文档视界 最新最全的文档下载
当前位置:文档视界 › 化工原理第9章液体精馏典型例题题解

化工原理第9章液体精馏典型例题题解

化工原理第9章液体精馏典型例题题解
化工原理第9章液体精馏典型例题题解

第9章 精馏 典型例题

例1:逐板法求理论板的基本思想

有一常压连续操作的精馏塔用来分离苯-甲苯混合液,塔顶设有一平衡分凝器,自塔顶逸出的蒸汽经分凝器后,液相摩尔数为汽相摩尔数的二倍,所得液相全部在泡点下回流于塔,所得汽相经全凝器冷凝后作为产品。已知产品中含苯0.95(摩尔分率),苯对甲苯的相对挥发度可取为2.5 。试计算从塔顶向下数第二块理论板的上升蒸汽组成。 解: 884.095

.05.15.295

.05.115.20000=?-=→=+=

x x x x y D

R=L/D=2

905.03/95.0884.03

2

3/95.03

2

:11=+?=

+=+y x y n n 精馏段方程

845.03/95.0793.03

2

793

.0905.05.15.2905

.05.15.22111=+?=

=?-=-=y y y x

例2:板数较少塔的操作型计算

拟用一 3 块理论板的(含塔釜)的精馏塔分离含苯50%(摩尔分率,下同)的苯-氯苯混合物。处理量F=100 Kmol/h ,要求 D=45 Kmol/h 且 x D >84%。若精馏条件为:回流比R=1 ,泡点进料,加料位置在第二块理论板,α=4.10 ,问能否完成上述分离任务? 解:W=55kmol/h

精馏段操作线方程:y n+1=0.5x n +0.42

提馏段的操作线方程:F

q D R Wx x F q D R qF

RD y w )1()1()1()1(--+---++=

将相关数据代入得提馏段操作线方程:134.061.1-=x y 逐板计算:y 1=x D =0.84

y 2=0.5×0.56+0.42=0.70

57.0134.036.061.13=-?=y

.

22

.055

84

.04550=?-=

-=

W

Dx Fx x D

f w ()56

.084.01.31.484

.01111=?-=--=y y x αα

36.07

.01.31.470

.02=?-=

x

22.024.057.01.31.457

.03≥=?-=x

所以不能完成任务。

例3:一块板的塔计算

在一块理论板和再沸器组成的精馏塔中,对苯-甲苯混合物进行分离。已知α=2.5,F=100 Kmol/h,x f =0.15(摩尔分率,下同),饱和液体加料在第一块板上,分离要求为 x D =0.25,x w =0.06。试求: (1)塔顶,塔底的产量 D , W (2)回流比 R 解:(1)F=D+W (1) Fx f =Dx D +Wx w (2) 联立(1)(2)得 D=47kmol/h W=53kmol/h

在再沸器上升汽相组成y w 与塔板下降液相组成x 1之间符合操作线关系:

F

q D R Wx x F q D R qF

RD y w )1()1()1()1(--+---++=

)

1(4706

.053)1(47100471+?-++=

R x R R y w

解上式得到:R=2.38

例4:板效率的计算

某精馏塔具有一块实际板和一只蒸馏釜(可视为一块理论板)。原料预热到泡点,由塔顶连续加入,F=100 Kmol/h , x f =0.2(摩尔分率,下同)。泡点回流,回流比 R=2.0系统相对挥发度α=2.5。今测得塔顶馏出量D=57.2Kmol/h ,且 x D =0.28 ,试求:

(1) 塔底出料量W 及浓度 x w

(2) 该塔板的莫弗里效率 E MV 和 E mL 解:

()094.0572.0128.0572.02.01=-?-=→--=w w D w f x x x x x F D W=100-57.2=42.8kmol/h

47.006

.025.006

.015.0=--=--=w D w f x x x x F D ()()()()14

.006

.05.1106

.05.21112

.025

.05.15.225

.011121111

1

1=?+?=-+=

=?-=--=→-+=

=w w w D

x x y y y x x x y x αααααα

(2)w w mV y y y y E --=

*11 , *

--=1

1

x x x x E D D mL ()206.0094

.05.11094

.05.211=?+?=-+=

w w w x x y αα

L ’=L+F=RD+F=2×57.2+100=214.4kmol/h V ’=(R+1)D=3×57.2=171.6kmol/h

()51.035.0206.028.0206.035

.018

.05.1118

.05.218

.025.1/023.0206.025.1/)023.0(023

.025.11

1111=--=--==?+?==+=+=-='

-''=*

*

+y y y y E y y x x x V W x V L y w w mV

w n w n n

()67.013

.028.018.028.013

.028.05.15.228.011

1111=--=--=

=?-=--=

*

*

x x x x E y y x D D mL αα

例5平衡蒸馏和简单蒸馏 在常压下将组成为0.6(易挥发组分的摩尔分率)的某理想二元混合物分别进行平衡蒸馏和简单蒸馏,若规定汽化率为1/3,试计算:

(1) 平衡蒸馏的汽液相组成;

(2) 简单蒸馏的易挥发组分平均组成及收率。

假设在操作范围内汽液平衡关系为: 。

解:(1) 平衡蒸馏 依题意,液化率为

联立以上两式,求得平衡的汽液相组成分别为

(2) 简单蒸馏

依题意,得

解得

馏出液的平均组成为

易挥发组分的收率为

分析:求解本题的关键是熟练应用物料衡算式和汽液平衡关系式进行平衡蒸馏和简单蒸馏的计算,理解易挥发组分收率的概念。

例6在一连续精馏塔内分离某理想二元混合物。已知进料组成为0.4(易挥发组分的摩尔分率,下同),泡点进料;馏出液组成为0.9;塔顶易挥发组分的收率为90%;塔顶采用全凝器,操作回流比为最小回流比的1.5倍;操作条件下物系的平均相对挥发度为2.5。试计算:

(1) 釜残液组成;

(2) 精馏段操作线方程。

解:(1)釜残液组成

设进料量为100 kmol/h,由物料衡算可得

其中kmol/h

kmol/h

(2)精馏段操作线方程

先求最小回流比,由

对于泡点进料,有

由汽液平衡方程

依题意

精馏段操作线方程为

分析:求解本题的关键是理解所求的问题与进料量无关,故可设进料量为100 kmol/h。

例7在一连续精馏塔内分离某理想二元混合物。已知进料量为100 kmol/h,进料组成为0.5(易挥发组分的摩尔分率,下同),泡点进料;釜残液组成为0.05;塔顶采用全凝器;操作条件下物系的平均相对挥发度为2.303;精馏段操作线方程为。试计算:

(1)塔顶轻组分的收率;

(2)所需的理论板层数。

解:(1)塔顶轻组分的收率

其中可由精馏段操作线方程求出,即

再计算馏出液流量,由总物料衡算方程可得

kmol/h

(2)所需的理论板层数

汽液平衡方程为

给定一系列值,依上式可计算出与之平衡的值,计算结果如下表:x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 0 0.204 0.365 0.497 0.606 0.697 0.776 0.843 0.902 0.954 1.0

将以上数据绘成图,用图解法求理论板层数,图解过程见本例附图。图解结果为

理论板层数(包括再沸器)

进料板位置

分析:求解本题的关键是由已知的精馏段操作线方程求出及。

例8在常压连续提馏塔中分离含乙醇0.036(摩尔分率)的乙醇—水混合液。饱和液体进料,直接蒸汽加热。若要求塔顶产品中乙醇回收率为98%,试求:

(1) 在理论板层数为无限多时,每kmol进料所需蒸汽量。

(2) 若蒸汽量取为最小蒸汽量的2倍时,所需理论板层数及两产品的组成。

假设塔内汽液相为恒摩尔流动。常压下气液平衡数据列于本题附表中。

例8 附表

x0 0.0080 0.020 0.0296 0.033 0.036

y0 0.0750 0.175 0.250 0.270 0.288

解:本例为直接蒸汽加热的提馏塔。由于泡点进料,根据恒摩尔流假定,则有

全塔物料衡算

(a)

乙醇组分衡算

(b)

将代入式b,得

以进料为基准,则有

(1) 进料所需最少蒸汽量当理论板为无穷多时,操作线的上端在

的平衡线上(对应的,操作线的斜率为

(2) 蒸汽量为最小用量两倍时所需理论板层数及两产品组成

由于

解得

釜残液组成仍为。

操作线斜率为

过点)作斜率为4.08的直线交q线于点d,联点cd即为操作线。自点d开始在平衡线与操作线之间绘阶梯,至跨过点c为止,需理论板层数为4.6。图解过程(略)。

分析:求解本题的关键是掌握提馏塔、直接蒸汽加热的物料衡算关系。

例9在常压精馏塔内分离某两组分理想溶液。已知进料量为100kmol/h,进料组成为0.5(摩尔分率,下同),馏出液组成为0.98,进料为泡点进料;塔顶采用全凝器,泡点回流,操作回流比为最小回流比的1.8倍。在本题范围内,

汽液平衡方程为:,汽相默弗里板效率为0.5。若要求轻组分收率为98%,试计算:

(1)釜残液组成;

(2)精馏段操作线方程;

(3)从塔顶向下第一层实际板下降的液相组成。

解:(1)由题给条件

解得kmol/h

由全塔物料衡算方程:

联立得

(2)先计算,由

泡点进料

由气液平衡方程

精馏段操作线方程为

(3)由汽相默弗里板效率定义,第一层实际板的汽相默弗里板效率为

(1)

塔顶为全凝器

由气液平衡方程,得

(2)

由精馏段操作线方程,得

(3)

将(2)、(3)式代入(1)式,得

解得

分析:求解本题的关键是熟练运用操作线方程、汽液平衡方程和板效率定义式进行有关计算。

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

化工大学精馏实验报告汇总

北京化工大学学生实验报告 姓名: 学号: 专业: 班级: 同组人员: 课程名称:化工原理实验 实验名称:精馏实验 实验日期: 2016.5.13 北京化工大学

实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。 关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。 ③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。 ⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。 实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

化工原理例题与习题

化工原理例题与习题标准化管理部编码-[99968T-6889628-J68568-1689N]

第一章流体流动 【例1-1】已知硫酸与水的密度分别为1830kg/m3与998kg/m3,试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。 解:根据式1-4 =(+)10-4=×10-4 ρ m =1372kg/m3 【例1-2】已知干空气的组成为:O 221%、N 2 78%和Ar1%(均为体积%),试求干空气在 压力为×104Pa及温度为100℃时的密度。 解:首先将摄氏度换算成开尔文 100℃=273+100=373K 再求干空气的平均摩尔质量 M m =32×+28×+× =m3 根据式1-3a气体的平均密度为: 【例1-3 】本题附图所示的开口容器内盛有油和水。油层高度h1=、密度ρ 1 =800kg/m3,水层高度h2=、密度ρ2=1000kg/m3。 (1)判断下列两关系是否成立,即p A=p'A p B=p'B (2)计算水在玻璃管内的高度h。 解:(1)判断题给两关系式是否成立p A=p'A的关系成立。因A与A'两点在静止的连通着的同一流体内,并在同一水平面上。所以截面A-A'称为等压面。 p B =p' B 的关系不能成立。因B及B'两点虽在静止流体的同一水平面上,但不是连通 着的同一种流体,即截面B-B'不是等压面。 (2)计算玻璃管内水的高度h由上面讨论 知,p A=p'A,而p A=p'A都可以用流体静力学基本方程式计算,即 p A =p a +ρ 1 gh 1 +ρ 2 gh 2 p A '=p a +ρ 2 gh 于是p a+ρ1gh1+ρ2gh2=p a+ρ2gh 简化上式并将已知值代入,得 800×+1000×=1000h 解得h= 【例1-4】如本题附图所示,在异径水平管段两截面(1-1'、2-2’)连一倒置U管压差计,压差计读数R=200mm。试求两截面间的压强差。 解:因为倒置U管,所以其指示液应为水。设空气和水的密度分别为ρg与ρ,根据流体静力学基本原理,截面a-a'为等压面,则 p a =p a ' 又由流体静力学基本方程式可得 p a =p 1 -ρgM

化工大学精馏实验报告

化工大学精馏实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

北京化工大学学生实验报告 姓名: 学号: 专业: 班级: 同组人员: 课程名称:化工原理实验 实验名称:精馏实验 实验日期: 2016.5.13 北京化工大学

实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。 关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。 ③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。 ⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。 实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。

化工原理实验思考题整理

1.洞道干燥实验及干燥特性曲线的测定 (1)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行? 答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。 本实验中所采取的措施:干燥室其侧面及底面均外包绝缘材料、用电加热器加热空气再通入干燥室且流速保持恒定、湿物的放置要与气流保持平行。 (2)控制恒速干燥速率阶段的因素是什么?降速的又是什么? 答:①恒速干燥阶段的干燥速率的大小取决于物料表面水分的汽化速率,亦取决定于物料外部的干燥条件,所以恒定干燥阶段又称为表面汽化控制阶段。 ②降速阶段的干燥速率取决于物料本身结构、形状和尺寸,而与干燥介质的状态参数关系不大,故降速阶段又称物料内部迁移控制阶段。 (3)为什么要先启动风机,再启动加热器?实验过程中干湿球温度计是否变化?为什么?如何判断实验已经结束? 答:①让加热器通过风冷慢慢加热,避免损坏加热器,反之如果先启动加热器,通过风机的吹风会出现急冷,高温极冷,损坏加热器; ②理论上干、湿球温度是不变的,但实验过程中干球温度不变,但湿球温度缓慢上升,估计是因为干燥的速率不断降低,使得气体湿度降低,从而温度变化。 ③湿毛毡恒重时,即为实验结束。 (4)若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率,临界湿含量又如何变化?为什么?

答:干燥曲线起始点上升,下降幅度增大,达到临界点时间缩短,临界点含水量降低。因为加快了热空气排湿能力。 (5)毛毡含水是什么性质的水分? 毛毡含水有自由水和平衡水,其中干燥为了除去自由水。 (6)实验过程中干、湿球温度计是否变化?为什么? 答:实验结果表明干、湿球温度计都有变化,但变化不大。 理论上用大量的湿空气干燥少量物料可认为符合定态空气条件。定态空气条件:空气状态不变(气流的温度t、相对湿度φ)等。干球温度不变,湿球温度不变。 绝热增湿过程,则干球温度变小,湿球温度不变。 (7)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行? 答:①指干燥介质的温度、湿度、流速及与物料的接触方式,均在整个干燥过程中保持恒定;②本实验中本实验用大量空气干燥少量物料,则可以认为湿空气在干燥过程温度。湿度均不变,再加上气流速度以及气流与物料的接触方式不变。所以这个过程可视为实验在在恒定干燥条件下进行。

化工原理实验试卷

1 化工原理实验试卷 注意事项:1.考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3 ?考试形式:闭卷; 4. 本试卷共四大题,满分100分,考试时间90分钟。 一、填空题 1. 在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 2. 实验数据中各变量的关系可表示为表格,图形和公式. 3. 影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等 4. 用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空 气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5. 用皮托管放在管中心处测量时,其U形管压差计的读数R反映管中心处的静压头。 6. 吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基红。 7. 在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定进料量、进料温度、进料浓度等。 8. 干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9. 在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到?, 可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10. 吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12. 在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13. 测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14. 在精馏实验中,确定进料状态参数q需要测定进料温度,进料浓度参数。 15. 在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系 数的目的。 16. 在干燥实验中,要先开风机,而后再打开加热以免烧坏加热丝。 17. 在流体流动形态的观察实验中,改变雷诺数最简单的方法是改变流量。 18. (1)离心泵最常用的调节方法是出口阀门调节;(2)容积式泵常用的调节方法是旁路调节。 19. 在填料塔流体力学特性测试中,压强降与空塔气速之间的函数关系应绘在双对

化工原理习题

一流体流动 流体密度计算 1.1在讨论流体物性时,工程制中常使用重度这个物理量,而在SI制中却常用密度这个物理量,如水的重度为1000[kgf/m3],则其密度为多少[kg/m3]? 1.2燃烧重油所得的燃烧气,经分析测知,其中含8.5%CO2,7.5%O2,76%N2,8%水蒸气(体积%),试求温度为500℃,压强为1atm时该混合气的密度。 1.3已知汽油、轻油、柴油的密度分别为700[kg/m3]、760[kg/m3]和900[kg/m3] 。试根据以下条件分别计算此三种油类混合物的密度(假设在混合过程中,总体积等于各组分体积之和)。 (1)汽油、轻油、柴油的质量百分数分别是20%、30%和50%; (2)汽油、轻油、柴油的体积百分数分别是20%、30%和50%。 绝压、表压、真空度的计算 1.4在大气压力为760[mmHg]的地区,某设备真空度为738[mmHg],若在大气压为655[mmHg]的地区使塔内绝对压力维持相同的数值, 则真空表读数应为多少? 静力学方程的应用 1.5如图为垂直相距1.5m的两个容器,两容器中所盛液体为水,连接两容器的U型压差计读数R为500[mmHg],试求两容器的压差为多少?ρ水银=13.6×103[kg/m3] 1.6容器A.B分别盛有水和密度为900[kg/m3]的酒精,水银压差计读数R为15mm,若将指示液换成四氯化碳(体积与水银相同),压差计读数为若干? ρ水银=13.6×103[kg/m3] 四氯化碳密度ρccl4=1.594×103 [kg/m3] 习题 5 附图习题 6 附图 1.7用复式U管压差计测定容器中的压强,U管指示液为水银,两U管间的连接管内充满水。已知图中h1= 2.3m,h2=1.2m,h3=2.5m,h4=1.4m,h5=3m。大气压强P0=745[mmHg],试求容器中液面上方压强P C=? 1.8如图所示,水从倾斜管中流过,在断面A和B间接一空气压差计,其读数R=10mm,两测压点垂直距离 a=0.3m,试求A,B两点的压差等于多少? 流量、流速计算 1.9密度ρ=892Kg/m3的原油流过图示的管线,进入管段1的流量为V=1.4×10-3 [m3/s]。计算: (1)管段1和3中的质量流量; (2)管段1和3中的平均流速; (3)管段1中的质量流速。 1.10某厂用Φ125×4mm的钢管输送压强P=20at(绝压)、温度t=20℃的空气,已知流量为6300[Nm3/h] (标准状况下体积流量)。试求此空气在管道中的流速、质量流量和质量流速。 (注:at为工程大气压,atm为物理大气压)。 1.11压强为1atm的某气体在Φ76×3mm的管内流动,当气体压强变为5atm时,若要求气体以同样的温度、流速、质量流量在管内流动,问此时管内径应为若干?

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

化工原理筛板塔精馏实验报告

化工原理筛板塔精馏实 验报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

筛板塔精馏实验 一.实验目的 1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二.基本原理 1.全塔效率E T 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值: E E=E E?1 E N T ——完成一定分离任务所需的理论塔板数,包括蒸馏釜; N P ——完成一定分离任务所需的实际塔板数,本装置N P=10。2.图解法求理论塔板数N T 以回流比R写成的精馏段操作线方程如下: y E+1= E + E E+ 1 + E E y n+1 ——精馏段第n+1块塔板上升的蒸汽组成,摩尔分数; x n ——精馏段第n块塔板下流的液体组成,摩尔分数; x D ——塔顶溜出液的液体组成,摩尔分数; R——泡点回流下的回流比。 提馏段操作线方程如下: E E+1= E′ E′? E E? E E′? E E y m+1 ——提馏段第m+1块塔板上升的蒸汽组成,摩尔分数; x m ——提馏段第m块塔板下流的液体组成,摩尔分数; x W -塔底釜液的液体组成,摩尔分数; L'-提馏段内下流的液体量,kmol/s; W-釜液流量,kmol/s。 加料线(q线)方程可表示为:

E= E E?1 E? E E E?1 其中, E=1+E EE(E E?E E) E E q——进料热状况参数; r F ——进料液组成下的汽化潜热,kJ/kmol; t S ——进料液的泡点温度,℃; t F ——进料液温度,℃; c pF ——进料液在平均温度 (tS tF ) /2 下的比热容,kJ/(kmol℃); x F ——进料液组成,摩尔分数。 (1)全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。 图1 全回流时理论塔板数确定 (2)部分回流操作 部分回流操作时,如图2,图解法的主要步骤为: A.根据物系和操作压力画出相平衡曲线,并画出对角线作为辅助线; B.在对角线上定出a点(xD,xD)、f点(xF,xF)和b点(xW,xW); C.在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; D.由进料热状况求出q,过点f作出斜率为q/(q-1)的q线交精馏段操作线于点d,连接点d、b作出提馏段操作线; E.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止; G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。 图2 部分回流时理论板数的确定 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

化工原理计算题例题

三 计算题 1 (15分)在如图所示的输水系统中,已知 管路总长度(包括所有当量长度,下同)为 100m ,其中压力表之后的管路长度为80m , 管路摩擦系数为0.03,管路内径为0.05m , 水的密度为1000Kg/m 3,泵的效率为0.85, 输水量为15m 3/h 。求: (1)整个管路的阻力损失,J/Kg ; (2)泵轴功率,Kw ; (3)压力表的读数,Pa 。 解:(1)整个管路的阻力损失,J/kg ; 由题意知, s m A V u s /12.2) 4 05.03600(15 2 =??==π 则kg J u d l h f /1.1352 12.205.010003.022 2=??=??=∑λ (2)泵轴功率,kw ; 在贮槽液面0-0′与高位槽液面1-1′间列柏努利方程,以贮槽液面为基准水平面,有: ∑-+++=+++10,1 21020022f e h p u gH W p u gH ρ ρ 其中, ∑=kg J h f /1.135, u 0= u 1=0, p 1= p 0=0(表压), H 0=0, H=20m 代入方程得: kg J h gH W f e /3.3311.1352081.9=+?=+=∑ 又 s kg V W s s /17.410003600 15 =?= =ρ 故 w W W N e s e 5.1381=?=, η=80%, kw w N N e 727.11727===η 2 (15分)如图所示,用泵将水从贮槽送至敞口高位槽,两槽液面均恒定 不变,输送管路尺寸为φ83×3.5mm ,泵的进出口管道上分别安装有真空表和压力表,真空表安装位置离贮槽的水面高度H 1为4.8m ,压力表安装位置离贮槽的水面高度H 2为5m 。当输水量为36m 3/h 时,进水管道全部阻力损失为1.96J/kg ,出水管道全部阻力损失为4.9J/kg ,压力表读数为2.452×

化工原理实验思考题与答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为: 先将手动旋钮旋

至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。

(完整版)化工原理练习题

化工原理练习题 0 绪论 1. 化工原理中的“三传”是指④ ①动能传递、势能传递、化学能传递,②动能传递、内能传递、物质传递 ③动量传递、能量传递、热量传递,④动量传递、热量传递、质量传递 2. 下列单元操作中属于动量传递的有① ①流体输送,②蒸发,③气体吸收,④结晶 3. 下列单元操作中属于质量传递的有② ①搅拌,②液体精馏,③流体加热,④沉降 4. 下列单元操作中属于热量传递的有② ①固体流态化,②加热冷却,③搅拌,④膜分离 5、 l kgf/cm2=________mmHg=_______N/m2 6. 在 26 ℃和1大气压下 ,CO2在空气中的分子扩散系数 D 等于 0.164cm2/s, 将此数据换算成m2/h 单位 , 正确的答案为___④___ ① 0.164m2/h ② 0.0164 m2/h ③ 0.005904 m2/h, ④ 0.05904 m2/h 7. 己知通用气体常数 R=82.06atm.cm3/mol.K, 将此数据换算成用kJ/kmol.K所表示的量 , 正确的答案应为__③_____ ① 8.02 ② 82.06 ③ 8.314 ④ 83.14 第3 章机械分离

一、选择题 1. 下面过滤速率方程式中属于恒压过滤方程的是 ② ①dq/d θ=K/2(q+q e );②q 2+2q.q e =K.θ; ③q 2+q.q e =2K.θ;④q 2+q.q e =K.θ/2 2. 过滤速率基本方程为 ① ① dq/d θ=K/2(q+q e );② dq/d θ=K/(q+q e ); ③dq/d θ=KA 2/2(V+V e );④dV/d θ=K/2(V+V e ) 3 恒压过滤中单位面积累积滤液量q 与时间θ的关系可表示为下图中的 ① 4 对静止流体中颗粒的自由沉降而言,在沉降过程中颗粒所不会受到的力有:① ①牛顿力;②浮力;③曳力 (阻力);④场力(重力或离心力) 。 5叶滤机洗涤速率与终了过滤速率之比为:④ ①1/2; ②1/3; ③1/4; ④1。 6恒压过滤中,当过滤时间增加1倍, ; /2; ③2; ④0.5。 7关于离心沉降速度和重力沉降速度,下述说法正确的是 ③ 。 ① ② ④

精馏实验报告

实验名称:精馏实验 一、 实验目的 ① 测定精馏塔在全回流及部分回流条件下的全塔效率。 ② 测定精馏塔在全回流条件下的单板效率。 ③ 测定精馏塔在全回流条件下塔体浓度(温度)分布。 ④ 测定再沸器的传热膜系数。 二、 实验器材 精馏实验装置(北京化工大学制) 三、 实验原理 在精馏过程中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液在塔板上多次部分汽化部分冷凝,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作的必要条件,塔顶的回流量与采出量之比称为回流比。回流比是精馏操作的主要参数,它的大小直接影响精馏操作的分离效果和能耗。若塔在最小回流比下操作,要完成分离任务,则需要无穷多块塔板,在工业上是不可行的。若在全回流下操作,既无任何产品的采出,也无任何原料的加入,塔顶的冷凝液全部返回到塔中,这在生产中无任何意义。但是,由于此时所需理论板数最少,易于达到稳定,故常在科学研究及工业装置的开停车及排除故障时采用。通常回流比取最小回流比的1.2~2.0倍。 1. 塔板效率 板式精馏塔中汽液两相在各塔板上相互接触而发生传质作用,由于接触时间短暂和不够充分,并且汽相上升也有一些雾沫夹带,因此其传质效率总不会达到理论板效果。通常用塔板效率来表示塔板上传质的完善程度。 塔板效率是体现塔板性能及操作状况的主要参数。影响塔板效率的因素很多,大致归纳为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)塔板结构以及操作条件等,由于影响塔板效率的因素相当复杂,目前仍以实验的方法测定。 (1)总板效率E (或全塔的效率):反映全塔中各层塔板的平均分离效果,常用于板式塔的设计。 e N N E 式中 E ——总板效率 N ——理论板数 e N ——实际板数 (2)单板效率 ,反映单独的一块板上传质的效果,是评价塔板式性能 优劣的重要数据,常有于塔板的研究。

化工原理习题汇总2

1.外径为120mm的蒸汽管道,其外包扎一层厚度为400mm的保温层,保温层材料的导热系数为0.6W/(m?K)。若蒸汽管道的外表面面180℃,保温层的外表面温度为40℃,试求每米管长的热损失及保温层中的温度分布关系式。 2.在温度25℃的环境中横穿一外径为100mm的蒸汽管道,管道外包有两层保温材料,内层厚40mm,导热系数为0.05W/(m?k);外层厚30mm,导热系数为0.1W/(m?k)。管道与环境间对流传热系数为6W/(m2?k),与环境接触表面的温度为60℃。试求:管道单位长度散热量及保温层单位长度总热阻。

3.在间壁式换热器中,要求用初温为25℃的原油来冷却重油,使重油从170℃冷却至100℃。重油和原油的流量分别为1.2×104kg/h和1.5×104kg/h。重油和原油的比定压热容各为2.18 kJ/(kg?K)和1.93 kJ/(kg?K),试求重油和原油采用逆流和并流时换热器的传热面积各为多少?已知两种情况下的总换热系数均为100W/(m2?k)。 4.有一列管式换热器,管束由管径Φ25mm×2mm的不锈钢管组成,管长2.5m。用饱和水蒸气在壳程加热管程空气,已知水蒸气的对流传热系数为10kW/(m2?k),空气的普朗特数Pr为0.7,雷诺数Re为2×104,空气的导热系数为0.03W(m?k)。管壁及两侧污垢热阻可忽略,热损失也可忽略。试求:(1)空气在管内的对流传热系数;(2)换热器的总传热系数(以管外表面积为基准)。

5.在101.3kPa、20℃下用清水在填料塔中逆流吸收某混合气中的硫化氢。已知混合气进塔组成为0.055(摩尔分数,下同),尾气出塔组成为0.001。操作条件下系统的平衡关系为p*=4.89×104xkPa,操作时吸收剂用量为最小用量的1.65倍。试计算吸收率和吸收液组成。 6.在一填料塔层高度为8m的吸收塔中,用纯溶剂吸收某混合气体中的溶剂组分。已知进塔混合气体的流量为400kmol/h,溶质的含量为0.06(摩尔分数),溶质的回收率为95%,操作条件下的气液平衡关系为Y=2.2X,溶剂用量为最小用量的1.5倍。试计算气相总传质单元高度。

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理习题

第一部分 概念题示例与分析 一、填空题 2-1 一球形石英颗粒,分别在空气和水中按斯托克斯定律沉降,若系统温度升高,则其在水中的沉降速度将 ,在空气中的沉降速度将 。 答案:下降,增大 分析:由斯托克斯定律 μ ρρ18)(2g d u s t -= 对空气系统,s ρ 》ρ,故 u u u u t t '≈' 对水系统,水的密度随温度的变化可忽略,故同样有 u u u u t t '≈' 可见无论是气体还是液体,温度的改变主要是通过粘度变化来影响沉降速度。气体粘度随温 度升高而增加,故沉降速度下降;液体粘度随温度升高而减小,故沉降速度增大。但要注意此结论是通过斯托克斯定律得出,其他情况还需要具体分析。 2-2若降尘室的高度增加,则沉降时间 ,气流速度 ,生产能力 。 答案:增加;下降;不变 分析:因沉降距离增加,故沉降时间将增加。降尘室高度的增加使气体在降尘室内的流道截面 增大,故气流速度下降。生产能力的计算公式为: 可见,降尘室的生产能力只决定于沉降面积和沉降速度而与降尘室的高度无关。 2-3 选择旋风分离器型式及决定其主要尺寸的根据是 ; ; 。 答案:气体处理量,分离效率,允许压降 2-4 通常, 非均相物系的离心沉降是在旋风分离器中进行, 悬浮物系一般可在旋液分离器或沉降离心机中进行。 答案:气固;液固 2-5 沉降操作是指在某种 中利用分散相和连续相之间的 差异,使之发生相对运 动而实现分离的操作过程。沉降过程有 沉降和 沉降两种方式。 答案:力场;密度;重力;离心 2-6 阶段中颗粒相对于流体的运动速度称为沉降速度,由于这个速度是 阶段终了时颗粒 相对于流体的速度 ,故又称为“终端速度”。 答案:等速;加速 2-7 影响沉降速度的主要因素有① ;② ;③ ; 答案:颗粒的体积浓度;器壁效应;颗粒形状 2-8 降尘室通常只适合用于分离粒度大于 的粗颗粒,一般作为预除尘使用。 答案:50μm 2-9 旋风分离器的总效率是指 ,粒级效率是指 。 答案:全部颗粒中被分离下来的质量分率;各种粒度被分离下来的质量分率 2-10实现过滤操作的外力可以是 、 或 。 答案:重力;压强差;惯性离心力 2-11工业上常用的过滤介质主要有① ,② ,③ 。 答案:织物介质;堆积介质;多孔固体介质 2-12 在饼层过滤中,真正发挥拦截颗粒作用的主要是 而不是 。 答案:滤饼层;过滤介质 2-13 离心机是利用惯性离心力分离液态非均相混合物的机械。它与旋液分离器的主要区别在于离心力是由 而产生的。 答案: 设备本身旋转

2014化工原理实验复习提纲:

第一部分实验基础知识 1、如何读取实验数据 2、如何写实验报告 3、数据处理 一、实验数据的误差分析 1. 真值 2、平均值及其种类 3、误差的分类 4、精密度和精确度 5、实验数据的记数法和有效数字 错误认识:小数点后面的数字越多就越正确,或者运算结果保留位数越多越准确。 二、实验数据处理 实验数据中各变量的关系可表示为列表式,图示式和函数式。 第二部分实验内容 每个实验的原理、操作方法、仪表的使用、实验记录、数据处理、思考题 一、精馏实验: 物系、实验原理、流程图、数据处理(用公式表示)、思考题 1)测定指定条件下的全塔效率或等板高度 2)操作中可调节可控制的量 3)物料浓度的测定方法 4)操作步骤,先全回流,再确定一定回流比操作,为什么 5)实验中出现异常现象(液泛,无回流),如何判断?如何处理?

6)进料状态对精馏塔的操作有何影响?确定q线需要测定哪几个量?查取进料液的 汽化潜热时定性温度应取何值? 7)什么是全回流?全回流操作的标志有哪些?在生产中有什么实际意义? 8)其他条件都不变,只改变回流比,对塔性能会产生什么影响? 9)进料板位置是否可以任意选择,它对塔的性能有何影响? 10)为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 11)将本塔适当加高,是否可以得到无水酒精?为什么? 12)影响精馏塔操作稳定的因素有哪些?如何确定精馏塔操作已达稳定?本实验装置 能否精馏出98%(质量)以上的酒精?为什么? 13)各转子流量计测定的介质及测量条件与标定时的状态不同,应如何校正? 二、吸收实验: 实验原理、流程图、数据处理(用公式表示)、操作步骤 1、测定填料塔的流体力学性能 2、测定规定条件下的总吸收系数;K ya、K xa测定方法和原理、需测数据、数据整理。 3、分析操作条件对总吸收系数的影响 4、实验中所用的仪表、仪器(空气的输送、流量调节、测量方法、体积测定方法等 5、尾气的浓度测定的原理及仪器、试剂。 6、实验装置中气液进出口装置的作用:为什么 7、强化传质的方法 8、典型填料的种类和名称 9、液封装置:吸收塔底部的排液管成U形,防止气体走短路 10、Kya测定为什么要测定空气流量、水流量?用什么仪表测定?安装应注 意什么?为什么要测定x1及空气、氨流量的求取

相关文档
相关文档 最新文档