文档视界 最新最全的文档下载
当前位置:文档视界 › 排队论习题及答案

排队论习题及答案

排队论习题及答案
排队论习题及答案

《运筹学》第六章排队论习题

1. 思考题

(1)排队论主要研究的问题是什么;

(2)试述排队模型的种类及各部分的特征;

(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;

(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念;

(5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分

布的主要性质;

(6)试述队长和排队长;等待时间和逗留时间;忙期和闲

期等概念及他们之间的联系与区别。

2.判断下列说法是否正确

(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间

服从负指数分布;

(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分

顾客合起来的顾客流仍为普阿松分布;

(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,

则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布;

(4)对1//M M 或C M M //的排队系统,服务完毕离开系统的

顾客流也为普阿松流;

(5)在排队系统中,一般假定对顾客服务时间的分布为负指

数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;

(6)一个排队系统中,不管顾客到达和服务时间的情况如何,

只要运行足够长的时间后,系统将进入稳定状态;

(7)排队系统中,顾客等待时间的分布不受排队服务规则的

影响;

(8)在顾客到达及机构服务时间的分布相同的情况下,对容

量有限的排队系统,顾客的平均等待时间少于允许队长无

限的系统;

(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越

大时,顾客的平均等待时间就越长;

(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人

联合看管15台机器时,机器因故障等待工人维修的平均

时间不变。

3.某店有一个修理工人,顾客到达过程为流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求:(1)店内空闲的时间;

(2)有4个顾客的概率;

(3)至少有一个顾客的概率;

(4)店内顾客的平均数;

(5)等待服务的顾客数;

(6)平均等待修理的时间;

(7)一个顾客在店内逗留时间超过15分钟的概率。

4.设有一个医院门诊,只有一个值班医生。病人的到达过程为流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求:

(1)病人到来不用等待的概率;

(2)门诊部内顾客的平均数;

(3)病人在门诊部的平均逗留时间;

(4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问病人平均到达率为多少时,

医院才会增加医生?

5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

(1)系统内没有顾客的概率;

(2)系统内顾客的平均数;

(3)排队等待服务的顾客数;

(4)顾客在系统中的平均花费时间;

(5)顾客平均排队时间。

6.某街区医院门诊部只有一个医生值班,此门诊部备有6张椅

子供患者等候应诊。当椅子坐满时,后来的患者就自动离去,不在进来。已知每小时有4名患者按分布到达,每名患者的诊断时间服从负指数分布,平均12分钟,求:

(1)患者无须等待的概率;

(2)门诊部内患者平均数;

(3)需要等待的患者平均数;

(4)有效到达率;

(5)患者在门诊部逗留时间的平均值;

(6)患者等待就诊的平均时间;

(7)有多少患者因坐满而自动离去?

7.某加油站有四台加油机,来加油的汽车按分布到达,平均每小时到达20辆。四台加油机的加油时间服从负指数分布,每台加油机平均每小时可给10辆汽车加油。求:

(1)前来加油的汽车平均等待的时间;

(2)汽车来加油时,4台油泵都在工作,这时汽车平均等待的时间.

8.某售票处有3个售票口,顾客的到达服从分布,平均每分钟到达9.0=λ

(人),3个窗口售票的时间都服从负指数分布,平均每分钟卖给4.0=μ(人),设可以归纳为M/M/3 模型,试求:

(1)整个售票处空闲的概率;

(2)平均对长;

(3)平均逗留时间;

(4)平均等待时间;

(5)顾客到达后的等待概率。

9.一个美容院有3张服务台,顾客平均到达率为每小时5人,美容时间平均30分钟,求:

(1)美容院中没有顾客的概率;

(2)只有一个服务台被占用的概率。

10.某系统有3名服务员,每小时平均到达240名顾客,且到达服从分布,服务时间服从负指数分布,平均需0.5分钟,求:

(1)整个系统内空闲的概率;

(2) 顾客等待服务的概率;

(3)系统内等待服务的平均顾客数;

(4)平均等待服务时间;

排队论例题

排队论例题 1、某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。所有的武器类型一样。武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。试估计该防空系统的有效率。

解: 武器联合发挥作用 该防空系统有效率 = 1- (三道防线后的损失率) 三道防线均可看成M/M/1/1系统 第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器) ρ=λ/μ=1 .P )A (P ,P ,P ,P P P 1212111110001=======λλρ损 第二道防线 : .P )A (P ,P ,P ,P P P ,)(.414 143313131122100011========= ===λλρμλρμλλ损损三座武器第三道防线: 975 .0,025.0.05.020 1)(,51,54,1,41,41,1.41 313310100012===========∴=+==== ===总损失率该防空系统的有效率总损失率损损损-12 0.05λλλλρμλρμλλP A P P P P P P P P

2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。平均到达率和平均服务率分别为λ和μ。已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统 μλρ= W q ==-)(λμμλρρ-12 P0 = 1-ρ=μλ (空闲概率) 每小时空闲时间为1×P0= P0 总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q 对 ρ 求导 C C C C y 22 22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ 又∵ ρ<1 ∴22-=ρ 由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值 动态规划问题 1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/ 6个月的生产量使既能满足各月的订单需求同时生产成本最低?

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用 摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。 关键词:泊松过程;齐次泊松过程;排队论 1. 前言 泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。 2. 泊松过程的概念 定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立增量过程; (3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有 ! )(})()({n t e n s X s t X P n t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于, t t X E )]([= λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。 从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。 定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立平稳增量过程; (3) X(t)满足下列两式: o(h). 2} X(t)-h)P{X(t o(h),h 1} X(t)-h)P{X(t =≥++==+λ

排队论习题

排队论习题 1、某大学图书馆的一个借书柜台的顾客流服从泊松流,平均每小时50人,为顾客服 务的时间服从负指数分布,平均每小时可服务80人,求: (1)顾客来借书不必等待的概率3/8 (2)柜台前平均顾客数5/3 (3)顾客在柜台前平均逗留时间1/30 (4)顾客在柜台前平均等待时间1/80 2、一个新开张的理发店准备雇佣一名理发师,有两名理发师应聘。由于水平不同,理发师甲平均每小时可服务3人,雇佣理发师甲的工资为每小时14元,理发师乙平均每小时可服务4人,雇佣理发师乙的工资为每小时20元,假设两名理发师的服务时间都服从负指数分布,另外假设顾客到达服从泊松分布,平均每小时2人。问:假设来此理发店理发的顾客等候一小时的成本为30元,请进行经济分析,选出一位使排队系统更为经济的理发师。 3、一个小型的平价自选商场只有一个收款出口,假设到达收款出口的顾客流为泊松流,平均每小时为30人,收款员的服务时间服从负指数分布,平均每小时可服务40人。(1)计算这个排队系统的数量指标P0、L q、L s、W q、W s。 (2)顾客对这个系统抱怨花费的时间太多,商店为了改进服务准备队以下两个方案进行选择。 1)在收款出口,除了收款员外还专雇一名装包员,这样可使每小时的服务率从40人提高到60人。 2)增加一个出口,使排队系统变成M/M/2系统,每个收款出口的服务率仍为40人。 对这两个排队系统进行评价,并作出选择。 4、汽车按泊松分布到达某高速公路收费口,平均90辆/小时。每辆车通过收费口平均需时间35秒,服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装

置使收费时间缩短到30秒,但条件是原收费口平均等待车辆超过6辆,且新装置的利用率不低于75%时才使用,问上述条件下新装置能否被采用。 5、有一台电话的共用电话亭打电话的顾客服从λ=6个/小时的泊松分布,平均每人打电话时间为3分钟,服从负指数分布。试求: (1)到达者在开始打电话前需等待10分钟以上的概率 (2)顾客从到达时算起到打完电话离去超过10分钟的概率 (3)管理部门决定当打电话顾客平均等待时间超过3分钟时,将安装第二台电话,问当λ值为多大时需安装第二台。 6、某无线电修理商店保证每件送到的电器在1小时内修完取货,如超过1小时分文不收。已知该商店每修一件平均收费10元,其成本平均每件5.5元,即每修一件平均赢利4.5元。已知送来修理的电器按泊松分布到达,平均6件/小时,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否赢利 (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 7、顾客按泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每名顾客的服务时间服从负指数分布,平均为5分钟。理发店内包括理发椅共有三个座位,当顾客到达无座位时,就依次站着等待。试求: (1)顾客到达时有座位的概率 (2)到达的顾客需站着等待的概率 (3)顾客从进入理发店到离去超过2分钟的概率 (4)理发店内应有多少座位,才能保证80%顾客在到达时就有座位。 8、某医院门前有一出租车停车场,因场地限制,只能同时停放5辆出租车。当停满5辆后,后来的车就自动离去。从医院出来的病人在有车时就租车乘坐,停车场无车时就向附近出租汽车站要车。设出租汽车到达医院门口按λ=8辆/小时的泊松分布,从医院依次出来的病人的间隔时间为负指数分布,平均间隔时间6分钟。又设每辆车每次只载一名病人,并且汽车到达先后次序排列。试求:

排队论练习题

第9章排队论 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论

排队论大作业 学院名称:信息工程与自动化学院专业班级:通信092 姓名:罗鹏飞 学号:200910404214

论排队论在信息系统中的应用 ——论排队论在医疗排队系统中应用 罗鹏飞200910404214 在我国,医院就医排队是一种经常遇见的非常熟悉的现象,它每天以这样或者是那样的形式出现在我们面前,患者对于一般常见病、多发病通常选择在门诊就诊,往往需要排队等待接受某种服务。门诊业务流程具有一下特点:病人流量大、随机性强、患者经历门诊环节多,反复排队等待,形成综合性大医院“”三长一短”的现象。“三长一短”的核心是服务时间及排队的问题。经过调查研究发现,不同于基于经验的管理方法,排队论能较为科学、量化地分析医院的排队系统,并提出合理的整改意见。而中国正处于医院应用阶段的排队论系统,大多都是凭经验建立的单一的门诊、体检、取药、检验、住院、结算等各环节的独立系统。这时就需要一个能够辅助患者贯穿整个就诊流程的全程排队解决方案,以缩短病人就诊时间,提高看病效率。排队论就是对排队现象和拥挤现象进行定量研究的理论。 本研究通过测量案例医院门诊挂号和收费窗口患者到达的规律、服务台的设置以及服务时间的规律等,应用排队论的理论、方法与模型,分析评价门诊挂号、收费窗口服务流程效率等,并对该服务系统提出优化措施,从而得出基本结论及具体措施:医院要通过义务分流来控制客户流,减少客户亲自到医院办理义务的次数,从而达到不排队或少排队的目的。 关键词:等待时间;服务强度;排队模型;概率分布 正文: 一个特定的模型可能会有多种假设,同时也需要通过多种数量指标来加以描述。由于受实际所处情况的影响,我们只需要选择那些起关键作用的指标作为模型求解的对象。尽管我们希望得到关于系统行为的详细信息,但研究中所能给出的一切结果都只能是一个稳态指标。稳态指标并不意味着系统以某种固定的方式有规律地运转,他们所提供的仅仅是这个系统经历长期运转所反映的数学期望值。在

排队论

5.2 排队论 排队是日常生活和工作中常见的现象,它由两个方面构成,一是要求得到服务的顾客,二是设法给予服务的服务人员或服务机构(统称为服务员或服务台),顾客与服务台就构成一个排队系统,或称为随机服务系统。如图5.5所示。 图5.5 排队系统结构 5.2.1 排队论概述 1. 排队论研究的基本问题 随机性是排队系统的共同特性,顾客的到达间隔时间与顾客所需的服务时间中,至少有一个具有随机性。排队论研究的首要问题是系统的主要数量指标(如:系统的队长(系统中的顾客数)、顾客的等待时间和逗留时间等)的概率特性,然后进一步研究系统优化问题。与这两个问题相关联的还有系统的统计推断问题。 1) 性态问题(即数量指标的研究) 研究排队系统的性态问题就是通过研究系统的主要数量指标的瞬时性质或统计平衡下的性态来研究排队系统的基本特征。 2) 最优化问题 排队系统的最优化问题涉及排队系统的设计、控制以及系统有效性的度量,包括系统的最优设计(静态最优)和已有系统的最优运行控制(动态最优),前者是在服务系统设置之前,对未来运行的情况有所估计,确定系统的参数,使设计人员有所依据;后者是对已有的排队系统寻求最优运行策略。其内容很多,有最小费用问题,服务率的控制问题等。 3) 统计推断问题 排队系统的统计推断是通过对正在运行的排队系统多次观测、搜集数据,用数理统计的方法对得到的资料进行加工处理,推断所观测的排队系统的概率规律,建立适当的排队模型。 2. 排队系统的基本组成及特征 实际中的排队系统是各种各样的,但从决定排队系统进程的因素看,它由3个基本部分组成:输入过程、排队规则和服务机构。由于输入过程、排队规则和服务机构的复杂多样性,可以形成各种各样的排队模型,因此在研究一个排队系统之前,有必要弄清楚这3部

胡运权排队论习题解

胡运权排队论习题解 某修理店只有一个修理工人,来修理的顾客到达次数服从普阿松分布,平均每小时3人,修 理时间服从负指数分布,平均需10分钟,求 (1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率 ; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间; (8) 必须在店内消耗15分钟以上的概率. (1)P o (3)1 P o 1(人 ); 1 1 (小时); 3 1 1 答:(1修理店空闲时间概率为-;(2)店内有三个顾客的概率为 —;(3)店内至少 1 1 有一个顾客的概率为寸;(4)店内顾客平均数为1人;(5)等待服务顾客平均数为1 2 人; (6)在店内平均逗留时间 1 分钟;(7)平均等待修理时间为丄分钟;(8)必须在店内 3 6 15 消耗15分钟以上的概率为e 20. 1 丄(小时); 6 解:该系统为(M/M/1/ / )模型, 3, 60 6. 10 ⑵P 4 (1 (1 扯4 1 ; ; ⑷L s (5)L q 23 1(人); (8)1-F( )e -(-) e^ 60 e -25

90 3600 38 94.7 94.7 0.95 10.2设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为 打字时间服从指数分布,平均时间为 15分钟,求 (1) 顾客来打字不必等待的概率; (2) 打字室内顾客的平均数; (3) 顾客在打字室内平均逗留时间; (4) 若顾客在打字室内的平均逗留时间超过 1.25小时,则主人将考虑增加设备 及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做? 解:该题属M /M /1模型. (1)P 0 1 1 - 4 4 (2)L s - 3 3(人 ); 4 3 ⑶W s - — 1 1(小时); 4 3 ⑷Q W s 1 1.25; 1.25, 323.2 3 0.2(人 /小时). 4 1 答:1)顾客来打字不必等待的概率为-;(2)打字室内顾客平均数为3人;(3)顾客在 4 打字室内平均逗留时间为1小时;(4)平均到达率为0.2人/小时时,店主才会考 虑增加设备及打字员. 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间 为38s 。由于驾驶人员反映等待时间太长,主管部门打算采用新装置,使汽车通过关卡的平 均时间减少到平均30s 。但增加新装置只有在原系统中等待的汽车平均数超过 5辆和新系统 中关卡空闲时间不超过 10%时才是合算的。根据这一要求,分析新装置是否合算。 解:该系统属于 M/M/1模型 旧装置各参数计算: 90/h 20分钟, 60 3(人/小时), 20 60 4(人/小 时). 15

排队论练习题

第9章排队论 9.1 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、 3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时 间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论基础教学大纲

排队论基础课程教学大纲 一、课程说明 课程编号: 课程名称:排队论基础/Fundamentals of Queueing Theory 课程类别:选修 学时/学分:32/3 先修课程:概率论 适用专业:统计学;数学与应用数学和信息与计算数学 教材、教学参考书: 1.陆传赉. 排队论[M],第2版.北京:北京邮电大学出版社,2009 2.唐应辉,唐小我. 排队论—基础与分析技术[M].北京:科学出版社,2006 3.邓永录. 随机模型及其应用[M].北京:高等教育出版社,1994 二、课程设置的目的意义 排队论又名随机服务系统理论,是研究拥挤现象的一门数学学科,它通过研究各种服务系统在排队等待中的概率特性,来解决系统的最优设计和最优控制。排队论是随机运筹学的重要分支,也是应用概率的重要分支,所研究的问题有很强的实际背景。随着计算机技术的迅猛发展,排队论的科学研究日新月异,其应用领域也不断扩大。目前,排队论的科学研究成果已广泛应用于通信工程、交通物流运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、制造系统和系统可靠性等众多领域,并取得了丰硕成果。排队论在科学技术及国民经济发展中起到了直接的重要作用,而且已成为从事通信、计算机、工业工程等领域的专家、工程技术人员和管理人员必不可少的重要数学工具之一。通过本课程的学习,让学生掌握排队论的基本理论与方法,能对现实生活中的一些排队现象进行分析和建模;通过与不同的学科知识相结合,能对所考虑具体问题的分析结果和模型进行评价,并给出合理的设计和控制机制。本课程的学习,不仅帮助学生掌握排队系统分析和建模的基本技能,了解本学科的特点和发展前沿,而且让学生在资料收集、建模与计算、结果的分析与评价等整个过程得到较全面的训练。 三、课程的基本要求 知识要求:掌握排队论的基本理论与方法;掌握转移率矩阵、补充变量法、嵌入马氏链以及计算马氏排队网络平稳分布的各种基本方法。了解排队论在管理科学中应用的若干前沿发展方向。 能力要求:能够运用马氏链的基本理论与方法对复杂排队系统进行计建模与计算;能分析系统的转移概率;能够处理系统稳态存在性问题,包括合理运用恰当的排队论分析方法(补充变量,嵌入马氏链和矩阵分析方法);能用Matlab软件及其相应的工具箱进行计算、分析和模拟仿真。 素质要求:不仅掌握建立排队模型、分析系统运行行为的基本方法,而且能对具体问题的分析结果和模型进行评价,并给出系统合理的设计和最优控制机制。 四、教学内容、重点难点及教学设计

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

排队论

排队论简介 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初,美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 服务系统由服务机构和服务对象(顾客)构成。如果服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的,则这个服务系统称为派对系统。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 对于排队系统,顾客到达时输入。输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 其中λ>0为一常数。

排队论习题

排队论习题 1. 一个车间内有10台相同的机器,每台机器运行时每小时能创造4元的利润,且平均每小时损坏一次。而一个修理工修复一台机器平均需4小时。以上时间均服从指数分布。设一名修理工一小时工资为6元,试求: (i )该车间应设多少名修理工,使总费用为最小; 解:这个排队系统可以看成是有限源排队模型M/M/s/10,已知 11,0.25,4,104m λλμρμ ====== 设修理工数为s , 由公式()()11010!!!!!!s m n n n n n s m m p m n n m n s s ρρ---==??=+??--??∑∑ ()11001m q n n s s s s n q n n n L n s p L np L s p =--===-??=++- ??? ∑∑∑ 目标函数为min 64s s L =+,用lingo 求解得到1s =,此时平均队长9.5s L =台,又因为当维修工数10s =时平均队长8s L =,说明此模型不合理。 对模型进行修正,由于要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。所以假设一名修理工修复一台机器平均需0.5小时,即设2μ=。用lingo 求解得维修工数3s =,平均队长,此时的最小费用为35.97元。(1)

程序: model: lamda=1;mu=2;rho=lamda/mu;m=10; load=m*rho; L_s=@pfs(load,s,m); lamda_e=lamda*(m-L_s); min=6*s+4*L_s; @gin(s); end Local optimal solution found. Objective value: 35.97341 Objective bound: 35.97341 Infeasibilities: 0.1000005E-09 Extended solver steps: 0 Total solver iterations: 388 Variable Value LAMDA 1.000000 MU 2.000000 RHO 0.5000000 M 10.00000 LOAD 5.000000 L_S 4.493352 S 3.000000 LAMDA_E 5.506648 (ii)若要求不能运转的机器的期望数小于4台,则应设多少名修理工; L ,求得应设解:同上,用有限源排队模型求解,增加约束条件4 s 4名修理工。 程序: model: lamda=1;mu=2;rho=lamda/mu;m=10; load=m*rho; L_s=@pfs(load,s,m); lamda_e=lamda*(m-L_s);

运筹学经典案例

运筹学经典案例 案例一:鲍德西((B AWDSEY)雷达站的研究 20世纪 30 年代,德国内部民族沙文主义及纳粹主义日渐抬头。以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。欧洲上空战云密布。英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。 1935 年,英国科学家沃森—瓦特( R.Watson-Wart )发明了雷达。丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的 Bawdsey 建立了一个秘密的雷达站。当时,德国已拥有一支强大的空军,起飞 17 分钟即可到达英国。在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。雷达技术帮助了英国,即使在当时的演习中已经可以探测到160 公里之外的飞机,但空防中仍有许多漏洞,1939 年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的 P.M.S.Blachett 为首,组织了一个小组,代号为“ Blachett 马戏团”,专门就改进空防系统进行研究。 这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。“ Blackett 马戏团”是世界上第一个运筹学小组。在他们就此项研究所写的秘密报告中,使用了 “Operatio nal Research” 一词,意指作战研究”或"运用研究"。就是我们所说的运筹学。Bawdseg雷达站的研究是运筹学的发祥与典范。项目的巨大实际价值、明确的目标、整体化的思想、数量化的分析、多学科的协同、最优化的结果,以及简明朴素的表述,都展示了运筹学的本色与特色,使人难以忘怀。

排队论测试题

首页 | 课程介绍 | 教学大纲| 授课教案| 测试习题| 教学视频| 实践教学| 考研指导| 参考资料| 前沿追踪| 教学队伍| 交流空测试习题 课后习题 第一章线性规划 第三章图与网络分析 第五章存储论 第七章对策论 综合测试 运筹学(96学时) 运筹学(48学时) 在线测试

以上分别服从泊松分布和负指数分布。为减轻打字员负担,有两个方案;一是增加一名打字员,每天费为 40 元,其工作效率同原打字员;二为购一台自动打字机,以提高打字效率,已知有三种类型打字机其费用及提高打字的效率如表 6-1 所示。 表 6-1 型号每天费用 / 元打字员效率提高程度 /% 1 37 50 2 39 75 3 43 150 据公司估测,每个文件若晚发出 1h 将平均损失 0.80 元。设打字员每天工作 8h ,试确定该公司应采用的方案。 6.8 某商店收款台有 3 名收款员,顾客到达率为每小时 504 人,每名收款员服务率为每小时 240 人,设顾客到达为泊松流,收款服务时间服从负指数分布,分别求 P 0 、 L q 、 L s 、 W q 及 W s 。 6.9 某设备维修中心有 k 名工人,每天到达的需检修的设备服从λ=10 的负指数分布,每名工人维修设备的平均时间服从μ=3 的负指数分布。现已知设置一名工人的服务成本为每天 4 元,而设备等待损失为每天 25 元,试决定此设备维修中心工人的最佳数字 k 。 6.10 考虑某个只有一个服务员的排队系统,输入为参数λ的普阿松流。假定服务时间的概率分布未知,但期望值已知为 1/ μ。 (a) 比较每个顾客在队伍中的期望等待时间,如服务时间的分布为:①负指数分布;②定长分布;③爱郎分布,` 值为负指数分布的 1/2 ; (b) 如与值均增大为原来的 2 倍,值也相应变化,求上述三种情况下顾客在队伍中期望等待间的改变情况。 6.11 汽车按泊松分布到达一个汽车服务部门,平均 5 辆 /h 。洗车部门只拥有一套洗车设备,试分别计算在下列服务时间分布的情况下系统的 L s , L q , W s 与 W q 的值: (a) 洗车时间为常数,每辆需 10min ; (b) 负指数分布, 1/u=10min; (c) t 为 5~15min 的均匀分布; (d) 正态分布,μ=9min,Var(t)=42 ; (e) 离散的概率分布 P ( t=5 ) =1/4 , P(t=10)=1/2, P(t=15)=1/4 。 6.12 某仓库贮存的一种商品,每天的到货与出货量分别服从普阿松分布,其平均值为λ和μ,因此该系统可近似看成为( M/M/1/ ∞ / ∞)的排队系统。设该仓库贮存费为每天每件 c 1 元,一旦发生缺货时,其损失为每天每件 c 2 元,已知 c 2 >c 1 , 要求: (a) 推导每天总期望费用的公式; (b) 使总期望费用为最小的λ/ μ值。 6.13 设顾客按泊松流到达某服务台,平均到达率为λ=12 位 /h ,设每一位接收服务的顾客的等候成本为每小时 5 元,服务台的服务成本为每位顾客 2 元。试确定使此服务台总费用最少的平均服务率μ* 。 6.14 填空

排队论例题

几种典型的排队模型 (1)M/M/1/∞/∞/FCFS 单服务台排队模型 系统的稳态概率n P 01P ρ=-,/1ρλμ=<为服务强度;(1)n n P ρρ=-。 系统运行指标 a.系统中的平均顾客数(队长期望值) .s n i L n P λμλ ∞ == = -∑ ; b.系统中排队等待服务的平均顾客数(排队长期望值) (1).q n i L n P ρλμλ ∞ == -= -∑ ; c.系统中顾客停留时间的期望值 1 []s W E W μλ== -; d.队列中顾客等待时间的期望值 1 q s W W ρμ μλ =- = -。 (2) M/M/1/N/∞/FCFS 单服务台排队模型 系统的稳态概率n P 01 1,11N P ρρρ +-= ≠-; 1 1,1n n N P n N ρρρ +-= <- 系统运行指标 a .系统中的平均顾客数(队长期望值) 1 1 (1)11N s N N L ρρρ ρ +++= - -- b .系统中排队等待服务的平均顾客数(排队长期望值) 0(1)q s L L P =-- c .系统中顾客停留时间的期望值 0(1) s s L W P μ= - d .队列中顾客等待时间的期望值 。1 q s W W μ =- (3) M/M/1/∞/m/FCFS (或M/M/1/m/m/FCFS )单服务台排队模型 系统的稳态概率n P

00 1 ! ( ) ()! m i i P m m i λμ == -∑; 0! ( ),1()!n n m P P n m m n λ μ =≤≤- 系统运行指标 a .系统中的平均顾客数(队长期望值) 0(1)s L m P μ λ =- - b .系统中排队等待服务的平均顾客数(排队长期望值) 00() (1)(1)q s L m P L P λμλ +=--=-- c .系统中顾客停留时间的期望值 01 (1) s m W P μλ = - - d .队列中顾客等待时间的期望值 1 q s W W μ =- (4) M/M/c/∞/∞/FCFS 单服务台排队模型 系统的稳态概率n P 1 00 111[()()!!1c k c k P k c λλμρμ-==+-∑ ; 001(),!1(),!n n n n c P n c n P P n c c c λμλμ-?≤?? =? ?>?? 系统运行指标 a .系统中的平均顾客数(队长期望值): s q L L λ μ =+ b .系统中排队等待服务的平均顾客数(排队长期望值): 02 1 ()(1)!(1) c q n n c c L n P P c ρρρ∞ =+= -= -∑ c .系统中顾客停留时间的期望值: s s L W λ= d .队列中顾客等待时间的期望值: q q L W λ = [典型例题精解] 例1:在某单人理发馆,顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。求: (1)顾客来理发不必等待的概率;(2)理发馆内顾客平均数;

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

相关文档