珠岩2 https://www.docsj.com/doc/d518056292.html,/ 互感器电流互感器电压互感器零序电流互感器放电线圈消谐器信阳互感器 抗热震性是指耐火制品对温度迅速变化所产生损伤的抵抗性能。耐火材料在使用的过程中,经常受到环境温度的急剧变化作用,例如,盛钢桶衬砖在浇注过程中,冶金炉(转炉、平炉或转炉)的加料、出钢或操作中炉温变化等,导致制品产生裂纹、剥落,甚至崩溃、此种破坏作用不仅限制了制品和炉窑的加热速度和冷却速度,限制了炉窑操作的强化,而且也是制品、炉窑损坏较快的主要原因之一。 影响耐火材料抗热震性的因素非常复杂。一般来说,材料的线膨胀系数小,抗热震性就好;材料的热导率高,抗热震性也好。另外,材料的颗粒度组成、致密度、气孔大小和分布、制品形状等均对其抗热震性有影响。 对于不同的耐火材料,其抗热震性的检测方法也不同,主要包括

水急冷法和空气急冷法两种。 https://www.docsj.com/doc/d518056292.html, 南阳电子警察 https://www.docsj.com/doc/d518056292.html,/ 南阳汉都网 https://www.docsj.com/doc/d518056292.html,/膨胀珍珠岩 https://www.docsj.com/doc/d518056292.html,/ 膨胀珍珠岩 https://www.docsj.com/doc/d518056292.html,/ 1珍珠岩2 玻化微珠 https://www.docsj.com/doc/d518056292.html,/ 珍珠岩2 玻化微珠 https://www.docsj.com/doc/d518056292.html,/ https://www.docsj.com/doc/d518056292.html,/ 颗粒石墨鳞片石墨海泡石增碳剂 https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, 室机房河南机房https://www.docsj.com/doc/d518056292.html, 室机房 https://www.docsj.com/doc/d518056292.html, 月季树状月季大花月季丰花月季藤本月季 https://www.docsj.com/doc/d518056292.html,防爆电机防爆变频电机防爆电机配件https://www.docsj.com/doc/d518056292.html,/ https://www.docsj.com/doc/d518056292.html,/ 膨胀玻化微珠https://www.docsj.com/doc/d518056292.html,/ 浸塑设备https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html,/ 膨胀珍珠岩https://www.docsj.com/doc/d518056292.html, https://www.docsj.com/doc/d518056292.html,/爱笑网https://www.docsj.com/doc/d518056292.html,五彩咖啡玉器https://www.docsj.com/doc/d518056292.html,/解梦网https://www.docsj.com/doc/d518056292.html,/ 精密铸造不锈

外科植入物氧化钇稳定四方氧化锆Y-TZP陶瓷材料

《外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料》 行业标准编制说明 一、工作简况 任务来源:根据食药监办械管〔2017〕94号《总局办公厅关于印发2017年医疗器械行业标准制修订项目的通知》,确定由天津市医疗器械质量监督检验中心(以下简称天津中心)负责起草“外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料”(项目编号: N2017012-T-TJ)行业标准。 任务下达后,天津中心对此项工作给予了高度重视,及时于2017年3月28日在武汉召开2017年标准制订工作启动会,并公开征集标准制定工作参与单位。启动会上责成标准项目负责人就《外科植入物---氧化钇稳定四方氧化锆(Y-TZP)陶瓷材料》标准的立项背景、现有工作基础、项目工作安排做了详细介绍,并成立了标准起草工作组。工作组成立后,迅速开展工作,通过查阅相关国际标准、美国标准、国家标准、行业标准等相关资料,基本确定了标准的制定思路。工作组于2017年4月至5月编写标准草案,于2017年6月19日至21日在天津组织召开标准修订中期会议,针对标准草案进行深入讨论,会后形成标准的征求意见稿。 二、编制原则和确定标准主要内容的依据 本标准按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写》及GB/T 20000.2-2009《标准化工作指南第2部分:采用国际标准》的要求进行编写。 本标准使用重新起草法修改采用ISO 13356-2015: Implants for surgery-Ceramic materials based on yttria-stabilized tetragonal zirconia(Y-TZP) 本标准的主要内容包括: 1)范围 2)规范性引用文件 3)物理及化学性能 4)试验方法 三、主要实验(或验证)的分析、综述报告、技术经济论证、预期的经济效果 详见验证报告。 四、采用国际标准和国外先进标准的程度,以及与国际、国外同类标准水平的对比情况,或与测试的国外样品、样机的有关数据对比的情况。

抗热震性

抗热震性 材料在温度急剧变化条件下抵抗损伤的能力。曾称热稳定性,热震稳定性,抗热冲击性,抗温度急变性,耐急冷急热性等。 耐火材料在低温和中温下是脆性材料,缺乏延性,在热工设备使用中,常常受到急剧的温度变化,导致损伤。抗热震性是耐火材料重要的使用性能之一。 抗热震性机理材料的抗热震性,是其力学性能与热学性能在温度变化条件下的综合表现。 材料遭受的急剧温度变化,称为热震。材料在热震中产生的新裂纹,以及新裂纹与原有裂纹扩展造成的开裂、剥落、断裂等状况,称为热震损伤。热震损伤是热应力作用的结果。材料在温度变化时,变形受到抑制所产生的应力为热应力。线膨胀系数不同的多相物体在温度变化时,均匀热膨胀的物体受到温度梯度作用时,以及相变时,都会产生热应力。热应力与材料的弹性模量及弹性应变成正比,而弹性应变等于线膨胀系数和温度变化的乘积。在无限平板中 式中ah为热应力,Pa;E为弹性模量,Pa;a为线膨胀系数,K-1;Tf为最终温度,℃;Ti为初始温度,℃;u为泊松比。 理论上,对陶瓷与耐火材料处于脆性阶段的抗热震性已提出两种互补的分析。一种是热弹性理论,认为材料受到的热应力超过材料的极限强度时,导致瞬时断裂,

即所谓的%26ldquo;热震断裂%26rdquo;。金格里(w.D.Kingery)根据不同的热震条件,导出%26ldquo;抗热震断裂参数%26rdquo;R,R%26rsquo;和 R%26rdquo;表达式: 式中af为断裂强度;%26lambda;为热导率;Cp为质量定压热容;%26rho;为密度;a=%26lambda;/Cp%26rho;,为热扩散率。对氧化物陶瓷等特殊耐火材料,为避免热震断裂的发生,要求具有较高的强度、热导率或热扩散率,以及低的线膨胀系数和弹性模量。另一种是能量理论,认为材料中不可避免地存在着或大或小数量不等的微裂纹,材料的热震损伤是裂纹扩展的结果。哈塞曼(D.P.H.Hasselman)用断裂力学中的能量平衡原理分析热应力引起的裂纹扩展,导出%26ldquo;抗热震损伤参数%26rdquo;R%26rsquo;和 R%26rsquo;%26rsquo;表达式: (适用于比较G不同材料的抗热震性)

陶瓷砖抗热震性检测细则NZC-ZY-XZ025-2015

ZY 宁夏中测计量测试检验院(有限公司) 检测细则 NZC-ZY-XZ025-2015 陶瓷砖抗热震性试验检测细则 2015-04-01 发布 2015-04-01 实施 宁夏中测计量测试检验院(有限公司)发布

前言 根据宁夏中测计量测试检验院(有限公司)?质量手册?和?程序文件?的要求,为了使本公司不同检测人员,不同时间所进行试验检测方法、过程保持一致性,实现检测结果的准确性,依据相关产品标准和试验方法标准,特制定本细则。 所有检测人员在检测过程中必须严格遵守本细则。 本细则由宁夏中测计量测试检验院(有限公司)负责起草。 编制:校核:批准:

陶瓷砖抗热震性试验检测细则 1、适用范围 本细则规定了在正常使用条件下各种类型陶瓷砖抗热震性的试验方法。除经许可,应根据吸水率的不同采用不同的试验方法(浸没或非浸没试验)。 2、规范性引用文件 下列文件中的条款通过GB/T 3810的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 GB/T 3810.3陶瓷砖试验方法第3部分:吸水率、显气孔率、表观相对密度和容重的测定(GB/T 3810.3-2006, ISO 10545-3;1995, MOD) 3、仪具与材料 3.1低温水槽(NZCS-047) 3.2干燥箱(NZCS-075) 4、试验方法与步骤 4.1试样 至少用5块整砖进行试验 注:对于超大的砖(即边长大于400 mm的砖),有必要进行切割,切割尽可能大的尺寸,其中心应与原中心一致。 在有疑问时,用整砖比用切割过的砖测定的结果准确 4.2步骤 首先用肉眼(平常带眼镜的可戴上眼镜)在距砖25cm到30cm,光源照度约300Ix的光照条件下观察试样表面。 所有试样在试验前应没有缺陷,可用亚甲基蓝溶液对待测试样进行测定前的检验。 4.3浸没试验 吸水率不大于10%(质量分数)的陶瓷砖,垂直浸没在15℃士5℃的冷水中,并使它们互不接触。 4.4非漫没试验 吸水率大于10%(质量分数)的有釉砖,使其釉面朝下与15℃士5℃的低温水槽上的铝粒接触。 4.5对上述两项步骤,在低温下保持5min后,立即将试样移至145℃士5℃的烘箱内重新达到此温度,保持20min, 立即将试样移回低温环境中。 重复进行10次上述过程。 然后用肉眼(平常戴眼镜的可戴上眼镜),在距试样25cm到30cm,光源照度约300Ix的条件下观察试样的可见缺陷。为帮助检查,可将合适的染色溶液(如含有少量湿润剂的1%亚甲基蓝溶液)刷在试样的釉面上,1 min后,用湿布抹去染色液体。 5、报告 试验报告应包括以下内容: a) 试样的描述; b) 试样的吸水率;

氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺 一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZQ)— 自然界锆矿石V 锆英石(ZrO2? SiO X 二氧化锆陶瓷的提炼方法 氯化和热分解— 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法V 沉淀法 胶体法 水解法 喷雾热分解法J ㈠氯化和热分解法 ZrQ z SiQ+4C+4Q→ZrC4+SiC4+4CO 其中ZrC4和SiC4以分馏法加以分离,在150-18O C下冷凝出ZrC4 然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrQ z SiQ+NaOH→ Na2ZrO3 +Nε2SiQ+H2O

ZrO2?SiQ+Na2CQ →Na2ZrSiQ+CQ ZrQ^Q+Na2C03→ Na2ZrQ+Na2SiC3+CQ 氨①反应后用水溶解,滤去Na2SiQ3; 水 用水水解调②Na2ZrO3 →水合氢氧化物→用硫酸进行钝化→Zr5θ8(SQ)2 ?xH2O→ 氧化锆粉焙烧PH 值 ㈢石灰熔融法 CaO+ZrO ? Siθ2→ZrO2+CaSiO焙烧后用盐酸浸出除去CaSiQ3 ㈣等离子弧法锆英石砂(ZrQ?SiQ2) ZrQ2和硅酸铀 洗涤 氧化锆 ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干

燥后一般得到的是胶态非晶体,经500—700C左右焙烧而制成ZrQ 粉末。 ㈥胶体法 胶体法是合成粉体中各种前驱体在溶胶状态下混合均匀,而后固体从溶胶中析出的方法。 溶胶法 ①溶胶一凝胶技术②溶胶一沉淀法 金属氧化物或氢氧化物的溶胶胶体沉淀剂(在锆盐溶液中加有机化合物) 转化 在碱中共沉淀 ψ 凝胶" 由有机化合物构成的凝胶中干燥分散金属氢氧化物复合体 " 焙烧 I ψ 焙烧清除添加剂 ΨI 氧化物 Zrθ2粉末 ㈦水解法 ①醇盐水解法:将有机溶液中混合着锆和稳定剂的醇盐,进行加水分 解的方法。 ②水解法:高温、高压下,氢氧化锆在水中的溶解度大于常温、常压 ①溶胶一凝胶法②溶胶一沉淀法

氧化锆陶瓷行业现状

氧化锆陶瓷行业现状 氧化锆陶瓷作为陶瓷中应用最广的一种材料,其计算机技术和数字化控制技术的发展促进了先进陶瓷材料工业的技术进步和快速发展,诸如自动控制连续烧结窑炉、大功率大容量研磨设备、高性能制粉粒设备等净压成型设备等先进的成套设备有利地推动了行业整体水平的提高,同时在生产效率、产品质量等方面也都明显改善,其中山东金澳科技为其行业之最。 微晶氧化锆陶瓷制品作为其它行业或的基础材料,受着其它行业发展水平的影响和限制。从目前氧化锆陶瓷的应用情况看,应用范围越来越宽,用量越来越大,特别是在防磨工程和建筑陶瓷生产方面的用量增加将更为显著。 作为结构陶瓷用的氧化锆是一个非常复杂的体系,其应用不仅取决于化学性能(纯度和组成)、而且还取决于相结构和氧化锆粉末的物理特性。其中金澳科技在这方面体现的尤为突出,其化学组成容易控制,相结构也是较容易调节的。而氧化锆来控制。在低温下存在四方相可能是受多个因素的影响(包括化学反应的阴离子杂技的影响),在四方相和母体无定型相之间的结构是类似的。在晶体中晶格应变和缺陷中心存在,没有考虑t -m转变发生是低于一个给定的颗粒尺寸。这些晶格应变和缺陷中心可能由于化学杂质存在,引起ZrO从无定型状态变成四方相的结晶体。 目前制备亚微氧化锆粉体的方法很多,常见的有共沉淀法、醇盐水解法、氧氯化锆水解法、水热法(高温水解法)、溶胶-凝胶法等, 这些方法各有特点,但也存在很多不足。如共常常法制务粉末存在严重的团聚现象,制备粉末都不能达到很细,分散性能很差,粒度分布不均匀,即使方法恰当,工艺操作合理,也不能区得最理想的粉末。在制造陶瓷时,由于粉末的流动性差,所以压制坯块均匀性差,烧结密度不高。

氧化钇稳定氧化锆涂层的研究现状

第47卷第13期2019年7月广 州 化 工 Guangzhou Chemical Industry Vol.47No.13Jul.2019 氧化钇稳定氧化锆涂层的研究现状 彭春玉 (国家知识产权局专利局专利审查协作广东中心,广东 广州 511356) 摘 要:由于氧化钇稳定氧化锆(YSZ)陶瓷材料在作为热障涂层的使用过程中存在因抗烧结性能差二应力裂纹二涂层脱落 等导致涂层失效的问题,本文主要从热障涂层的制备工艺,抗烧结性能二控制TGO 的生长二抗CMAS 腐蚀及YSZ 面层应变容限等方面的改善方法进行论述,通过提高涂层纯度二改变粘接层及涂层成分二涂层结构及制备柱状结构YSZ 陶瓷面层释放热失配应力等可有效改善涂层在使用过程中的失效问题三 关键词:氧化钇稳定氧化锆;热障涂层;等离子喷涂;电子束物理气相沉积;失效机理  中图分类号:O343.6  文献标志码:A 文章编号:1001-9677(2019)13-0044-03 作者简介:彭春玉(1980-),女,助理研究员,主要从事表面镀覆领域的发明专利实质审查工作三 Research Progress on Failure Mechanism of Thermal Barrier Coating PENG Chun -yu (Patent Examination Cooperation Guangdong Center of the Patent Office,CNIPA, Guangdong Guangzhou 511356,China) Abstract :Due to poor sintering resistance,stress crack,coating shedding and other problems that lead to coating failure in the application of Yttria -stabilized zirconia (YSZ )ceramic materials as thermal barrier coatings,the improvement method of thermal barrier coatings was mainly discussed in terms of sintering resistance,TGO growth control,CMAS corrosion resistance and YSZ surface layer tolerance,which can effectively improve coating failure in application by improving coating purity,changing adhesive layer and coating composition,coating structure and preparing columnar YSZ ceramic surface to release thermal mismatch stress. Key words :Yttria-stabilized zirconia;thermal barrier coating;plasma spray;EB-PVD;failure mechanism 热障涂层(thermal barrier coatings,简称TBCs)可以降低金属基底的温度,提高油料的燃烧温度和燃烧效率,而且还可以防止金属基底的高温腐蚀,应用于金属表面,如涡轮叶片和航空发动机三TBCs 的功能是为流经前述叶片的热铸件提供隔热三氧化钇稳定氧化锆(YSZ)陶瓷材料由于具有高热膨胀系数二低热导率及良好的抗氧化性和稳定性等优异性能,已经被广泛应用于制备热障涂层,热障涂层对于进一步提高合金材料的使用温度发挥着重要的作用,可以提高使用温度70~150℃[1] 三 YSZ 具有低的热导率和相对较高的热膨胀系数,但是它在使用 过程中存在如下问题[2-7]: (1)抗烧结性能差; (2)热生长氧化物(TGO)内部应力诱发裂纹导致涂层脱落; (3)高温作用下形成一种玻璃态沉积物CMAS 与YSZ 中的 Y 2O 3反应,在热化学与热机械的相互作用下,导致YSZ 涂层内部产生裂纹; (4)热膨胀系数存在的差异导致YSZ 面层脱落三 为了改善YSZ 涂层性能,人们对影响YSZ 涂层服役寿命的常见问题及改善需求二改善方法进行了大量的探索和研究三 1 氧化钇稳定氧化锆涂层的制备 氧化钇稳定氧化锆涂层的制备可以通过多种方法实现:如高速火焰喷涂二爆炸喷涂二磁控溅射二离子镀二电弧蒸镀二激光熔覆二化学气相沉积二离子束辅助沉积二等离子喷涂和电子束物理气相沉积等,但是从热障涂层技术的发展及应用来看,涂层的制备技术以等离子喷涂和电子束物理气相沉积[8-12]为主三 1.1 等离子喷涂 等离子喷涂法是一种最突出和最广泛使用的涂层技术,用于涂覆顶涂层和粘结涂层三在该方法中,在阴极附近通过的等离子体气体在到达阳极喷嘴时被加热至等离子体温度,在该等离子体温度下,等离子体气体与载有原料粉末的载气混合,并且熔融粉末颗粒的混合物被制成高速撞击基底,以形成所需的涂层[13]三 用于氧化钇稳定氧化锆涂层制备的等离子喷涂包括大气等 离子喷涂(APS)二高能等离子喷涂(HEPS)和低压等离子喷涂(LPPS)三等离子喷涂的工艺特点是操作简单,加热温度高,对涂层材料的要求宽松,沉积率高,制备成本低三等离子喷涂制

相关文档