文档视界 最新最全的文档下载
当前位置:文档视界 › 过程装备与控制工程专业英语翻译 16

过程装备与控制工程专业英语翻译 16

过程装备与控制工程专业英语翻译 16
过程装备与控制工程专业英语翻译 16

Reading Material 16

Pressure Vessel Codes

History of Pressure Vessel Codes in the United States Through the late 1800s and early 1900s, explosions in boilers and pressure vessels were frequent. A firetube boiler explosion on the Mississippi River steamboat Sultana on April 27, 1865, resulted in the boat’s sinking within 20 minutes and the death of 1500 soldiers going home after the Civil War. This type of catastrophe continued unabated into the early 1900s. In 1905, a destructive explosion of a firetube boiler in a shoe factory in Brockton, Massachusetts, killed 58 people, injured 117 others, and did $ 400000 in property damage. In 1906, another explosion in a shoe factory in Lynn, Massachusetts, resulted in death, injury, and extensive property damage. After this accident, the Massachusetts governor directed the formation of a Board of Boiler Rules. The first set of rules for the design and construction of boilers was approved in Massachusetts on August 30, 1907. This code was three pages long.

In 1911, Colonel E. D. Meier, the president of the American Society of Mechanical Engineers, established a committee to write a set of rules for the design and construction of boilers and pressure vessels. On February 13, 1915, the first ASME Boiler Code was issued. It was entitled “Boiler Construction Code, 1914 Edition.” This was the beginning of the various sections of the ASME Boiler and Pressure Vessel Code, which ultimately became Section 1, Power Boiler.

The first ASME Code for pressure vessels was issued as “Rules for the Construction of Unfired Pressure Vessels, ” Section Ⅷ, 1925 edition. The rules applied to vessels over 6 in. in diameter, volume over 1.5 ft3, and pressure over 30 psi. In December 1931, a Joint API-ASME Committee was formed to develop an unfired pressure vessel code for the petroleum industry. The first edition was issued in 1934. For the next 17 years, two separated unfired pressure vessel codes existed. In 1951, the last API-ASME Code was issued as a separated document. In 1952, the two codes were consolidated into one code-the ASME Unfired Pressure Vessel Code,Section Ⅷ. This continued until the 1968 edition. At that time, the original code became Section Ⅷ, Division 1, Pressure Vessels, and another new part was issued, which was Section Ⅷ, Division 2, Alternative Rules for Pressure Vessels.

The ANSI/ASME Boiler and Pressure Vessel Code is issued by the American Society of Mechanical Engineers with approval by the American National Standards Institute (ANSI) as an ANSI/ASME document. One or more sections of the ANSI/ASME Boiler and Pressure Vessel code have been established as the legal requirements in 47 states in the United States and in all provinces of Canada. Also, in many other countries of the world, the ASME Boiler and Pressure Vessel Code is used to construct boilers and pressure vessels.

Organization of the ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code is divided into many sections, divisions, parts, and subparts. Some of these sections relate to a specific kind of equipment and application; others relate to specific materials and methods for application and control of equipment; and others relate to care and inspection of installed equipment. The following Sections specifically relate to boiler and pressure vessel design and construction.

Section ⅠPower Boilers (1 volume)

Section Ⅲ

Division 1 Nuclear Power Plant Components (7 volumes)

Division 2 Concrete Reactor Vessels and Containment (1 volume)

Code Case Case 1 Components in Elevated Temperature service (in Nuclear Code N-47 Case book)

Section ⅣHeating Boilers (1 volume)

Section Ⅷ

Division 1 Pressure Vessels (1 volume)

Division 2 Alternative Rules for Pressure Vessels (1 volume )

Section Ⅹ Fiberglass-Reinforced Plastic Pressure Vessels (1 volume)

A new edition of the ASME Boiler and Pressure Vessel Code is issued on July 1 every three years and new addenda are issued every six months on January 1 and July 1. the new edition of the code becomes mandatory when it appears. The addenda are permissive at the date of issuance and become mandatory six months after that date.

Worldwide Pressure Vessel Codes In addition to the ASME Boiler and Pressure Vessel Code, which is used worldwide, many other pressure vessel codes have been legally adopted in various countries. Difficulty often occurs when vessels are designed in one country, built in another country, and installed in still a different country. With this worldwide construction this is often the case.

The following list is a partial summary of some of the various codes used in different countries:

Australia Australian Code for Boilers and Pressure Vessels, SAA Boiler Code (Series AS1200): AS1210, Unfired Pressure Vessels and Class 1 H, Pressure Vessels of Advanced Design and Construction, Standards Association of Australia.

France Construction Code Calculation Rules for Unfired Pressure Vessels, Syndicat National de la Chaudronnerie et de la Tuyauterie Industrielle (SNCT), Paris, France.

United Kingdom British Code BS.5500, British Standards Institution, London, England.

Japan Japanese Pressure Vessel Code, Ministry of LABOR, PUBLISHED BY Japan Boiler Association, Tokyo, Japan; Japanese Standard, Construction of Pressure Vessels, JIS B Gas Control Law, Ministry of International Trade and Industry, published by The Institution for Safety of High Pressure Gas Engineering , Tokyo, Japan.

Italy Italian Pressure Vessel Code, National Association for combustion Control (ANCC), Milan, Italy.

Belgium Code for Good Practice for the Construction of Pressure Vessels, Belgian Standard Institute (IBN), Brussels, Belgium.

Sweden Swedish Pressure Vessel Code, Tryckkarls Kommissioner, the Swedish Pressure Vessel Commission, Stockholm, Sweden.

(Selected from : M.H.Jawad and J. R. Farr, Structural Analysis and Design of Process Equipment, John Wiley & Sons Inc.,1984.)

阅读材料16

压力容器规范

美国压力容器规范从18世纪晚期到19世纪早期,锅炉和压力容器爆炸事故频发。1865

年4月27日发生在密西西比河上的一艘名为Sultana的轮船的火管锅炉爆炸事故,导致轮船在20分钟内沉没,船上载着的1500名从内战中准备回家的士兵死亡。类似的灾难在19世纪早期频发。1905年在马萨诸塞州的布罗克顿的一家鞋厂发生了一起严重的火管锅炉爆炸事故,造成58人死亡,117人受伤以及大约40万美元的损失。1906年,马萨诸塞州的林恩市的另一家鞋厂再次发生一起爆炸事故,同样造成了大范围的人员伤亡和财产损失。这起事故后,马萨诸塞州州长牵头成立了锅炉规范委员会。首部有关锅炉设计和建设的法律与1907年8月30日在马萨诸塞州颁布。这部法律有3页。

1911年,美国机械工程师学会(ASME)主席E.D.Meier上校成立了一个委员会负责起草一部关于锅炉和压力容器的设计和建造的法律。1915年2月13日,首部ASME锅炉法规正式颁布。名为“《锅炉建造规范》1914版”。这部法规是繁杂的ASME锅炉与压力容器法规的开端,最终成为第一部分《动力锅炉》。

ASME关于压力容器的第一部法规叫做《无火压力容器的建造规范》,第八部,1925版。这部规范适用于直径超过6英寸、体积超过1.5ft3、压力超过30帕的容器。1931年12月,一个名为APIASME联合委员会的组织组建了起来,目的是为石油工业编写无火的压力容器规范。最初的版本出现在1934年。接下来的17年,出现了两部独立的压力容器规范。1951年,最后一部独立的API-ASME规范得以颁布。1952年,这两部规范合并成一部-ASME无火压力容器规范,第八部。这部规范一直沿用到1968版本出现。那时,最初的规范变为压力容器第八部,第一章,新的一部则是压力容器替代规范第八部,第二章。

ANSI/ASME锅炉和压力容器规范是美国机械工程学会在美国国家标准委员会(ANSI)的支持下作为ANSI/ASME文件颁布的。另有一部ANSI/ASME锅炉和压力容器规范作为法规已在美国的47个州和加拿大的所有省份实施。同样,在世界上许多其他国家,这部规范也被用来作为锅炉和压力容器建造的标准。

ASME锅炉和压力容器规范的组成ASME锅炉和压力容器规范分成许多部分、章节、子章节。其中的一些是关于特种设备的。其他事关于特种设备的的材料和使用方法以及控制,还有的是关于已安装好的设备的维护和检查。以下的章节是关于锅炉和压力容器的设计和建造的

第一章动力锅炉(1卷)

第三章

第一节核动力设备的组成(7卷)

第二节混凝土反应容器及其防漏(1卷)

标准容器《案例1 升温装置中的部件》(在核规范N-47案例书中)

第四章加热锅炉(1卷)

第八章

第一节压力容器(1卷)

第二节压力容器的替代规范(1卷)

第十章玻璃纤维加强塑料容器(1卷)

每过三年的7月1日就会颁布一部新的ASME锅炉和压力容器规范,每六个月,即1月1日和7月1日就会有一部新的附录。新版本的规范颁布后就必须强制执行。新的附录在颁布之日起即可使用,并在六个月强制执行。

世界通用的压力容器规范除了ASME锅炉和压力容器规范在世界范围内被规范使用外,许多其他的压力容器规范也在世界其他国家依法使用。当压力容器的设计、制造、安装都在不同的国家时往往会出现问题。由于全球化的发展,这种事是经常发生的。

以下是在不同国家使用的不同规范的部分摘要:

澳大利亚澳大利亚锅炉与压力容器标准,SAA锅炉标准(AS1200系列):AS1210,

非火加热类压力容器和分类1H,改进后的设计与制造压力容器,澳大利亚协会标准。

法国《不用火加热压力容器建造规范计算规则》,法国巴黎市SNCT结构。

英国《英国规范 BS.55OO》,英国伦敦市英国标准协会。

日本《日本压力容器规范》(劳动部制定),日本东京市日本锅炉协会出版;JISB8243《日本标准》,《压力容器建造》,日本东京市日本标准协会出版;《日本高压气体控制法》,国际贸易与产业部制定,日本东京高压气体工程安全协会出版。

意大利《意大利压力容器规范》,意大利米兰市国家燃烧控制协会(ANCC)。

比利时《压力容器构造可靠实践规范》,比利时布鲁塞尔市比利时标准协会(IBN)。

瑞典《瑞典压力容器规范》,瑞典斯德哥尔摩市瑞典压力容器委员会。

力学专业英语部分翻译孟庆元

1、应力和应变 应力和应变的概念可以通过考虑一个棱柱形杆的拉伸这样一个简单的方式来说明。一个棱柱形的杆是一个遍及它的长度方向和直轴都是恒定的横截面。在这个实例中,假设在杆的两端施加有轴向力F,并且在杆上产生了均匀的伸长或者拉紧。 通过在杆上人工分割出一个垂直于其轴的截面mm,我们可以分离出杆的部分作为自由体【如图1(b)】。在左端施加有拉力P,在另一个端有一个代表杆上被移除部分作用在仍然保存的那部分的力。这些力是连续分布在横截面的,类似于静水压力在被淹没表面的连续分布。 力的集度,也就是单位面积上的力,叫做应力,通常是用希腊字母,来表示。假设应力在横截面上是均匀分布的【如图1(b)】,我们可以很容易的看出它的合力等于集度,乘以杆的横截面积A。而且,从图1所示的物体的平衡,我们可以看出它的合力与力P必须的大小相等,方向相反。因此,我们可以得出 等式(1)可以作为棱柱形杆上均匀应力的方程。这个等式表明应力的单位是,力除以面积。当杆被力P拉伸时,如图所示,产生的应力是拉应力,如果力在方向是相反,使杆被压缩,它们就叫做压应力。 使等式(1)成立的一个必要条件是,应力,必须是均匀分布在杆的横截面上。如果轴向力P作用在横截面的形心处,那么这个条件就实现了。当力P 没有通过形心时,杆会发生弯曲,这就需要更复杂的分析。目前,我们假设所有的轴向力都是作用在横截面的形心处,除非有相反情况特别说明。同样,除非另有说明,一般也假设物体的质量是忽略的,如我们讨论图1的杆一样。

轴向力使杆产生的全部伸长量,用希腊字母δ表示【如图1(a)】,单位长度的伸长量,或者应变,可以用等式来决定。 L是杆的总长。注意应变ε是一个无量纲的量。只要应变是在杆的长度方向均匀的,应变就可以从等式(2)中准确获得。如果杆处于拉伸状态,应变就是拉应变,代表材料的伸长或者 ,那么应变就是压应变,这也就意味着杆上临近的横截面是互相靠近的。 当材料的应力和应变显示的是线性关系时,也就是线弹性。这对多数固体材料来说是极其重要的性质,包括多数金属,塑料,木材,混凝土和陶瓷。处于拉伸状态下,杆的应力和应变间的线性关系可以用简单的等式来表示。E 是比例常数,叫做材料的弹性模量。 注意E和应力有同样的单位。在英国科学家托马斯·杨(1773 ~ 1829)研究杆的弹性行为之后,弹性模量有时也叫做杨氏模量。对大多数材料来说,压缩状态下的弹性模量与处于拉伸时的弹性模量的一样的。 2、拉伸应力应变行为 一个特殊材料中应力和应变的关系是通过拉伸测试来决定的。材料的试样通常是圆棒的形式,被安置在测试机上,承受拉力。当载荷增加时,测量棒上的力和棒的伸长量。力除以横截面积可以得出棒的应力,伸长量除以伸长发生方向的长度可以得出应变。通过这种方式,材料的完整应力应变图就可以得到。 图1所示的是结构钢的应力应变图的典型形状,轴向应变显示在水平轴,对应的应力以纵坐标表示为曲线OABCDE。从O点到A点,应力和应变之间是直接成比例的,图形也是线性的。过了A点,应力应变间的线性关系就不存

修改过程装备与控制工程专业英语翻译

修改过程装备与控制工程专业英语翻译Unit 16 压力容器及其部件 压力容器时不泄露的容器。它们有各种尺寸。最小的直径不到一英寸,最大的直径能达到150英尺甚至更大。某些是埋在地下或海洋深处,多数是安放在地上或支撑在平台上,还有一些实际上是在航天飞行器中的贮槽和液压装置中。 由于内部压力,容器被设计成各种形状和尺寸。内部的压力可能低到1英寸,水的表面压力可能达到300000多磅。普通的单层表面建筑压力是15到5000磅,虽然有很多容器的设计压力高出或低于这个范围。ASME锅炉和压力标准中第八卷第一节指定一个范围从15磅在底部到上限,然而,内部压力在3000磅以上,ASME 标准,第八卷第一节,指出考虑特殊设计的情况是必要的。 压力容器的典型部件描述如下: 圆柱壳体在石化工业中对于结构压力容器圆柱壳体是经常被用到的,它是很容易制造、安装并且维修很经济。虽然在一些场合应用载荷和外压控制,要求的厚度通常由内压决定。其他因素如热应力和不连续压力可能有要求厚度决定。 成型的封头许多的端封头和过度部分有设计工程师选择。用一种结构相对另一种依靠很多因素,如成型方法、材料成本、和空间限。一些经常应用的成型封头是: 带凸缘的封头这些封头通常在较低压力的压力设备中,例如汽油罐和锅炉。有些也应用在较高压力的但是较小直径的设备中。设计和结构的许多细节在ASME 标准,第八卷第一节中给出。 半球形封头通常,在一个给定温度和压力下半球形的要求厚度是相同直径和材料圆柱壳体的一半。假如我们用镍和钛昂贵的合金建造实心或覆盖形半球形封头,这样是很经济的。假如使用碳钢,然而,由于这高价的制造费用就不比凸缘形

生物工程专业英语翻译(第一篇)改

1.1 生物技术的属性 生物技术是一个属于应用生物科学和技术的一个领域,它包含生物或亚细胞组分在制造行业、服务也和环境管理等方面的应用。生物技术利用细菌、酵母菌、真菌、藻类、植物细胞或培养的哺乳动物细胞作为工业过程的组成成分。只有将包括微生物学、生物化学、遗传学、分子生物学、化工原理在内的多种学科和技术综合起来才能获得成功的应用。 生物技术过程通常会涉及到细胞的培养和生物量,并得到所需的产品,后者可进一步分为:生成所需产品(如酶、抗生素、有机酸和类固醇); 原料的分解(如污水处理、工业废料处理和石油泄漏处理)。 生物技术的反应过程是分解过程,即把复杂化合物分解为简单化合物(如葡萄糖分解为乙醇),也是合成或同化过程,即把简单的分子合称为复杂的化合物(如抗生素的合成)。分解过程通常释放热量,而合成过程通常吸收能量。 生物技术包括发酵过程(如啤酒、果酒、面包、奶酪、抗生素和疫苗的生产)、供水与废物处理、食品技术以及越来越多的新应用,包括从生物医学到从地品位矿石中回收金属各个领域。由于生物技术的普遍性,它将在许多工业生产过程中产生重大的影响。理论上,几乎所有的有机物都能用生物技术来生产。到2000年,生物技术在未来全球市场的潜力预计接近650亿美元(表1.1)。然而,我们必须意识到,许多重要的生物产品仍将利用现有的分子模型通过化学方法合成。因此,应该从广义上来理解生物化学和化学以及他们与生物技术的关系。 生物技术所采用的众多技术通常比传统工业更经济、更低能耗、更安全,而且生产过程中的残留物都能够通过生物降解而且无毒。从长远来看,生物技术提供了一种可以解决众多世界性难题的方法,尤其是医药、食品生产、污染控制和新能源发展领域的问题。 表1.1 全球生物技术市场在2000年之前的增长潜力 摘自Sheets公司(1983n年)生物技术通报11月版。

工业工程专业英语1-3单元翻译

Professional English for Industrial Engineering Chapter1 Unit3翻译 姓名: 专业:工业工程 班级: 学号: 完成日期:2015-10-31

Chapter 1 Unit 3 Academic Disciplines of Industrial Engineering 五大主要工程学科和它们的发展 在美国,有五个主要工程学科(土木、化学、电工、工业、机械),它们是早在第一次世界大战时就出现的工程分支学科。这些进步是世界范围内发生的工业革命的一部分,并且在技术革命的开始阶段仍在发生。 随着第二次世界大战的发展导致了其他工程学科的发展,比如核工程,电子工程,航空工程,甚至是电脑工程。太空时代导致了航空工程的发展。最近对环境的关注使得环境工程和生态工程也得到了发展。这些更新的工程学科经常被认为是专长学科包含“五大”学科,即土木,化学,电工,工业,和机械工程里的一种或多种。 和美国的情况不同,工业工程在中国属于第一层级管理科学和工程学科下面的第二级别的学科。 IE学科的开端 学科后来演变成工业工程学科是最初在机械工程系被作为特殊课程教的。首个工业工程的分部在1908年的宾夕法尼亚州大学和雪城大学被建立。(在宾夕法尼亚州的项目是短期存在的,但是它在1925年又重建了)一个在普渡大学的机械工程的IE选科在1911年被建立。一个更完整的工业工程学院项目的历史可能在资料中被找到。 在机械工程部有一个IE选科的实践是主要的模式直到第二次世界大战的结束,并且分离出来的IE部在整个上个世纪里的文理学院和综合大学里被建立。 早在第二次世界大战的时候,在工业工程方面,只有很少的毕业生水平的研究。一旦分开的学部建立之后,学士和博士级别的项目开始出现。 现代IE的教育—分支学科 今天,与过去相比,工业工程对于不同的人来说意味着不同的东西。实际上,一个发展一个突出的现代工业工程的方法是通过获得在它的分支学科和它怎么联系到其他领域的理解。如果在分支学科和工业工程相关联的领域之间有清楚的

各专业课程英文翻译

各专业课程英文翻译(精心整理) 生物及医学专业课程汉英对照表 应用生物学 Applied Biology 医学技术 Medical Technology 细胞生物学 Cell Biology 医学 Medicine 生物学 Biology 护理麻醉学 Nurse Anesthesia 进化生物学 Evolutionary Biology 口腔外科学 Oral Surgery 海洋生物学 Marine Biology 口腔/牙科科学 Oral/Dental Sciences 微生物学 Microbiology 骨科医学 Osteopathic Medicine 分子生物学 Molecular Biology 耳科学 Otology 医学微生物学 Medical Microbiology 理疗学 Physical Therapy 口腔生物学 Oral Biology 足病医学 Podiatric Medicine 寄生物学 Parasutology 眼科学 Ophthalmology 植物生物学 Plant Physiology 预防医学 Preventive Medicine 心理生物学 Psychobiology 放射学 Radiology 放射生物学 Radiation Biology 康复咨询学 Rehabilitation Counseling 理论生物学 Theoretical Biology 康复护理学 Rehabilitation Nursing 野生生物学 Wildlife Biology 外科护理学 Surgical Nursing 环境生物学 Environmental Biology 治疗学 Therapeutics 运动生物学 Exercise Physiology 畸形学 Teratology 有机体生物学 Organismal Biology 兽医学 Veterinary Sciences 生物统计学 Biometrics 牙科卫生学 Dental Sciences 生物物理学 Biophysics 牙科科学 Dentistry 生物心理学 Biopsychology 皮肤学 Dermatology 生物统计学 Biostatistics 内分泌学 Endocrinology 生物工艺学 Biotechnology 遗传学 Genetics 生物化学 Biological Chemistry 解剖学 Anatomy 生物工程学 Biological Engineering 麻醉学 Anesthesia 生物数学 Biomathematics 临床科学 Clinical Science 生物医学科学 Biomedical Science 临床心理学 Clinical Psychology 细胞生物学和分子生物学 Celluar and Molecular Biology 精神病护理学 Psychiatric Nursing 力学专业 数学分析 Mathematical Analysis 高等代数与几何 Advanced Algebra and Geometry 常微分方程 Ordinary Differential Equation 数学物理方法 Methods in Mathematical Physics 计算方法 Numerical Methods 理论力学 Theoretical Mechanics 材料力学 Mechanics of Materials 弹性力学 Elasticity 流体力学 Fluid Mechanics 力学实验 Experiments in Solid Mechanics 机械制图 Machining Drawing 力学概论 Introduction to Mechanics 气体力学 Gas Dynamics 计算流体力学 Computational Fluid Mechanics 弹性板理论 Theory of Elastic Plates 粘性流体力学 Viscous Fluid Flow 弹性力学变分原理 Variational Principles inElasticity 有限元法 Finite Element Method 塑性力学 Introduction of Plasticity

过程装备专业英语单词

CQ螺纹球阀CQ Thread Ball Valves L形三通式L-pattern three way T形三通式T-pattern three way 安全阀Safety valve 暗杆闸阀Inside screw nonrising stem type gate valve 百叶窗; 闸板shutter 百叶窗式挡板louver damper 摆阀式活塞泵swing gate piston pump 保温式Steam jacket type 报警阀alarm valve 报警阀; 信号阀; 脉冲阀sentinel valve 背压调节阀back pressure regulating valve 背压率Rate of back pressure 本体阀杆密封body stem seal 波纹管阀Bellows valves 波纹管密封阀bellow sealed valve 波纹管密封式Bellows seal type 波纹管平衡式安全阀Bellows seal balance safety valve 波纹管式减压阀Bellows reducing valve

波纹管式减压阀Bellows weal reducing valve 薄膜thin film 薄膜; 隔膜diaphragm 薄膜式减压阀Diaphragm reducing valve 薄型闸阀Thin Gate Valves 不封闭式Unseal type 槽车球阀Tank Lorry Ball Valves 颤振Flutter 常闭式Normally closed type 常开式Normally open type 超低温阀门Cryogenic valve 超高压阀门Super high pressure valve 超过压力Overpressure of a safety valve 衬胶隔膜阀rubber lined diaphragm 衬胶截止阀rubber lined globe valve 垂直板式蝶阀Vertical disc type butterfly valve 磁耦合截止阀Magnetic Co-operate Globe Valves 带补充载荷的安全阀Supplementary loaded safety valve 带辅助装置的安全阀Assisted safety valve

哈工大工业工程专业英语翻译

《工业工程专业英语》 课文翻译 专业:工业工程 学号:11208401 姓名: 指导教师:赵,, 2014年12月

4.2 ERP系统的发展过程 现在,ERP系统无处不在,不仅应用在大型业务中,目前还由运营商们改良后应用在中小企业中。我们需要通过理解ERP系统及其当前体系结构的历史和发展来说明其发展变迁的成果。ERP的优点和缺点会影响它对市场的渗透,系统供应商已经为ERP的推动做好了市场定位和总体策略方面的准备。ERP系统在新的世纪中的应用和发展将依赖于其对客户关系管理、供应链管理一起其他拓展功能的扩充,还有与网络应用的结合。 简介 由微电子、电脑硬件和软件系统驱动的信息和交流的前所未有的增长影响了各种组织的电脑应用的方方面面。同时,公司环境与职能部门日益结合,需要为决策提供越来越多的内部功能数据流,包括及时有效的产品部件的供给、库存管理、清算账目、人力资源以及产品和服务分配等。在这样的条件下,组织管理者需要一个有效的信息系统来降低成本并优化物流,从而提高竞争力。无论是大企业还是中小企业,大家一致认为在复杂的全球化竞争中,及时获得正确的信息的能力能够给企业带来巨大的回报。 从19世纪80年代末到90年代初开始的新的软件系统作为企业资源规划应用在复杂的大型商业企业中从而在工业界中被人们所周知。这种复杂而昂贵,强力而专有的系统供不应求,而且需要根据企业的需求量身定制。很多情况下,ERP实施人员要企业重新设计他们的商业流程来调节软件模型中的物流,从而得到整个企业的数据流。与旧的、传统的自我内部设计的企业专门系统不同,这种软件解决方案结合了多种模型的商业附加包,在需要的时候可以作为附件添加到系统中或者从中删除。 电脑性能的显著提高以及网络给ERP的供应商和设计者们带来的前所未有的挑战,打破了企业与客户定制的隔阂,还包含超出企业内部网络的合作,外部系统需要通过网络来无缝连接。供应商已经许诺了许多的附加功能包,他们中的一些人已经在市场上表现出对这些挑战的接受态度。将产品不断再设计以及在ERP市场中推出新产品和方案是一个永不终止的过程。ERP运营商和客户以及认识到了将其附件按照开放的原则设计,提供可互换的模型,以及容许更简单的定制和客户交流的必要性。 ERP系统定义 企业资源规划系统或企业系统是业务管理软件系统目前,包括模块配套功能区,如计划,制造,销售,市场营销,分销,会计,金融,人力资源管理,项目管理,库存管理,服务,维修,运输和电子商务,架构软件便于模块的透明集成,提供企业内的所有功能之间信息。在运输和电子商务。该架构软件便于模块的透明集成,提供数据流包括良好的企业内的所有功能之间的信息以及与合作公司与通过更换或重新设计实现一个单一的集成系统,其大多是不兼容的传统信息系统。美国生产与库存管理协会(2001)这样定义了ERP系统:“针对物资资源管理、人力资源管理、财务资源管理、信息资源管理集成一体化的企业管理软件。”我们从出版物中摘录了几种定义来更好的解释这个概念:“ERP包含了一个商业软件包,它可以通过企业的财务、清算、人力资源、供应链和客户信息来使数据流无缝结合”(Davenport,1998)。“ERP是将一个组织中的财务和其他信息以及基于信息的流程整合在一起的信息配置系统。”(K&VH,2000)。“一个数据库、一个应用和一个贯穿整个企业的统一界面”(Tadjer,1998)。“ERP系统是为了运作一个组织的业务方便的集成和实时计划、生产,以及客户反馈而设计的基于电脑的系统(OLeary,2001)”。 ERP系统的发展

户外用品装备 专业词汇 中英文对照

户外用品整理 个人装备Personal equipment ==============登山靴Climbing boots 防寒运动靴Snow training shoes 攀岩鞋Climbing shoes 毛衬衫Woolen Shirt 登山裤Climbing trousers 运动衣裤Training wear 毛内衣裤Woolen undershirts 毛袜Woolen socks 毛手套Woolen glove 丝手套Silk glove 棉手套Cotton glove 毛衣Sweater 冲锋衣Jaket(Windbreaker) 外裤Over-trousers 外手套Over-gloves 外鞋罩Long spats 防寒帽Bataclave 高处帽High altitude cap 太阳帽Glacier cap 太阳镜Sunglasses 睡垫Mattress 鸭绒睡垫Down sleeping bag 鸭绒衣Down jacket 鸭绒裤Down trousers 鸭绒背心Down vest 鸭绒袜Down tent shoes/slippers 睡袋套Sleeping bag cover 背包Duffel bag 整理袋Stuff bag 冰爪Grampons 冰爪带Grampons strap 冰爪袋Grampons case 外靴Over-shoes 安全帽Helmet 冰镐Ice axe(PIckel) 安全带Harness 铁锁Carabiner with safety ring 铁锁Carabmer 小绳套Sling 下降器Eight rings

生物工程生物技术专业英语翻译(七)

第七章仪器化 7.1介绍 本章主要介绍发酵过程中检测和控制的仪表。显然这些仪表并不时专门用于生物发酵领域的,它们在生物工程或相关的领域中也有广泛的应用。在实际中,大多数应用与生物工程的分析仪表并不是由生物工程发展的产物,至今,生物学家常用的仪表是在化学工业中应用的而发掌出来的。但是,这些精确的仪表并不是为更加复杂的生物反应专门设计的,在计算机控制出现以后,这表现的更加明显。 计算机自动化的发展主要基于各种探测器的发展,它们可以将有意义的信号转化成控制动作。现在适合于提供发酵过程详细参数的适当仪器已经有了很大的改进,这可以提高产量和产率。遗憾的是,在商业化中实现这些自动控制还很困难,但是改变这种情况只是时间的问题。本章只讨论现有的仪表和设备,它们目前都有各自的局限性。 计算机控制是目前发酵工程中的惯用语,不久之后,发酵过程也许真的可以和计算机匹配。但是在这一进步过程中,我们开始考虑一句谚语,“工具抑制创造性思维”。计算机控制需要在线仪表,我们在章中会有涉及。 7.2 术语 如果我们所有对生物工程过程的理解需要仪表,我们真正熟悉我们所用的仪表就非常重要,否则我们就会对这些仪

表的适用性和特性产生错误的判断。下面对一些常用的性质加以介绍。 反应时间通常是描述90%输入信号转换成输出信号所需要的时间。作为经验法则,用于生物系统的仪表的反应时间要小于倍增时间的10%。因此,在典型的发酵工程中,如果倍增时间是3h,超过18min反应时间的仪表将无法完成在线控制。很多仪表有更小的反应时间,它们通常被用于一些其它样品的操作,它们的测定和控制动作的之后时间更长。 灵敏度是衡量仪表输出结果变化和输入信号变化之间的关系。通常,考虑到高灵敏度的仪表可以测量微小的输入变化,灵敏度越高的仪表越好。然而,仪表的其它参数,如线性,精确性,和测定范围也是选择仪表的考虑因素。 输入与输出的线性关系是二者最简单的关系,校正过程也最为容易。 分辨率是可以测定的输入信号的最小值,通常以仪表读数最大偏转角的百分数来表示。 残留误差是指输出结果与输入保持恒定时的真实结果的偏离值。 重现性永远不要被忽视,只要有可能,就要对仪表进行校正,尤其是那些测定氧气和二氧化碳测定的仪表。 7.3 过程控制 在过程控制中,有三种可能实现的目标:

周跃进工业工程专业英语翻译-全十章---副本

第一章 IE中的角色 工业工程是新兴的经典和新颖的将计算解决复杂和系统性的问题,在今天的高度科技世界职业之一。,特别是在中国快速发展的经济和其作为世界制造业中心的演技,为IE浏览器的需求将增加,并不断扩大和迫切。 生产系统或服务系统,包括输入,转换和输出。通过改造,增加值的增加,系统的效率和效益都有所提高。转化过程中所使用的技术和管理科学以及它们的组合依靠。 管理生产系统的服务体系,是一个具有挑战性和复杂的,行为科学,计算机和信息科学,经济,以及大量的主题有关的基本原则和技术,生产和服务系统的技术。 对于IE毕业生的需求 工业工程课程设计准备的学生,以满足未来中国的经济和和谐社会建设的挑战。许多即毕业生(IES),事实上,设计和运行现代制造系统和设施。其他选择从事服务活动,如健康,?ìcare交付,金融,物流,交通,教育,公共管理,或咨询等。 为IE毕业生的需求比较旺盛,每年增长。事实上,对于非法入境者的需求大大超过供给。这种需求/供给不平衡是为IE大于其他任何工程或科学学科,并预计在未来多年存在。因此,over165大学或学院于2006年在中国开设了IE浏览器程序。 教科书的目标 这本教科书的主要目的是引入系统化的理论和先进的技术和方法,工业工程,以及他们的英语表达有关科目。教科书的另一个目的是加强和改进学生,AOS与工业工程专业英语文献的阅读和理解能力。 工程与科学 怎么这两个词,?úindustrial,?ùand,?úengineering,?ùget相结合,形成长期,?úindustrial工程,非盟是什么?工业工程和其他工程学科之间的关系,企业管理,社会科学?为了了解工业工程的作用,在今天,AOS经济和知识为基础的的时代,它是有利于学习,希望在IE的演变历史的发展,有许多半途而废写历史发展的工程。治疗本单位是短暂的,因为我们的利益,在审查工程发展的意义,尤其是作为一个专业工业工程的,更完整的历史参考。工程与科学发展并行,相辅相成的方式,虽然他们是电机始终以同样的速度,而科学是有关基本知识的追求,工程与科学知识的应用关注问题的解决方案,并,?úbetter生活的追求,?ù.Obviously,知识不能被应用,直到它被发现的,一经发现,将很快投入使用,在努力解决问题,工程在新知识的地方,提供反馈,以科学因此,科学和工程工作在手的手。 工程应用 - 工具 虽然“科学”和“工程”各有特色,为不同学科,在某些情况下,?úscientist,非盟和?úengineer,非盟可能是同一个人。这是在更早的时候,尤其是当有很少沟通的基本知识的手段。发现知识的人也把它用。 当然,我们也想到如此出色的成绩,在埃及的金字塔,中国长城,罗马的建设项目,等等,当我们回顾早期的工程成就。这些都涉及一个令人印象深刻的应用程序的基本知识。 正如根本,但是,不作为众所周知的成就。斜面,弓,螺旋状,水车,帆,简单的杠杆,以及许多其他方面的发展都非常希望在工程师,AO努力提供更好的生活。 工程的基础 几乎所有的工程发展到1800年之前与物理现象:如克服摩擦,起重,储存,搬运,构造,紧固后的发展,关注与化学和分子现象:如电力,材料,热加工工艺性能,燃烧,和其他的化学过程。 几乎所有的工程发展的基本原则是在数学方面取得的进展。,准确地测量距离,角度,重量和时间的程序进行了细化,实现了更大的成就。

生物工程专业英语翻译(第二章)

Lesson Two Photosynthesis 内容: Photosynthesis occurs only in the chlorophyllchlorophyll叶绿素-containing cells of green plants, algae藻, and certain protists 原生生物and bacteria. Overall, it is a process that converts light energy into chemical energy that is stored in the molecular bonds. From the point of view of chemistry and energetics, it is the opposite of cellular respiration. Whereas 然而 cellular细胞的 respiration 呼吸is highly exergonic吸收能量的and releases energy, photosynthesis光合作用requires energy and is highly endergonic. 光合作用只发生在含有叶绿素的绿色植物细胞,海藻,某些原生动物和细菌之中。总体来说,这是一个将光能转化成化学能,并将能量贮存在分子键中,从化学和动能学角度来看,它是细胞呼吸作用的对立面。细胞呼吸作用是高度放能的,光合作用是需要能量并高吸能的过程。Photosynthesis starts with CO2 and H2O as raw materials and proceeds through two sets of partial reactions. In the first set, called the light-dependent reactions, water molecules are split裂开 (oxidized), 02 is released, and ATP and NADPH are formed. These reactions must take place in the presence of 在面前 light energy. In the second set, called light-independent reactions, CO2 is reduced (via the addition of H atoms) to carbohydrate. These chemical events rely on the electron carrier NADPH and ATP generated by the first set of reactions. 光合作用以二氧化碳和水为原材料并经历两步化学反应。第一步,称光反应,水分子分解,氧分子释放,ATP和NADPH形成。此反应需要光能的存在。第二步,称暗反应,二氧化碳被还原成碳水化合物,这步反应依赖电子载体NADPH以及第一步反应产生的ATP。 Both sets of reactions take place in chloroplasts. Most of the enzymes and pigments 色素for the lightdependent reactions are embedded 深入的内含的in the thylakoid 类囊体 membrane膜隔膜 of chloroplasts 叶绿体. The dark reactions take place in the stroma.基质 两步反应都发生在叶绿体中。光反应需要的大部分酶和色素包埋在叶绿体的类囊体膜上。暗反应发生在基质中。 How Light Energy Reaches Photosynthetic Cells(光合细胞如何吸收光能的) The energy in light photons in the visible part of the spectrum can be captured by biological molecules to do constructive work. The pigment chlorophyll in plant cells absorbs photons within a particular absorption spectrums statement of the amount of light absorbed by chlorophyll at different wavelengths. When light is absorbed it alters the arrangement of electrons in the absorbing molecule. The added energy of the photon boosts the energy condition of the molecule from a stable state to a less-stable excited state. During the light-dependent reactions of photosynthesis, as the absorbing molecule returns to the ground state, the "excess" excitation energy is transmitted to other molecules and stored as chemical energy. 生物分子能捕获可见光谱中的光能。植物细胞中叶绿素在不同光波下吸收部分吸收光谱。在吸收分子中,光的作用使分子中的电子发生重排。光子的能量激活了分子的能量状态,使其

工业工程专业英语第三章翻译

《专业英语》课程论文 (工业工程11级) 指导教师:李发权 小组成员 姓名:学号:刘凯311102020215 刘雪涛311102020216 马文杰311102020217 乔茂康311102020218 2014年11月23日

Manufacturing Systems Unit1 Introduction To Manufacturing Systems In this chapter, we consider how automation and material handing technologies are synthesized create manufacturing systems. We define a manufacturing system to be a collection of integrated equipment and human resources, whose function is perform one or more processing and/or assembly operations on a starting raw material part, or set parts. The integrated equipment includes production machines and tools, material handling and work positioning devices, and computer systems. Human resources are required either full time or periodically to keep the system running. The manufacturing system is where the value-added work is accomplished on the part or product. The position of the manufacturing system in the larger production system is shown as Figure. 3.1 Examples of manufacturing systems include : ●One worker tending one machine, which operates on semi-automatic cycle ● A cluster of semi-automated assembly machine, attended by one worker ● A full automated assembly machine, periodically attended by a human worker ● A group of automated machines working on automatic cycles to produce a family of similar parts ● A team of workers performing assembly operations on a production line Components of a Manufacturing system A manufacturing system consists of several components. In a given system, these components usually include: 1)production machines plus tools, fixtures, and other related hardware; 2)material handling system ; 3)computer systems to coordinate and/or control the above components ; 4)human workers Production Machines In virtually all modern manufacturing systems, most of the actual processing or assembly work is accomplished by machines or with the aid of tools. The machines can be classified as 1) manually operate , 2) semi-automated ,or 3)fully automated , Manually operated machines are directed or supervised by a human worker. The machine provides the power for the operation and the worker provides the control. Conventional machine tools (e. g ,lathes , milling machines ,drill presses ) fit into this category . The worker must be at the machine continuously. In manufacturing systems, we use the term workstation to refer to a location in the factory where some well-defined task operation is accomplished by an automated machine , a worker-and-machine combination , or a worker use hang tools/or portable powered tools. In the last there no definable production machine at the location . Many assembly tasks are in the category . A given manufacturing system may consist of one or more workstations. A system with multiple stations is called a production line , or assembly line , or machine cell ,or other name ,depending on its configuration and function .

力学专业外文翻译

附录:外文翻译 5.1Introduction Cylindrical shells are used innuclear,fossil and petrochemical industries. They are also used in heat exchangers of the shell and tube type.Generally.These vessels are easy to fabricate and install and economical to maintain. The design procedures in pressure vessel codes for cylindrical shells are mostly based on linear elastic assumption,occasionally allowing for limited inelastic behavior over a localized region.The shell thickness is the major design parameter and is usually controlledby internal pressure and sometimes by external pressure which can produce buckling.Applied loads are also important in controlling thickness and so are the disconti-nuity and thermal stresses.The basic thicknesses of cylindrical shells are Based on simpli?ed stress analysis and allowable stress for the material of construction.There are some variations of the basic equations in various design codes.Some of the equations are based on thick-wall Lame equations.In this chapter such equations will be discussed.Also we shall discuss the case of cylindrical shells under external pressure where there is a propensity of buckling or collapse. 5.2 Thin-shell equations A shell is a curved plate-type structure.We shall limit our discussion to Shells of revolutions.Referring to Figure5.1 this is denoted by anangle ?,The meridional radius r1 and the conical radius r2,from the center line.The horizontal radius when the axis is vertical is r. If the shell thickness is t,with z being the coordinate across the thickness,following the convention of Flugge, We have the following stress resultants: ?-+ = 2 2 1 1) ( t t dz r z r N θ θ σ(5.1) ?-+ = 2 2 2 2) ( t t dz r z r N φ φ σ(5.2) ?-+ = 2 2 2 2) ( t t dz r z r N θφ θφ σ(5.3)

相关文档
相关文档 最新文档