文档视界 最新最全的文档下载
当前位置:文档视界 › 气象雷达与卫星遥感

气象雷达与卫星遥感

气象雷达与卫星遥感
气象雷达与卫星遥感

课程论文

院、系滨江学院专业电子信息工程姓名秦艺郡学号20082305966 论文题目____气象雷达与卫星遥感________

二O一一年六月日

南京信息工程大学气象雷达与卫星遥感论文

秦艺郡

南京信息工程大学电子信息工程系,南京 210044

摘要海洋动力环境卫星(HY-2)已列入国家航天发展计划之中,针对我国目前微波遥感器的发展状况和海洋事业的业务需求,本文提出发展我国海洋动力环境卫星的用户需求的设想,包括遥感器的配置与性能指标、卫星轨道与姿态和精密定轨需求等等。

关键词:卫星发射轨道摄动海洋卫星遥感

广义上来说,卫星遥感是指以人造卫星为传感器平台的观测活动,它包括对地观测(这是目前卫星遥感的主要内容)以及面向太空环境的观测活动,本课程主要涉及前者。如图太阳辐射穿过地球大气到达地面的过程中,一部分被大气分子、大气微粒(气溶胶)和云层吸收,一部分由于上述目标的反射返回大气上界,而到达地面的太阳辐射也由于地表的反射也有一部分返回大气上界。来自太阳的电磁辐射通常称为短波辐射。另外一方面,地球大气本身和地表也是一个丰富的长波辐射源(红外、微波),这些电磁辐射穿过地球大气一部分被大气吸收一部分到达大气上界能为卫星仪器所接收。由于大气成份和地球表面物理特性的多样性,电磁辐射与这些粒子相互作用机理远为复杂。这一方面增加了由电磁辐射推测地球目标的难度,同时也为卫星反演遥感地球目标物特征提供了可行性。在有些称为主动式遥感的方法里,卫星接收雷达发射并与地-气系统相互作用的电磁辐射来探测地球目标属性。

最早的卫星遥感从气象遥感开始,利用气象卫星对大气的状态和运动进行监测,目前,卫星遥感逐渐扩展到对地球陆地和海洋以致人类的生存环境的全面监测。卫星对地遥感目标主要包括:(a)大气:主要包括估计温度、湿度、云量、云高、云迹风、降水、大气成分和分布等。(b)陆地和海洋:陆地地貌、地表覆盖物以及海洋属性等;(c)环境监测与资源开发:利用卫星遥感的大范围、长周期特性,实现地球环境监测和地球资源调查。

一、卫星发射

将卫星从地面送到绕地的空间轨道的过程称为卫星发射。一般使用多极助推火箭来完成卫星发射任务,发射一般要经过以下几段:首先是垂直上升段,使得卫星脱离稠密的大气层,其次是转弯段,卫星在制导系统的控制下转弯,目的将火箭引向预定的轨道方向(转移轨道),并进入自由飞行阶段,此时火箭主要在惯性的作用下在转移轨道上飞行。最后,当卫星在转移轨道上面达到预定的高度和速度时候,卫星上的助推火箭再次点火,最后到达预定轨道应该具有的高度、速度和方向时,星箭分离,卫星入轨。关于卫星发射的具体细节,请参考有关资料。

二、卫星轨道参数

通常使用天球坐标和地理坐标系来描述卫星在空间的位置和运行规律。

天球坐标系:地心为中心,天赤道为基本圈,春分点为原点。天球上面任一点用赤经和赤纬表示。赤经以春分点为起点,反时针方向量度,范围0-360度。赤纬以天赤道为0度,向南北两极为90°。天球坐标系不随地球自转而变。在天球坐标系内,描述轨道参数如下:

a 倾角i:轨道平面与赤道平面的夹角,度量以轨道的上升段为准,从赤道平面反时针旋转到轨道平面的角度。

b 升交点赤经Ω:卫星有南半球飞往北半球那一段称为轨道的上升段,由北半球飞往南半球的那一段称为下降段。卫星轨道的升段与赤道平面的交点称为升交点。轨道降段与赤道平面的交点称为降交点。升交点的位置用赤经Ω表示,它表示轨道平面的位置,也表示了轨道平面相对太阳的取向。

c近地点角ω:指轨道平面内升交点和近地点与地心连线的夹角,表示了轨道半长轴的取向。

d 轨道半长轴:轨道半长轴决定了卫星轨道的周期。

e 偏心率e:确定了卫星轨道的形状。

地理坐标系中的轨道参数

卫星地面接收站在计算卫星轨道,对资料定位时,大多使用地理坐标系。卫星的位置用地球上面的经纬度表示,这种坐标系经度以英国格林威治天文台的子午线为0°,向东到180°为东经,向西到180°为西经,其纬度以赤道为0°,至南北两极为90°,赤道以南是南纬,赤道以北是北纬。

A星下点:卫星与地球中心连线在地球表面的交点成为星下点。由于卫星的运动和地球自转,星下点在地球表面形成了一条连续的轨迹(星下轨迹)。

B 升交点和降交点:其意义与天球坐标系内一样,只是用地理坐标系中的经纬度表示。由于地理坐标系随地球自转而自转,但是卫星轨道不随地球自转而转动,所以每条卫星轨道的升交点和降交点是不同的。

C 截距:由于卫星绕地球公转的同时,地球不停地自西向东旋转。所以卫星绕地球转一周后,地球相对卫星要转过一定的度数,这个度数称为截距。所以,截距是连续两次升交点之间的经度数。

由于地球自转一周需要24小时,所以每小时转过15°。如果把地球看成是不动的,则卫星轨道相对地球

每小时向西偏移15°。因而截距与周期的关系是:

L=T×15°/小时。

利用截距也能由某条轨道的升交点经度预测下一条轨道升交点的经度,

λn+1=λn±L,西经取“+”,东经取“-”

D 轨道数:卫星从发射到第一个升交点的轨道数规定为第零条,以后每过一个升交点,轨道数增加“1”。

三、轨道摄动

作用在卫星上的力除l了地球引力外,还有其他各种力.它们是地球的非球形引力,大气阻力,日、月和其他天体引力,太阳光压和电磁力等.这些力叫摄动力(perturbation force)。摄动力和地球引力相比虽然很小,但仍然会使卫星偏离开普勒轨道。因此,摄动力为零时,6个轨道要素为常数,卫星运动轨道为开普勒轨道;摄动力不为零时,轨道要素是随时间变化的变量。为了使轨道保持在设计允许的范围内,必须对卫星施以外力(比如星上备有推力火箭)、克服摄动力.实现轨道保持。有时候出于某种目的(比如尽可能延长卫星的使用寿命),需要对卫星运行轨道进行变更。同样这需要借助卫星上面配备的助推火箭来实现这一目的。

四、世界海洋卫星的发射现状

世界海洋卫星包括:海洋水色卫星、海洋地形卫星和海洋环境卫星。海洋水色卫星是通过星上装载的遥感设备对海洋水色要素进行探测,为海洋生物资源开发利用、海洋污染监测与防治、海岸带资源开发和海洋科学研究等提供科学依据和基础数据。最具代表性的海洋水色卫星是1997年8月1日美国宇航局成功发射的专用海洋水色卫星"海星",它标志着因水色遥感器"沿海水色扫描仪"在1986年停止运转而中断了10年的全球海洋水色遥感数据又得以继续,而且可以得到质量更高的海洋水色资料。美国计划自"海星"卫星发射开始,进行20年时序全球海洋水色遥感资料的连续积累。到目前为止,世界上已经发射的具有海洋水色遥感功能的卫星已有10多颗。

海洋地形卫星主要是通过卫星上装载的雷达高度计对海洋地形进行探测,它在地球物理、海洋大中尺度动力过程等学科研究上的科学价值以及海洋灾害预报和海底油气资源勘探开发方面的经济价值显而易见。最具代表性的是美国的"测地卫星"系列和"托佩克斯/海神"系列卫星。

自美国1978年发射世界上第一颗海洋卫星以来,前苏联、日本、法国、加拿大和印度等相继发射了一系列海洋卫星。这些卫星一般搭载有光学遥感器、主动式微波遥感器和被动式微波遥感器等多种海洋遥

感有效载荷,可提供全天时、全天候海况的实时资料,如海表温度、海面风场、有效波高、流场、海面地形、海冰等多项海洋要素,对改进海况数值预报模式和提高中、长期海况预报准确率效果显著。

五、海洋遥感卫星探测的发展阶段

海洋遥感卫星探测的发展大致可分为3个阶段:①探索试验(1970~1978年),这一阶段主要载人飞船搭

载试验和利用气象卫星、陆地卫星探测海洋;②试验研究阶段(1978~1985年),该阶段美国发射了一颗海洋遥感卫星(SeaSart-4)和一颗雨云卫星(NI船US一7),该卫星上载有海岸带水色扫描仪(CZCS)。这两颗都属于实验研究阶段;③应用研究阶段(1985~),在这~阶段世界上发射了许多颗海洋遥感卫星,如海洋地形遥感卫星GeoSat、GFo-1,海洋动力环境遥感卫星ERS-1、ERS-2、Radarsat,海洋水色遥感卫星SeaStar ROCSAT-1、KOMPSAT。除此以外,还在别的卫星上搭载海洋探测器。

2.1探索试验阶段(1970"-'1978年)

1960~1970年的10年是气象卫星大力发展时期,美国相继发射了TIROS系列、NI船US系列和ESSA系列等3个系列极轨气象卫星和ATS系列静止型气象卫星。进入70年代后气象卫星技术日益成熟,美国发射业务型极轨气象卫星NOAA系列卫星、DMSP系列卫星和静止气象卫星GOES系列卫星。此外,美国在70年代发射了3颗陆地资源卫星(Landsat系列)。海洋遥感研究者开始利用气象卫星和陆地资源卫星探测海洋,取得可喜成绩,认为卫星观测平台具有获得大量海洋信息的潜力。气象卫星和陆地卫星具有自身的特点,完全代替海洋卫星,主要有以下原因:

①气象卫星和陆地卫星的探测器是光学探测器,不能代替海洋动力环境卫星和海洋地形卫星,后者主要探测器是微波探测器;

②虽然气象卫星和陆地卫星与海洋水色卫星上的主要探测器都属于光学探测器,但相互之间不能代替,主要困难有:波段配置不同。海洋水色仪要求波段多而窄;灵敏度和精确度不同。因为海洋水色仪参数要求定量测量;观测方式不同,为使轨道两侧太阳辐射照度均匀,要求观测时间维持在正午。基于上述原因,继气象卫星NO从一1和陆地卫星Landsat-1分别于1970年12月和1972年7月发射以后,美国率先开始了海洋卫星的探索阶段。在1973年美国发射了4艘天空实验室(SKYLAB)系列载人飞船上面搭载了多台地球观测仪器,包括多波段扫描仪、红外光谱仪、多光谱相机、地球地形相机以及微波散射计、雷达高度计、微波辐射计等。在一系列试验基础上,针对不同研究方向,美国还陆续发射了Geo一3卫星、Seasat-A卫星和NIIdBUS-7卫星。我过也相继发射了“风云一号”和“风云二号”系列气象卫星,为探测台风、海水温度变化取得了很好的效果。

2.2实验研究阶段(1978~1985年)

这一阶段美国发射了2颗卫星,即海洋卫星Seasat(1978、6)和雨云卫星NIMBUS一7(1978、10)。

2.2.1海洋卫星Seasat

海洋卫星Seasat是一颗海洋动力环境卫星,星上装载了5台探测器:①合成孔径雷达(SAR);②雷达高度计(ALT);⑨微波散射计(SASS);④多通道扫描微波辐射计(S眦R):⑤可见光红外辐射计(VIRR)。主要探测对象:海面风场、浪场、流场、海温、极区海冰、海平面高度、水陆分界等,此外,SAR和SMMR还可用于陆地探测。

2.2.2雨云卫星NIMBUS一7

NIMBUS-7是一颗气象科学卫星,星上装载了9台遥感器,其中用于海洋探测的有2台:海岸带水色扫描仪(CZCS)和多波段微波辐射计(S删R)。主要探测对象:海水叶绿素、悬浮泥沙、有色可溶有机物、海水污染、水质、海面温度、海冰等。

1 海洋环境监测与预报

海洋环境监测特别是风暴潮和强台风的监测和预报急需卫星散射计提供海面实时风场资料,海浪灾害需要高度计测量的有效波高和海面风场资料积累,海冰灾害监测也需要高度计提供的海面和海冰高度资

料。灾害性海况监测与预报,需要获得实时的海上风场、海面波浪场以及海面温度等监测数据,这些监测必须是全天时、全天候的,要求覆盖面广、观测周期短、精度高。所以急需发射以微波遥感器为主的海洋动力环境卫星,它能穿透云层全天时监测海洋。

海面风应力是引起海浪、大洋环流等海洋环境过程的主要驱动力之一。长期、连续、系统的风应力观测资料,对大气和海洋环境数值预报产品将有明显的提高;有效波高的观测弥补了波浪场观测资料的不足,会大大改善海浪预报的精度;高精度的海温资料,对海气间通量交换、海气相互作用、大气环流和大洋环流动力学的确定有很大的提高。在大气和海洋环境的数值预报中,利用海洋动力环境卫星监测的资料进行四维同化处理,会使预报产品质量得到明显的提高。目前的预报系统由于没有实时资料来源,为了提高我国海洋环境的预报能力和精度,急需我国发射海洋动力环境卫星为海洋环境预报提供海洋动力参数。

2 海洋调查与资源开发

大面积高精度的海表温度调查、大洋甚至全球风场的风矢量场分布调查、海洋动力要素(流、浪、潮)观测和海岸带调查(沿岸流、沿岸泥沙输运、滩涂植被和海岸带动态变化)等都需要海洋动力环境参数的全天时、全天候资料,也急需发射海洋动力环境卫星。

3 海洋污染监测与保护

海洋动力环境卫星资料可以提供我国近海海流,进而可以确定出我国近海各海域污染的自净能力,为我国制订海洋污染管理宏观决策提供依据。微波辐射计可以及时发现大面积的石油污染,依据连续的图象还可以对污染范围和扩散方向进行跟踪,以确定最佳清污方法,从而大大减少危害。为海洋环境保护部门提供必需的数据和资料。

参考文献

《卫星气象学》,陈渭民,夏浣清,陈光宇等编,气象出版社,1989

《空间科学与应用》,姜景山主编,科学出版社,2001

《气象卫星-系统、资料及其在环境中的应用》,许健民等译,气象出版社,1994

《航空航天科学技术(航天卷)》,闵桂荣,1998年12月第1版

《遥感精解》,[日]遥感研究会,1993年12月第1版

卫星气象学复习题

1、极轨卫星和静止卫星的观测特点是什么?优缺点。 (1)极轨卫星(太阳同步轨) 1)优点有:①由于太阳同步轨道近似为圆形,轨道预告、接收和资料定位都很方便;②有利于资料的处理和使用;③太阳同步轨道卫星可以观测全球,尤其是可以观测两极地区;④在观测时有合适的照明,可以得到充足的太阳能。 2)缺点是:①可以取得全球资料,但观测间隔长,对某—地区,一颗卫星在红外波段取得两次资料;②观测次数少,不利于分析变化快,生命短的中小尺度天气系统。③相邻两条轨道的资料不是同一时刻,这对资料的利用不利。 (2)静止卫星 1)优点:①是卫星高度高,视野广阔,一个卫星可对南北70°S--70°N,东西140个经度,约占地球表面1/3约1.7亿平方公里进行观测;②是可以对某一固定区域进行连续观测,约半小时提供一张全景圆面图,特殊需要时,3—5分钟对某小区域进行一次观测;③是可以连续监视天气云系的演变,特别是生命短,变化快的中小尺度天气系统。如果把间隔为5分钟的图片连接成电影环,可以连续观察天气云系的演变。2)不足是:①它不能观测南北极区。②由于其离地球很远,若要得到清楚的图片,对仪器的要求很高。 ③卫星轨道有限。 2、什么是可见光云图?有什么特征? 可见光云图是卫星扫描辐射仪在可见光谱段测量来自地面和云面反射的太阳辐射,如果将卫星接收到的地面目标物反射的太阳辐射转换为图像,卫星接收到的辐射越大就用越白的色调表示,而接收到的辐射越小则用越暗的色调表示,就可得到可见光云图。 特点: 1、反照率对色调的影响,在一定的太阳高度角下,反照率越大色调越白,反照率越小,色调越暗 (1)水面反照率最小,厚的积雨云最大 (2)积雪与云的反照率相近,仅从可见光云图上色调难以区分 (3)薄卷云与晴天积云,沙地的反照率项接近难以区分 2、太阳高度角对色调的影响,太阳高度角决定了观测地面照明条件,太阳高度角越大光照条件越好,卫星接收到的反射太阳辐射也越大,否则越小 3、什么是红外云图?有何特征? (1). 卫星在红外波段选用的通道有:3.55—3.93微米和10.5—12.5微米。把3.55—3.93微米通道云图称短波红外云图,而把10.5—12.5微米通道云图称长波红外云图。被测物体温度越高,卫星接收的辐射越大,温度越低,辐射越小。将这种辐射转换成图象,辐射大温度高用黑色表示,辐射小温度低用白色表示。即为一张黑白色红外云图。红外云图是一张物体的亮度温度分布图,而不是实际的温度分布图。 (2). 红外云图的特点 ①红外(IR)图象表示辐射面的温度。在黑白图象中,暗色调代表暖区,亮色调代表冷区。云由于其温度比较低而通常显得比地表白。在这一点上,红外(IR)图象与可见光(VIS)图象有些相似,但在其他方面,两种图象之间存在重要的差异。 ②云顶温度随高度递减,在红外(IR)图象中,不同高度上的云之间存在鲜明的对照。 ③陆表和洋面之间有强烈温度反差的地方,海岸线在红外(IR)图象上清晰可见,白天,陆地可比海洋显得更暗(更暖),但在夜间,陆地可比海洋显得更亮(更冷)。当陆表和洋面的温度相同时,从红外(IR)图象上,将识别不出海岸线。陆地和海洋之间的温度反差在夏季和冬季最大,在春季和秋季最小。 ④在红外(IR)图象上卷云清晰可见,尤其是当它位于比它暖得多的地面之上时。可提供有关云纹理结构的信息。 ⑤红外(IR)资料可以定量应用,根据观测到的云温来估算相应的云顶高度。增强处理多采用红外云图。 4、什么是水汽图像?有何特征? (1) 红外波段5.7—7.3微米是水汽强吸收带,中心波长约为6.7微米。卫星在这一吸收带测得的辐射主要是大气中水汽发出的。将卫星在这一波段测得的辐射转换成图象就得到水汽图,通常在水汽图上色调

南京信息工程大学雷达气象学期末复习重点

测雨——厘米波雷达(微波雷达) ? 测云——毫米波雷达 ? 测风——风廓线雷达 ? 测气溶胶——激光雷达? 测温——声雷达 气象雷达的分类 (1)按照工作原理:常规天气雷达,多普勒天气雷达,偏振天气雷达,等。 (2)按照雷达工作波段:X 波段,C 波段,S 波段,L 波段,Ka 波段,等。 ! (3)按照安装平台:固定式,车载移动式,船载式,机载式,星载式,等。 天线方向:在极坐标中绘出的通过天线水 ?平和垂直面上的能流密度的相对分布曲线图。天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指的方向上。 天线增益:辐射总功率相同时,定向天线在最大辐射方向上的能流密度与各向均匀辐射的天线的能流密度之比。G=10*lg (S 定向/S 各项均匀) 新一代天气雷达系统结构概述 构成:发射机,天线,接收机和信号处理器。 ? 主要功能:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基数据。 雷达数据采集子系统(RDA )雷达产品生成子系统(RPG )主用户处理器(PUP ) 散射现象:当电磁波传播遇到空气介质和云、降水粒子时,入射的电磁波会从这些质点向四面八方传播相同频率的电磁波,称为散射现象。 — 散射过程:入射电磁波使粒子极化,正负电荷中心产生偏移而构成电偶极子或多极子,并在电磁波激发下作受迫振动,向外界辐射电磁波,就是散射波。 单个球形粒子的散射 定义无量纲尺度参数:α=2πr/λ 当α<<1时:Rayleigh 散射,也称分子散射。如空气分子对可见光的散射。 当<α<50:Mie 散射。如大气中的云滴对可见光的散射。 当α>50:几何光学:折射。如大雨滴对可见光的折射、反射,彩虹等光现象。 思考:对于3cm 和10cm 雷达遇到半径0.1cm 的雨滴发生哪种散射 瑞利散射:方向函数的具体形式:当雷达波是平面偏振波时,瑞利散射在球坐标中的 ! 方向函数为:()() ??θλπ?θβ2 222 2 2464sin cos cos 2 116,++-=m m r 当入射雷达波长一定,散射粒子的大小和相态一定(即r 、m 为常数),则: ()()??θ?θβ222sin cos cos ,+=C 米散射:单个球形粒子的散射 Rayleigh 散射与Mie 散射不同点: Rayleigh :前后向散射相等,侧向散射为零。 Mie :散射前向大于后向散射,α越大向前散射所占比越大,侧向散射不为零。 关系: \

气象雷达与卫星遥感在农业方面的应用

气象雷达与卫星遥感在农业方面的应用 摘要:随着时代的进步,科技的发展,气象雷达与卫星遥感在不同领域都发挥着巨大的作用。农业遥感对世界许多国家的农业生产、粮食安全、进出口调整、农业政策及计划制度、以及保护国家利益等方面都起到了巨大的作用。 关键字:气象雷达,遥感技术 一、气象雷达 1、气象雷达的工作原理 雷达发射机产生电磁能量,雷达天线将电磁能量集中形成向某一方向传播的波,由雷达天线以电磁波的方式辐射出去,电磁能在大气中以光速(29.98×104km/s)传播。当传播着的电磁波遇到了目标物后便产生散射波,而且这种散射波分布在目标周围的各个方向上。其中有一部分沿着与辐射波相反的路径传播到雷达的接收天线,被接收的这一部分散射能量,称为目标的后向散射,也就是回波信号,对这种回波信号的检测可以确定目标的空间位置。 雷达是用测量回波信号的延迟时间来测量距离的。假设目标离开雷达的斜距用R表示,则发射信号在R距离上往返两次经历的时间用Δt表示,目标的斜距R便可由下式给出(1/2)cΔt,其中c为光速。雷达测量目标的方位角和仰角是依靠天线的定向作用去完成的,它辐射的电磁波能量只集中在一个极狭小的角度内。空间上任一目标的方位角和仰角,都可以用定向天线辐射的电磁波束的最大值(即波束的轴向)来对准目标,同时接收目标的回波信号,这时天线所指的方位角和仰角便是目标的方位角和仰角。雷达天线装在传动系统上,可以固定方位角而在仰角范围内扫描,或固定仰角而在方位角范围内扫描,从而可以得到各个方向和探测距离内目标的信息。

世界上最高的气象探测站 2、气象雷达的组成 典型的气象雷达的主要由发射系统、天线系统、接收系统、信号处理器和显示系统等部分组成。电子线路组成部分见下图 3、气象雷达在农业方面的应用 无论是农业气象监测、农业气象情报、农业气象灾害防御,农业气候区划及资源开发利用、农作物产量预报等方面,我国气象工作者都开展了大量卓有成效的工作,为保障和促进我国农业生产做出了显著贡献。农业气象业务已成为现代气象业务体系中最重要的领域,而我国基层的气象为农服务又是其中最基础、最不可或缺的部分 在实施人工增雨(雪)、人工防雹及森林灭火中,采用雷达进行时实天气跟踪探测,可以有效监测云雨过程的发生和演变规律[1],是不可缺少的重要工具。目前,随着气候变暖,灾害性天气,如冰雹、洪水、干旱和森林火灾等时有发生。在气象应急服务时,快速应对异常天气变化,及时准确地提供 二、卫星遥感

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

卫星气象学期末复习重点

精心整理倾角:这是指卫星轨道平面与赤道平面之间的夹角,单位度。 轨道周期:指卫星绕地球运行一周的时间。 星下点:?指卫星与地球中心的连线在地球表面上的交点,用地理坐标的经纬度表示。太阳同步卫星轨道?:卫星的轨道平面与太阳始终保持固定的取向。由于这一种卫星 或辐射温度。 空间分辨率:指卫星在某一时刻观测地球的最小面积。 相函数:综合方向上每单位立体角内的粒子散射能量与粒子所有方向平均的每单位立体角内的散射能量之比,记为p(θ),θ为散射角。 云带:带状云系宽度大于一个纬距称做云带。

纹理:纹理是指云顶表面或其它物像表面光滑程度的判据。 涡旋云系:涡旋云系是一条或多条不同云量和云类的螺旋云带朝着一个公共中心辐合形成的,与大尺度涡旋相联系。 色调:也称亮度或灰度,指卫星云图上物像的明暗程度。 结构形式:指目标物对光的不同强弱的反射或其辐射的发射所形成的不同明暗程度 雹暴云团与暴雨云团的特点: 雹暴云团特点: 1.云团初生时表现为边界十分光滑的具有明显的长轴椭圆型,表明出现在强风垂直 切变下,长轴与风垂直切变走向基本一致;在雹暴云团成熟时,云团的上风边界十分整齐光滑,下风边界出现长的卷云砧,拉长的卷云砧从活跃的风暴核的前部

流出,强天气通常出现于云团西南方向的上风一侧,可见光云图上出现穿透云顶区(风暴核),红外云图上有一个伴有下风方增暖的冷v型。出现大风的边界常呈出现大风的边界长呈现出弧形,这时整个云型可以为椭圆型,有事表现为逗点状云型。 2.飑线云团按其尺度可以再分成两种情况,一种是云团尺度较大时(约2个纬距), (约1 3. 4. 1. 2. 孤立,四周很少有中低云相伴。 3.暴雨云团一般出现于急流云系的右侧,源源不断暖湿气流头部、脊线处,而且在靠赤道一侧不存有急流;暴雨云团也可出现于急流左侧,但云团远离急流轴,无强风垂直切变。

雷达气象学

一、填空(30分,T14=2分) 1使用雷达的PPI资料时,不同R处回波处于不同高度上 2根据衰减理论,波长越短,衰减愈大;雷达波在大气中传播时受到衰减的原因是:(1)电磁波投射到气体分子或液态、固态的云和降水粒子上时一部分能量被粒子吸收,变成热能或其他形式的能量。(2)另一部分能量将被粒子散射,使原来入射方向的电磁波能量受到削弱。 或者:大气对电磁波的吸收和衰减作用的总和(P33) ?3圆形的中气旋流场,在多普勒速度图上表示为零径向速度线穿过涡旋中心,一对左负右正,对称的正负速度中心,正负闭合等值线圈沿雷达距离圈排列(P289、407) 4大冰雹的后向散射截面比同体积的大水滴的后向散射截面大 5通常,超折射回波的本质是地物回波(ppt,P300) 6“V”型缺口通常表示冰雹云的回波(P381,ppt) 7 Z的物理意义是单位体积中降水离子直径6次方的总和,它与粒子大小有关(ppt) 8 以不同的仰角探测超级单体风暴云的回波特征,可能出现:钩状回波, 空洞回波(无回波穹窿),指状回波回波(ppt) 9层状云降水的雷达强度回波图上,经过加衰减后,其回波图上经常会出现零度层亮带,此现象在雷暴消散期也常常出现。(P306、309) 10 非降水回波包括云的回波,闪电的回波,雾的回波,晴空大气回波等回波(P345) ?11 同一块雨云由远至近地性质不变地逼近雷达站,在强度回波图上显示的回波范围越来越大,强度越来越强,这是由于距离衰减的影响 12 波束宽度指的是在天线方向图上两个半功率点方向的夹角(单位:°),它决定雷达的切向分辨率。(课堂笔记) 13 在雷达的速度回波图上若零速度带通过测站并呈一直线状,则表示测量范围内各高度层的风向不变(P278) 14 如果雷达发射功率很大,接收灵敏度也很高,那么天气雷达的探测能力的大小主要取决于:雷达电磁波束能否有效地照射到降水区中和反射率因子的大小(ppt习题) 15 多普勒天气雷达速度回波图中零速度带的意义是:实际风速为零或很小、实际风向与雷达探测波束相垂直(ppt) 16 层状云零度层亮带的成因主要是由于:融化作用,碰并聚合效应,速度效应,粒子形状的作用,(P308)二计算题 分别画出并计算图一、图二中1,2的真实风向 (画出!&计算!四个地方) 三、简答题(30分) 1用雷达资料判别冰雹云回波可以从哪些方面着手?(P380-385) (1)冰雹云的雷达回波强度特别强

雷达与卫星气象学总复习

前言 1) 按遥感方式划分,天气雷达属于主动遥感设备或有源遥感设备。 2) 我国目前已经布网了160多部新一代多普勒天气雷达。按波长划分,已布网的新一代多普勒天气雷达有S波段和C波段两种类型,S波段雷达部署在大江大河流域及沿海地区,C波段雷达部署在东北、西北、西南等内陆地区。 3) 天气雷达起源于军事雷达,最早出现天气雷达是模拟天气雷达。 4) 天气雷达最常用的扫描方式有PPI扫描、RHI扫描和VOL体扫描。 5) S波段天气雷达波长在10cm左右;C波段天气雷达波长在5cm左右;X波段天气雷达波长在3cm左右 第1章散射 1) 散射是雷达探测大气的基础,大气中引起雷达波散射的主要物质有大气介质、云和降水粒子。 2) 粒子在入射电磁波的极化作用下,做强迫的多极震荡而产生次波就是散射波。 3) 什么是瑞利散射及瑞利散射的特点? 4) 什么是米散射及米散射的特点? 5) 雷达截面也称作后向散射截面,它的大小反映了粒子的后向散射能力的大小,雷达截面越大,粒子的后向散射能力越强。 6) 什么是雷达反射率 ? 单位体积内全部降水粒子的雷达截面之和称为雷达反射率。 7) 相关研究表明,对于小冰球粒子,其雷达截面要比同体积小水球的小很多;对于大冰球粒子,其雷达截面要比同体积大水球的大很多; 8) 晴空回波产生的原因是什么? 湍流大气(折射指数不均匀)对雷达波的散射作用;大气对雷达波的镜式反射(大气中折射指数的垂直梯度很大)。

9) 雷达反射率因子 与雷达反射率的区别 第2章衰减 1) 造成雷达电磁波衰减的物理原因是散射和吸收。 2) 造成雷达电磁波衰减的主要物质有大气、云和降水。 3) 水汽和氧气对电磁波的衰减作用主要是吸收 4) 云滴对雷达波的衰减随雷达波长得增加而减小。 5) 雨对雷达波的衰减一般与降水强度成近似的正比关系 第三章 雷达气象方程 1) 什么是天线增益G ? 定向天线最大辐射方向的能流密度与各向均匀辐射天线的能流密度之比,称为天线增益,用符号G 表示。 2) 天线增益的物理意义 由方向性天线把辐射能量集中到某个方向上,使这个方向上的辐射能流密度增加为各向同性天线的 G 倍。 3) 有效照射深度由雷达脉冲宽度决定,其值为脉冲宽度的一半。 4) 有效照射体积除了与有效照射深度有关外,还取决于雷达波束的几何形状。 5) 充塞系数除了与云和降水有关外,还取决于目标物距雷达的距离和雷达波束宽度有关。 6) 解释雷达气象方程 02 220.222231101024(ln 2)2R kdR t r PG h m P Z R m θ?ψπλ--?=?+, 各物理参数的意义。 答题思路:写出各符号分别指代的参数,如Pr :雷达回波功率,Pt :雷达发射功率,G 天线增益… 7) 说明雷达气象方程中各物理参数在雷达探测中的作用。 第4章 折射 1) 什么是大气折射? 光波或电磁波在大气中曲线传播的现象称为大气折射。 2) 折射产生的物理原因是光波或电磁波在不均匀介质中的传播速度不同而引起的。

卫星气象学复习课

卫星气象学复习课 第一章绪论 1、卫星气象学与卫星遥感 气象卫星、卫星气象学、遥感及其分类;气象卫星遥感; 2、气象卫星的种类及我国气象卫星发展概况 第二章卫星运动规律和气象卫星轨道 1、卫星的轨道参数 地理坐标中的轨道参数:星下点、升交点和降交点、截距、倾角 2、气象卫星轨道的分类(按卫星轨道参数分类:如倾角、高度、偏心率) 第三章卫星遥感辐射基础 1、电磁波段的划分 2、辐射能、辐射通量、辐射通量密度、吸收率、发射率、黑体、灰体 第四章卫星观测仪器和观测要素及分辨率 1、卫星探测分辨率 卫星探测的分辨率有三种:空间分辨率、灰度分辨率或温度分辨率和时间分辨率;几种分辨率之间的关系; 2、卫星对地的扫描方式大致有四种: 1)单个探测器线扫描 2)多探测器扫描 3)线性阵列探测器前推式扫描 4)圆锥扫描: 2、卫星云图的图像表示和增强处理 图像的数字化、卫星云图的增强处理(反差增强、分层增强) 第五章卫星云图分析基础 1、可见光云图的基本特点:可见光云图色调的主要影响因子—反照率和太阳高度角 2、红外云图的基本特点:影响红外云图色调的因子; 3、卫星云图上识别云的六个判据:结构型式、范围大小、边界形状、色调、暗影和纹理 4、卫星云图上各类云的识别:积云、积雨云、卷云、层云等 第六章中纬度天气系统的卫星云图分析 1、大尺度云系类型:带状云系、涡旋云系

2、逗点云系、斜压叶状云系、变形场云系、细包状云系(云型及其与高低流场的配置) 3、水汽图的边界分析:头边界、内边界、干涌边界和底边界、回流边界 4、利用卫星云图分析500hPa槽线: 1)逗点云系定槽线;2)由大片中高云云区定槽线位置; 5、卫星云图确定地面高压脊线位置; 6、利用卫星云图确定地面冷锋的位置;冷锋云系的强度变化、我国南方冷锋云系及其移动特征。 7、暖锋云系、锢囚锋云系、静止锋云系的云图特征 8、我国夏季梅雨锋云系特点 9、确定高空急流轴的四条规则 第七章卫星云图在热带天气分析和预报中的应用 1、热带地区云的类别和云系的尺度分类 2、热带云团的垂直空间结构、云团种类; 3、热带辐合带(ITCZ)云系特点,及其长、短期变化特征;热带辐合云带的类型; 4、台风的云系结构、判断热带扰动发展成台风的云图特征、台风云型的主要类型、卫星云图上确定台风中心。 5、热带气旋强度的估算方法--Dvorak方法的基本思路 6、热带气旋路径的卫星云图预报方法: 1)由台风环境云场预报台风路径; 2)由台风本身云系特征预报台风路径; 第八章夏季对流性系云图分析 1、对流发生的水汽条件分析: (1)水汽带北侧暗区干区触发的对流; (2)水汽回流南边界处对流的发生; (3)水汽羽北端对流的生成发展 2、由早晨层云(雾)和午后积云浓积云分析对流性云系发生发展 3、中尺度对流系统分析: 1)飑锋云型:飑锋云系的天气系统分类--锋后飑线、锋上飑线、干线飑线、台风飑线; 2)雷暴低层外流边界和弧状云线的形成; 3)在雷暴不同阶段,雷暴中高压在卫星云图上的表现特征 4)利用卫星监视和预报短时雷雨大风 复习题 1、气象卫星的观测特点是什么? 2、什么是卫星的倾角?什么是星下点?GMS-5和FY-2的星下点在何处? 3、什么是近极地太阳同步卫星?太阳同步卫星轨道如何实现? 4、什么是地球同步卫星?其高度和运行周期为多少? 5、什么是大气窗? 6、如何区分红外云图、可见光云图? 7、卫星的空间分辨率、灰度分辨率或温度分辨率、时间分辨率的含义,以及它们之间的关

雷达气象学考试复习培训资料

雷达气象学考试复习

雷达气象学考试复习 1.说明和解释冰雹回波的主要特点(10分)。 答:冰雹云回波特征:回波强度特别强(地域、月份、>50dBZ );回波顶高高(>10km );上升(旋转)气流特别强(也有强下沉气流,)。 PPI 上,1、有“V ”字形缺口,衰减。2、钩状回波。3、TBSS or 辉斑回波。画图解释。 RHI 上:1、超级单体风暴中的穹窿(BWER ,∵上升气流)、回波墙和悬挂回波。2、强回波高度高。3、旁瓣回波。画图解释。4、辉斑回波。5、在回波强中心的下游,有一个伸展达60-150km 甚至更远的砧状回波。 速度图上可以看到正负速度中心分布在径线的两侧,有螺旋结构。有可能会出现速度模糊。 2.画出均匀西北风的VAD 图像 从VAD 图像上可以获得环境风速和风向的信息,西北风的风向对应7/4π(315°)如图所示,零速度线是从45°—225°方位的一条直线(可配图说明)。由此可绘出VAD 图像。 3.解释多普勒频移: 多普勒频移:由于相对运动造成的频率变化 设有一个运动目标相对于雷达的距离为r ,雷达波长为λ。 发射脉冲在雷达和目标之间的往返距离为2r ,用相位来度量为2π?2r/λ。若发射脉冲的初始相位为φ0,则散射波的相位为φ=φ0+4πr/λ。 目标物沿径向移动时,相位随时间的变化率(角频率) 44r d d r v d t d t ?ππλλ== 另一方面,角频率与频率的关系2D d f d t ? ωπ== 则多普勒频率与目标运动速度的关系fD=2vr/λ 4.天线方向图:在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分布曲线图。天气雷达的天线具有很强的方向性,它所辐射的功率集中在波束所指的方向上。 反映了雷达波束的电磁场强度及其能流密度在空间的分布;曲线上各点与坐标原点的连线长度,代表该方向上相对能流密度大小。 π/4 3π/4 7π/4 方位角 速度

卫星与雷达

预报员试题/卫星与雷达;总计184道试题,选择题96道,术语题9道,判断题46道,问答33题 极轨卫星:。 轨道位置在空间几乎是固定的,高度800——1000千米,绕地球飞行,获取全球资料。 4 1 地球同步(或静止)卫星。 位于地球赤道上空,高度36000千米左右,与地球自转速度相同,在赤道上空静止不动,因此,也称地球同步轨道卫星。 4 1 太阳耀斑:。 在可见光图像上,水面对太阳光的反射有可能使它具有云或浮尘的表现,这一现象称为太阳耀斑。 4 3 多普勒效应:。指波源相对于观察者运动时,观察者接收到的信号频率和波源发出的频率是不同的,而且发射频率和接收频率之间的差值和波源运动的速度有关。 4 3 下击暴流:-----------------------------------------------------。 能够产生近地面破坏性的水平辐散出流的风暴下部强下沉气流。 4 1 云线:-----------------------------------------------------。 带状云系的宽度小于一个纬距叫云线。 4

阵风锋:-----------------------------------------------------。雷暴产生的冷空气外流边界的前沿。 4 3 雹暴云团、-----------------------------------------------------。以冰雹、大风天气为主的云团。 4 3 在云图中,“IR”“VIS”和“WV”分别代表: A.可见光图、红外图、水汽图 B.红外图、水汽图、可见光图 C.红外图、可见光图、水汽图 D.水汽图、可见光图、红外图 C 1 1 红外云图的波长区间____。 A. 5.7至7.1um B. 10.5至12.5um C. 0.4至1.1um B 1 1 可见光云图的波长区间____。 A. 5.7至7.1um B. 10.5至12.5um C. 0.4至1.1um C 1 1 水汽云图的波长区间____。 A. 5.7至7.1um B. 10.5至12.5um C. 0.4至1.1um A 1

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。 2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测; 四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率); G 为天线增益;h 为脉冲长度; 、 :天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长; m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答:∑= 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无 关。 7 给出后向散射截面的定义式及其物理意义。 答: 定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其 上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,Z R C Z m m r h G p p t r ?=?+-=2 2222223212ln 1024λθ?πθ?λi S s R S 24πσ=

卫星气象学-1.1

卫星气象学 ——绪论 授课教师:刘毅 中国科学院大气物理研究所 2015.3.11

绪论 卫星气象学是利用卫星探测资料研究大气的一门学科,它是随着人造地球卫星的出现,而发展起来的大气科学分支。 (气象)卫星遥感:利用(气象)卫星作为探测平台(对大气)进行的遥感探测。 气象卫星的组成\分类\观测对象\探测原理\ 反演方法\如何应用\发展现状\发展趋势

历史进程 卫星气象学是二十世纪60年代初开始出现一门新兴学科。从1960年4月1日发射第一颗专用气象卫星TIROS-泰罗斯后,经历几个重要发展阶段。 70年代以前,气象卫星获得的主要资料是云图,并定性地应用于天气分析、天气预报和气象研究;70年代初期,卫星红外辐射仪投入业务应用,地面资料处理能力提高,使定量或半定量卫星探测资料,开始应用于大气科学各个分支。 80年代,随着气象卫星探测能力和对探测资料的处理能力提升,气象卫星提供更广泛资料,使卫星云图分析工作由纯定性分析向半定量和定量分析发展;以大尺度天气系统为主,向中小尺度天气系统发展;以气象分析应用为主,向气象、水文、海洋等多学科分析应用发展。 90年代,随着气象卫星对温度、风和湿度等探测精度提高,将资料更有效地应用于大气模式,以改进数值天气预报的结果,这是目前卫星气象学研究一个重要方面。 2000年以来,卫星观测臭氧、气溶胶、温室气体浓度、大气辐射平衡,都极大促进了数值天气预报、气候变化、环境监测研究。

Paul Crutzen, Mario Molina, and Sherry Rowland receive the 1995 Nobel Prize in Chemistry for their seminal discoveries concerning the chemistry of ozone

兰大卫星雷达气象学18春平时作业3辅导资料

兰大《卫星雷达气象学》18春平时作业3 1、B 2、D 3、D 4、C 5、C 一、单选题共10题,40分 1、对于不同波长的雷达,在有衰减时,衰减系数随波长增大而减小,探测中雨效果最好的是___雷达。 A3.2厘米 B5.6厘米 C11厘米 D10厘米 正确答案是:B 2、根据可见光云图观测原理,卫星观测到的辐射与物体的反照率和___有关。 A观测角度 B本身的辐射 C温度 D太阳天顶角 正确答案是:D 3、水汽图上边界整齐光滑,向上游一侧凸起,一侧为里冷的湿区和高云区,另一侧为狭窄的干黑带,这个边界是___。 A斜压叶状边界 B干涌边界 C底涌边界 D头边界 正确答案是:D 4、高空脊上游一侧高层积累的水汽越过脊区向赤道方向移动,水汽边界在该湿区前侧形成的是___。 A斜压叶状边界 B干涌边界 C回流边界 D内边界 正确答案是:C 5、按卫星轨道的倾角可将轨道划分成四类,不包括以下___项。 A赤道轨道 B极地轨道 C圆形轨道 D后退轨道 正确答案是:C 6、表征雷达垂直方向充塞程度的垂直充塞系数与很多因子有关,但不包括以下的___项。A距离R B波束水平宽度 C降水云体的顶高 D天线的仰角 正确答案是:B 7、风云1系列卫星属于___。 A静止气象卫星

B极轨气象卫星 C陆地观测卫星 D海洋观测卫星 正确答案是:B 8、可见光云图中,卫星观测到的辐射与物体的___和太阳天顶角有关。 A反照率 B本身的辐射 C温度 D形状 正确答案是:A 9、卫星云图的通过增强处理,可将人眼不能发现的细节结构清楚地表示出来,现在广泛用于业务的是___。 A反差增强 B分层增强 C增强红外云图 D灰度的门限化 正确答案是:C 10、在PPI和RHI上出现完整的零度层亮带,它是___的重要特征。 A层状云连续性降水 B对对流云降水 C积层混合云降水 D沙暴中的降水 正确答案是:A 二、多选题共5题,20分 1、对多普勒径向速度场基本特征的研究,可按___;___;___三个方面进行分析。 A零径向速度线 B朝向雷达分量(负)范围、分布及中心 C强多普勒径向速度梯度 D离开雷达分量(正)范围、分布及中心 正确答案是:ABCD 2、多单体风暴的下沉气流主要来源于___。 A对流层中层 B上升气流转变而来 C对流层低层 D平流层 正确答案是:AB 3、超级单体风暴常伴有的天气现象有___。 A局地暴雨 B冰雹 C下击暴流 D龙卷 正确答案是:ABCD 4、雷达回波功率与下列那些因子成正比,___。 A脉冲宽度

卫星气象学期末复习

CH1 1.气象卫星:人造星体,在宇宙空间、确定的轨道上飞行,携带着各种气象探测仪器,以对地球及其大气和海洋进行气象观测为目的,测量诸如温度、湿度、风、云、辐射等气象要素和降雨、冰雹、台风、雷电等天气现象。 气象卫星观测的特点:在空间固定轨道上运行;自上而下进行观测;全球和大范围的观测;使用新的探测技术(遥感探测);提供丰富的观测资料,受益面广(气象+其他领域) 2.遥感:1)概念:遥感是气象卫星的基础:在一定距离之外,不直接接触被测物体和有关物理现象,通过探测器接收来自被测目标物发射或反射的电磁辐射信息,并对其处理、分类和识别的一种技术。2)设备:传感器,运载工具,接收系统。3)卫星遥感探测研究主要内容:遥感信息获取手段的研究;各类物体的辐射波谱特性及传输规律的研究;遥感信息的处理与分析判读技术的研究。3)分类:按工作方式:主动遥感、被动遥感;按电磁波谱段:紫外~、可见光~、红外~、微波~;按探测对象:大气~、海洋~、农业~、地理~;按探测信息形式:图像~、非图像~ 气象卫星遥感:利用气象卫星对大气进行遥感探测。 3.卫星气象种类:(1)极地轨道卫星:中国风云1号 (2)静止轨道卫星:中国风云2号 p9/21 CH2 1.卫星轨道参数 1)升交点赤径(Ω)卫星由南半球飞往北半球那一段轨道称为轨道的升段;卫星由北半球飞往南半球那一段轨道称为轨道的降段;把轨道的升段与赤道的交点称升交点。轨道的降段与赤道的交点称降交点,升交点用赤径Ω表示,表示了轨道平面的位置和其相对于太阳的取向 2)倾角(i)指赤道平面与轨道平面间的(升段)夹角 3)偏心率(e)指轨道的焦距与半长轴之比 4)轨道半长轴(a)在轨道的长轴方向由轨道中心到轨道上的距离,确定了卫星的形状 5)近地点角(ω)卫星在轨道平面内升交点与近地点之间的夹角,确定了轨道半长轴的方向 6)平均近点角(M);7)真近点角(θ);8)偏近点角(E) 2.地理坐标系中的轨道参数 1)星下点:指卫星与地球中心的连线在地球表面上的交点 2)升交点降交点(如上)(极轨卫星才有) 3)截距:连续两次升交点之间的经度数L=T*15度/小时 4)轨道数:指卫星从一升交点开始到以后任何一个升交点为止环绕地球运行一圈的轨道数目 3.气象卫星运动规律:设想地球是理想球体,均质,质心在地心;卫星质量<<地球质量,卫星对地作用可忽略;星地距离>>卫星本身尺度,质点;忽略其它因素对卫星的作用力根据理论力学,卫星在地球引力作用下的运动为平面运动。该平面成为轨道面,轨道面过地心。卫星的运动方程为:??????? 4.卫星运动三定律(开普勒运动定律):1)椭圆(轨道)定律:卫星运行的轨道是一圆锥截线(圆、椭圆、抛物线、双曲线),地球位于其中的一个焦点上;2)面积定律:卫星的矢径在相等时间内扫过的面积相等(即面积速度为常数);3)周期定律:卫星轨道周期的平方与轨道的半长轴的立方成正比 5.卫星活力公式:v2 = μ( 2/r – 1/a ) 6.近极地太阳同步轨道气象卫星1)概念:近极地太阳同步轨道卫星是指卫星轨道平面与太阳始终保持固定的取向(每天过升交点的局地时间相同)。由于这一种卫星轨道的倾角接近90°,卫星近乎通过极地。2)实现:这种卫星是利用卫星随地球绕太阳公转时产生的转动抵消由于地球的扁率引起卫星轨道的摄动来实现的。3)优点:①轨道为圆形,轨道预告、接收和资料定位方便;②可实现包含极地的全球观测;③在观测时有合适的太阳照明,有利于资料处理和使用;④仪器可以得到充分的太阳能供给。缺点:①对中低纬度同一地点观测的时间间隔太长(相对于GEO),不利对中小尺度天气系统的监测;相临两条轨道的观测资料不是同一时刻的,需要进行同化 7.地球同步静止卫星轨道:1)概念:卫星的倾角等于0,赤道平面与轨道平面重合,卫星在赤道上空运

雷达气象学期末复习重点

雷达系统组成:触发信号产生器,发射机,天线转换开关,天线,接收机,显示器 脉冲重复频率PRF :每秒钟产生的脉冲数目,脉冲间隔决定了探测距离; 脉冲重复周期PRT :两个相邻脉冲之间的时间间隔,PRT =1/PRF ; 脉冲宽度τ:脉冲发射占有时间的宽度,单位微秒 波长λ:电磁波在一个周期内在空间占有的长度; 脉冲发射功率P :发射机发出的探测脉冲的峰值功率; 平均功率Pa:发射机在一个脉冲重复周期里的平均功率。 天线方向图:在极坐标中绘出的通过天线水平和垂直面上的能流密度的相对分布曲线图。 波束宽度: 在天线方向图上,两个半功率点方向的夹角。波束宽度越小,定向角度的分辨率越高,探测精度越高。 天线增益:辐射总功率相同时,定向天线在最大辐射方向上的能流密度与各向均匀辐射的天线的能流密度之比。 灵敏度:雷达检测弱信号的能力。用最小可辨功率Pmin 表示,就是回波信号刚刚能从噪声信号中分辨出来时的回波功率。 平面位置显示器PPI :雷达天线以一定仰角扫描一周时,测站周围目标物的回波。以极坐标形式显示。 距离高度显示器RHI :显示雷达天线正对某方位以不同的仰角扫描时目标物的垂直剖面图 散射现象:当电磁波传播遇到空气介质和云、降水粒子时,入射的电磁波会从这些质点向四面八方传播相同频率的电磁波,称为散射现象。 散射过程:入射电磁波使粒子极化,正负电荷中心产生偏移而构成电偶极子或多极子,并在电磁波激发下作受迫振动,向外界辐射电磁波,就是散射波。 单个球形粒子的散射 定义无量纲尺度参数:α=2πr/λ 当α<<1时:Rayleigh 散射,也称分子散射。如空气分子对可见光的散射。 当0.1<α<50:Mie 散射。如大气中的云滴对可见光的散射。 当α>50:几何光学:折射。如大雨滴对可见光的折射、反射,彩虹等光现象。 瑞利散射:方向函数的具体形式:当雷达波是平面偏振波时,瑞利散射在球坐标中的 方向函数为:()() ??θλπ?θβ222222464sin cos cos 2116,++-=m m r 当入射雷达波长一定,散射粒子的大小和相态一定(即r 、m 为常数),则: ()()??θ?θβ222sin cos cos ,+=C 米散射:单个球形粒子的散射 Rayleigh 散射与Mie 散射不同点: Rayleigh :前后向散射相等,侧向散射为零。 Mie :散射前向大于后向散射,α越大向前散射所占比越大,侧向散射不为零。 关系: Mie 散射包含Rayleigh 散射,Rayleigh 散射是Mie 散射的特殊。 后向散射:θ= 180o,只有后向散射能量才能被雷达天线接收。 雷达截面:粒子向四周作球面波形式的各向同性散射,并以符号σ表示总散射功率与入射波能流密度之比,即雷达截面i s S R S 2 4)(ππσ=或)(4ππβσ=

雷达气象学1-知识点综合3

《雷达气象学》知识点--2014版本 第一章前言 1 天气雷达的主要功能 2 天气雷达回波的形成的两种机制。 3 天气雷达系统的组成和主要参数(λ,PRF,τ)。 4 天气雷达的常用观测方式PPI、RHI、VCP(VOL体扫) 5 我国新一代天气雷达网的业务情况介绍 第二章气象目标物对雷达电磁波的散射 1 散射的物理本质 2、Rayleigh散射和Mie散射的概念、区别与联系; 3、若干基本物理量(散射函数,散射截面,雷达截面,雷达反射率,雷达反射率因子,等效反射率因子)的概念、物理意义以及他们之间的联系。 4、Z和dBZ的转化计算。 5、后向散射截面σb与尺度参量α的关系。 6、水滴球、冰球、外包水膜冰球的散射能力比较。 7、介质小椭球体的散射 8、晴空回波的成因 第三章大气、云、降水粒子对雷达波的衰减 1、衰减的物理本质 2、电磁波在大气传输过程中的衰减特性及衰减公式。 3、大气气体、云、雨、雪、冰雹等对雷达电磁波的衰减能力及比较。 4、衰减对雷达探测的影响。 5、衰减和波长的关系 第四章雷达气象方程 1、单个目标的雷达方程的推导。 2、云及降水的雷达气象方程的推导。 3、雷达气象方程的讨论。 4、雷达方程成立的条件。 5、有效照射体积、照射深度、波束宽度、天线方向图、天线增益 6、雷达常数及简化的雷达方程 7、雷达气象方程的应用 8、考虑充塞系数和衰减的雷达方程 第五章雷达电磁波在大气中的折射 1、产生折射现象的物理原因和折射规律 2、折射指数N单位与温度、压力和水汽压的关系 3、射线的曲率和等效地球半径的概念。 4、折射指数随高度变化的几种形式。 5、地球球面和大气折射对雷达探测远距离气象目标的影响。

雷达气象学复习重点

雷达气象复习 1 多普勒天气雷达可获取的基数据有反射率因子、平均径向速度和速度谱宽。 2天气雷达一般分为X 波段、 C 波段、 S 波段,波长分别是3厘米、5厘米、10厘米 3目前我国 CINRAD-SA降水模式中使用的体扫模式为VCP11、VCP21、VCP31。其中VCP11通常在强对流风暴出现的情况下使用,而VCP21在没有强对流单体有显著降水的情况下使用,晴空情况下使用VCP31 4目前我国 CINRAD-SA使用两种工作模式,即降水模式和晴空模式 5我国新一代天气雷达的降水估测只使用最低的4个仰角:0.5°,1.5°,2.4°,3.4°,分别使用在50km以外,35-50km,20-35km和0-20km的距离范围内。 6我国新一代天气雷达系统主要由雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)、通讯线路。 7当波源和观测者做相对运动时,观测者接受到的频率和波源的频率不同,其频率变化量和相对运动速度大小有关,这种现象就叫做多普勒效应。 8天气雷达的局限性:波束中心的高度随距离增加而增加、波束宽度随距离的增加而展宽、静锥区的存在。 9获取雷达接收到的降水回波信号是降水粒子对雷达所发射电磁波的散射产生的,因此电磁波在降水粒子上的散射是天气雷达探测降水的基础。 10当雷达波长λ确定后,球形粒子的散射情况主要取决于粒子直径d 。对于d<<λ的小球形粒子的散射,称为瑞利散射;d≈λ的大球形质点的散射称为米散射。11反射率因子在瑞利散射条件下的定义:单位体积中降水粒子直径6次方的总和 称为反射率因子,用Z表示,其常用单位为mm6/m3,即∑ = 单位体积6 i D Z 12后向散射截面的定义:设有一理想的散射体,其截面为σ,它能全部接收射到其上的电磁波能量,并全部均匀地向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,则该理想散射体的截面σ就称为实际散射体的后向散射截面。 13单位体积中降水粒子后向散射截面的总和,称为气象目标的反射率,用η表示,常用单位是 cm2/m3 14电磁波能量沿传播路径减弱的现象,称为衰减。大气、云、降水粒子对雷达波的衰减是由于散射和吸收引起的,衰减的结果将使回波图象、定量测量情况与实际情况出现偏差。 15 距离折叠是指雷达对产生雷达回波的目标物位置的一种辨认错误。距离折叠现象常见于速度和谱宽产品,距离折叠现象只偶尔出现在反射率产品。

相关文档
相关文档 最新文档