文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米光催化材料研究进展

纳米光催化材料研究进展

纳米光催化材料研究进展
纳米光催化材料研究进展

纳米光催化材料研究进展

姓名:蔡美娟学号:7101010134 班级:行管104

摘要:

纳米材料被誉为2l世纪的新材料,直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、最直接、最有效的方法。为此,中国政府制定实施了“中国光明工程”计划,模仿自然界植物光合作用原理和开发出人工合成技术被称为“2l世纪梦”的技术,它的核心就是开发高效的太阳光响应型半导体光催化剂。目前国内外常见的光催化材料多为金属氧化物或硫化物,如TiO2、ZnO、CdS及PbS等。但由于光腐蚀和化学腐蚀强、难溶解,实用性好的有TiO2与ZnO,其中TiO2使用最为广泛,我们就以现今纳米光催化材料的TiO2与ZnO研究介绍来进行纳米光催化的研究进展

关键字:

纳米光催化材料TiO2 ZnO能源的枯竭

正文:

1 引言

纳米材料被誉为2l世纪的新材料,其概念在本世纪中叶被科学界提出后得到广泛重视和探人发展。1959年,诺贝尔物理奖获得Feyranan在美国加州理工学院召开的美国物理学会年会上预言:如果人们可以在更小尺度上制备并控制材料的性质,将会打开一个崭新的世界。这一预言被科学界视为纳米材料萌芽的标志。在能源危机和环境问题的双重压力下,开发新能源,特别是使用清洁能源代替传统能源,迅速地降低他们的消耗量,保护环境改善城市空气质量早已经成为关乎社会可持续发展的重大课题。中国能源发展方向可以锁定在前景看好的物种新能源:水能、风能、太阳能、氢能和生物能。直接利用太阳能来解决能源的枯竭和地球环境污染等问题是其中一个最好、最直接、最有效的方法。为此,中国政府制定实施了“中国光明工程”计划,模仿自然界植物光合作用原理和开发出人工合成技术被称为“2l世纪梦”的技术,它的核心就是开发高效的太阳光响应型半导体光催化剂。目前国内外光催化剂的研究多数停留在二氧化钛及相关修饰,尽管这些工作卓有成效,但是在规模化利用太阳能方面还远远不够,因此收寻高效太阳光响应型半导体作为新型光催化剂成为当前此领域最重要的课题。

2光催化材料的基本原理

半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子一空穴对的还原氧化性能,可以降低周围环境中的有机污染以及光解水制备H2和02。

3光催化材料的选择

常见的光催化材料多为金属氧化物或硫化物,如TiO2、ZnO、CdS及PbS 等。但由于光腐蚀和化学腐蚀强、难溶解,实用性好的有TiO2与ZnO,其中TiO2使用最为广泛。

TiO2的综合性能最好,其光催化活性最高(高于ZnO),化学性稳定、氧化还原性强、抗光阴极腐蚀性强、难溶、无毒且成本低,是研究及应用中最广泛的单一化合物光催化剂。

TiO2晶体对催化剂活性的影响很大。其晶型有三种:板钛型、锐钛型、金红石型。以一定的比例共存的锐钛型和金红石型混合型TiO2的催化活性最高。

4几种光催化材料

4.1纳米Ti02光催化剂改性研究进展

从上世纪80年代以来,随着全球性的环境污染日趋严重,如何有效的控制与治理环境污染已成为人类面临和亟待解决的重大课题。在环境污染治理技术中,纳米材料光催化降解因其可以利用太阳能则被认为是净化环境的技术革命。由于半导体Ti02具有良好的化学稳定性、低成本、耐腐蚀、无毒等优点,被广泛应用于太阳能转换与存储眦、污水处理、空气净化、除菌保洁、自洁防雾等各方面;尤其是纳米技术的迅速发展,纳米Ti02成为目前最具应用前景的光催化剂。但是,目前主要以氧化钛半导体为主的光催化技术还存在几个关键的技术难题,使其在工业上的应用受到极大的制约。这些问题主要包括:(1)Ti02量子产率低(约4%),最高不超过10%,难以处理量大且浓度高的工业废气和废水:(2)太阳能的利用率低,以氧化钛为主的光催化剂只能吸收利用太阳光中的紫外线部分;(3)光催化剂的负载技术不能满足工业需求,难以同时满足高的催化活性和特定材料的物理化学性能的要求{也就是说,催化剂进行分离、回收和再利用仍是有待解决的问题;(4)光催化反应器缺乏统一标准,虽然日本取得了一些成果,但是反应器的尺寸大小、几何形状还没有统一的标准。一般的光催化反应都在自制的反应器中进行。以上问题中,尤其是Ti02光催化剂本身存在的量子产率低、吸收光谱范围窄等缺点严重制约了光催化技术的应用进展。

4.2纳米ZnO光催化材料的研究进展

作为一种重要的光催化剂,ZnO体相材料的禁带宽度为3.2 eV,是极少数几个可以实现量子尺寸效应的氧化物半导体,因此如何利用简捷、温和的技术制备纳米氧化锌,一直是人们研究的热点.近年来,人们已利用高效便捷的声化学法合成出了各种形貌的纳米氧化锌光催化材料.ZnO作为一种半导体材料,室温下其禁带宽度约为3.37eV,在波长小于378nm 的紫外光照射下,可以生成光生空穴一电子对,而光生空穴具有氧化性,因此Z.-O具有光催化性,且具有价廉、易得、无毒无污染等特点。由于ZnO的诸多优点,使其在环境保护和治理方面具有广阔的应用前景,因此纳米ZnO的制备引起了广泛关注。纳米ZnO的制备方法可以根据其制备过程中是否存在化学反应,而分为物理法和化学法。物理法是利用粉碎技术而得到较细颗粒的ZnO,但最细粒度只能达到0.1tLm 而非纳米级。因此制备纳米级ZnO只能应用化学法,化学法又可分为固相法、气相法以及液相法。

参考文献

[1]古宏晨,徐华蕊,纳米材料研究在我国的进展,化工进展,2002;

[2]马育栋,新型纳米光催化材料的研究进展,济宁学院学报,2008;

[3]王彦敏,Ti02纳米光催化剂的改性及其降解有机物的研究,省科技计

划项目,2005;

[4]杨瑞,纳米光催化在空调领域的应用,暖通空调,2001;

[5]李新勇,李树本,纳米半导体研究进展,化学进展,1996;

[6]操芳芳,余长林,声化学制备纳米光催化材料研究进展,有色金属科

学与工程,2011

[7]刘素文,TiO<,2>-ZrO<,2>体系纳米光催化材料的制备及其降解有机污染

物的研究,山东大学博士学位论文,2004;

[8]颜鲁婷,纳米Ti02光催化材料的研究进展,材料科学与工程学报,2004

[9]彭英才,Ti02纳米结构在染料敏化太阳电池中的应用,真空科学与技

术学报,2009;

[10]张立德,纳米材料学,辽宁科学技术出版社,1994.

[11]王炜亮,纳米ZnO光催化剂制备方法研究进展,绿色科技,2011.

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

(完整版)纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater. 2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. Res.2012),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet Infec.Dis. 2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem. 2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术把锐钛

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

光催化材料的研究与进展

光催化材料的研究与进展 洛阳理工学院吴华光B08010319 摘要: 光催化降解污染物是近年来发展起来的一种节能、高效的绿色环保新技术.它在去除空气中有害物质,废水中有机污染物的光催化降解,废水中重金属污染物的降解,饮用水的深度的处理,除臭,杀菌防霉等方面都有重要作用,但是作为新功能材料,它也面临着很多局限性:催化效率不高,催化剂产量不高,有些催化剂中含有有害重金属离子可能存在污染现象。但是我们也应当看到他巨大的发展潜力和市场利用价值,作为处理环境污染的一种方式,它以零二次污染,能源消耗为零,自发进行无需监控等优势必将居于污染控制的鳌头。本文介绍了一些关于光催化研究的制备与发展方向的思考,光催化正在以TiO 2 ,ZnO为主导多种非重金属离子掺杂,趋于多样化的制备方法方向发展。 关键字:光催化催化效率 正文: 光催化(Photocatalysis)是一种在催化剂存在下的光化学反应,是光化学与催化剂的有机结合,因此光和催化剂是光催化的必要条件。“光催化”定义为:通过催化剂对光的吸收而进行的催化反应(a catalytic reaction involving light absorption by a catalyst or a substrate)。氧化钛(TiO 2 )具有稳定的结构、优良的光催化性能及无毒等特点,是近年研究最多的光催化剂, 但是,TiO 2 具有大的禁带宽度,其值为3.2 eV,只能吸收波长A≤387 11111的紫外光,不能有效地利用太阳能,光催化或能量转换效率偏低,使它的应用受到限制。因此,研制新型光催化剂、提高光催化剂的催化活性仍是重要的研究课题]1[。复合掺杂不同半导体,利用不同半导体导带和价带能级的差异分离光生载流子,降低复合几率,提高量子效率,成为提高光催化材料性能的有效方法5]-[2。 与一元氧化物如TiO 2 和ZnO等光催化剂相比,复合氧化物光催化剂,如 ZnO- SnO 2TiO 2 -SnO 2 和WO3- TiO 2 等体系具有吸收波长更长和光催化效率更 高等特点因而成为研究热点. 一、常用的光催化剂的制备方法 (一)水热合成法。 热合成反应是在特制的密封容器中(能够产生一定的压力),以水溶液作为反应介质,通过对反应体系加热或接近其临界温度而产生高压,从而进行材料的合成与制备的一种有效方法。 (二)溶剂热合成法 溶剂热合成技术是在水热法的基础上,以有机溶剂代替水作为介质,采用类似水热合成的原理制备纳米材料,极大的扩展水热法的应用范围。 (三)溶胶-凝胶法

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

光催化材料研究进展

. 光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅[1]。光催化适合特定的污染物而不适合大规模推广应用等方面的缺陷氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO 、ZnO、CdS、2 WO 、Fe O 等半导体光催化技术因其可以直接利用光能而被许332[2]。多研究者看好1.1 TiO光催化概述 21.1.1 TiO的结构性质 2二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO在自然界主要有三种结晶形态分布:锐钛矿型、2金红石型和板钛矿型。三种晶体结构的TIO中,锐钛矿和金红石的工2业用

途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密资料Word . 度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见 光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在[3]。光催化处理环境污染物方面有着极为广阔的应用前景 1.1.2TiO光催化反应机理2半导休表面多相光催化的基本原理:用 能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价-+)随后h(e,.)—空穴(带产生相应的空穴,这样就半导体内部生成电子电子-空穴对迁移到粒子表面不同位置、 与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态 的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复 合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO催化剂的局限及改性途径2作为光催化剂,虽然二氧化钛 具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大 规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不 高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸 收的光的波长主要集中在紫外区,而在照射到地球表面的太阳光中,

半导体纳米材料研究进展与应用

半导体纳米材料研究进展与应用 摘要: 介绍了半导体纳米材料的研究进展、制备方法的若干进展和应用前景。 关键词: 半导体纳米材料研究进展应用 1引言 20 世纪是物理学推动高新技术飞速发展的世纪, 人类已从控制与利用大量微观粒子系统的时代进入了控制与利用单个微观粒子的时代。纳米技术是世纪之交发展起来的新技术, 是在0.1~100nm 尺度空间内, 研究电子、原子和分子运动规律和特性的崭新的高技术科学Z。它的目标是人类按照自己的意志直接操纵单个电子、原子等粒子, 制造出具有特定功能的产品.目前, 人们已制造了各种各样的纳米材料, 例如: 纳米金属材料、纳米半导体材料、纳米氧化物材料、纳米陶瓷材料、纳米有机材料等. 其中半导体纳米材料对未来社会信息化的产生有至关重要的影响. 2半导体纳米材料 相对于金属材料而言, 半导体中的电子动能较低, 有较长的德布罗意波长, 因而对空间的限制比较敏感. 电子的德布罗意波长入与其动能 E 的关系为入=h^2/在纸上(其中m*是半导体中电子的有效质量, h 是普朗克常量) 。当空间某一方向的尺度限制与电子的德布罗意波长可比拟时, 电子的运动就会受限, 而被量子化地限制在离散的本征态, 从而失去一个空间自由度或者说减少了一维。因此, 通常在体材料中适用的电子的粒子行为在此材料中不再适用, 这种新型的材料称为半导体低维结构, 也称为半导体纳米材料【1】。 1966 年, Fuou ler 等人[2]首次令人们信服地证实了在Si/S iO 2 界面处存在二维电子气,从此拉开了半导体低维结构研究的序幕. Si-MO SFET[3]可以认为是对载流子实现一个维度方向限制最早的固体结构.在这个系统中, 由于Si 和SiO 2 界面导带的不连续, 形成一个三角势阱, 将电子限制在其中, 使其既不能穿过氧化层, 也不能进入Si 的体内, 电子的运动被限制在二维界面内. 随着微加工技术的发展和分子束外延技术(MBE )、金属有机物化学气相沉积技术(MOCVD)、液相外延(L PE)、气相外延(V PE)等技术的应用, 人们可以制造出更多的二维电子气系统Z 它是由两种具有不同带隙的半导体材料构成, 一般要求这两种材料结构相同, 并且晶格常量接近, 以获得原子级光滑的界面。MBE 和MOCVD 的一个重要特征是可以制备量子尺寸的多层结构, 其控制精度可达单原子层量级〔4〕。这些结构可分为量子阱(QW ) 和超晶格(SL ) 。1970 年, Esak i 和T su 〔5〕在寻找具有负微分电阻的新器件时, 提出了全新的“半导体超晶格”概念Z 如果势垒层厚度足够宽, 使得相邻阱内电子波函数没有相互作用, 即被称为量子阱.反之, 如果相邻阱内电子波函数有较强的相互作用, 即相当于在晶格周期场上叠加一个多层结构的超晶格周期场, 则被称为超晶格。从此, 对半导体量子阱和超晶格等半导体微结构的材料和器件的研究成为近20 多年来半导体物理学中最重要、最活跃的研究领域之一。 1978 年D ingle〔6〕等人对异质结中二维电子气沿平行于界面的输运进行了研究, 发现了电子迁

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

纳米生物材料研究进展

纳米生物材料研究进展 学院:建筑工程学院专业:土木工程 姓名:李春波学号111401140 生物材料又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术。生物工程学是70年代初,在分子生物学、细胞生物学等的基础上发展起来的,包括基因工程、细胞工程、酶工程、发酵工程等,他们互相联系,其中以基因工程为基础。只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品,而今天,就让我带领你走进微小,但不失奇妙的纳米生物材料。 纳米,其实是长度单位,原称毫微米,就是10亿分之一米,即100万分之一毫米。如同厘米、分米和米一样,是长度的度量单位。相当于4倍原子大小,比单个细菌的长度还要小。举个例子来说,假设一根头发的直径是0.05毫米,把它径向平均剖成5万根,每根的厚度大约就是一纳米。也就是说,一纳米大约就是0.000001毫米.纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米技术的发展带动了与纳米相关的很多新兴学科。有纳米医学、纳米化学、纳米电子学、纳米材料学、纳米生物学等。全世界的科学家都知道纳米技术对科技发展的重要性,所以世界各国都不惜重金发展纳米技术,力图抢占纳米科技领域的战略高地。我国于1991年召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。 在过去几年中,生物纳米材料的理论与实验研究已成为人们关注的焦点,特别是核酸与蛋白质的生化、生物物理、生物力学、热力学与电磁学特征及其智能复合材料已成为生命科学与材料科学的交叉前沿。目前,纳米生物芯片材料、仿生材料、纳米马达、纳米复合材料、界面生物材料、纳米传感器与药物传递系统等方面已取得很大进展。 1.纳米生物芯片材料 纳米生物芯片材料是一个正在发展的技术,它首先利用生物智能全数字癫痫定位仪查出致痫病灶,并进行精确定位,运用生物芯片技术进行植入病灶顶部,运用生物芯片调节神经兴奋及异常发作的微小电流,芯片植入后(就是出现发作人体也感应不到,因为电流被芯片吸收,就不会出现电流刺激神经和脑细胞,各种肢体抽搐等异常症状即刻消失)。而治疗系统中另一项需同时进行的血液磁化技术,它是依据生物物理学、生物磁学、生物光学、生物化学的原理,将磁、光、氧有机结合形成磁共振作用,以血液为媒介调节机体代谢实现对机体的治疗,它能感应和影响人体电流分布、电荷微粒的运动、膜系统的通透性和生物高分子的磁矩取向等,清除大脑异常电流,稳定神经细胞膜,提高神经细胞兴奋阈,抑制大脑神经元高频放电和冲动的传播。在脑部形成稳定的生物磁场,使异常放电的神经元电位趋于平衡,调整神经网路电失衡。对神经细胞功能失调有整合作用,对缺氧破损的神经细胞有修复作用,可以增进神经细胞的重新生长,针对性的修复受损的神经细胞,从而产生镇静、解痉作用,激发神经自身保护功能,促使神经

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

纳米功能陶瓷研究现状及未来发展趋势

纳米功能陶瓷研究及未来发展趋势 摘要:概述了普通陶瓷存在的裂纹缺陷问题。介绍了纳米材料的特性以及纳米陶瓷的制备方法。针对纳米陶瓷特有的性能,分析了西方国家高性能陶瓷的市场情况以及纳米陶瓷的应用前景。认为纳米陶瓷将在工程领域乃至日常生活中得到更广泛的应用。 关键词:纳米技术; 纳米陶瓷;前景预测 引言 工程陶瓷又称为结构陶瓷,因其具有硬度高、耐高温、耐磨损、耐腐蚀以及质量轻、导热性能好等优点,而得到了广泛的应用。但是,工程陶瓷也存在着某些缺陷,主要表现为它的脆性(裂纹)、均匀性差以及可靠性低等。而在纳米陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,从而为工程陶瓷的应用开拓了新领域。 1纳米技术与纳米陶瓷 1.1 纳米技术与纳米复合材料 纳米技术是20 世纪90年代出现的一门新兴技术,它是在0.10- 100nm的尺度空间内,研究电子、原子和分子的运动规律和特性。纳米材料研究是目前材料科学研究的一个热点, 其相应发展起来的纳 米技术,被公认为21世纪最有前途的科研领域。在纳米材料中,纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级;高浓度晶界及晶界原子的特殊结构,导致材料的力学性能、磁性、光学性能乃至热力学性能的改变。纳米相材料与普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。纳米材料具有常规粗晶粒材料所不具备的奇异特性和反常特性,例如纳米铁材料的断裂应力比一般铁材料高12倍;纳米相铜的强度比普通的铜坚固 5倍,而且硬度随颗粒尺寸的减小而增大。利用纳米技术开发的纳米陶瓷材料,就是由纳米级显微结构组成的新型陶瓷材料,是在纳米长度范围内(1-100 nm) 的纳米复合材料。

相关文档
相关文档 最新文档