文档视界 最新最全的文档下载
当前位置:文档视界 › 金属纳米材料研究进展

金属纳米材料研究进展

金属纳米材料研究进展
金属纳米材料研究进展

高等物理化学

学生姓名:聂荣健

学号:……………..

学院:化工学院

专业:应用化学

指导教师:………….

金属氧化物纳米材料研究进展

应用化学专业聂荣健学号:……指导老师:……

摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。

关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials

Name Rongjian Nie

Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected.

Keywords: nanomaterials; hydrothermal; metal oxides

;

引言

纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。

1.纳米材料简介

1.1 纳米材料概述

纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。

纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料:

(1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等;

(2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等;

(3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。

1.2纳米粒子基本效应的研究

纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。

1.2.1 量子尺寸效应[1]

当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。

1.2.2 体积效应[2]

由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。

1.2.3 表面效应[4]

表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

例如:化学惰性的Pt制成纳米微粒Pt后成为活性极好的催化剂。

1.2.4 宏观量子隧道效应[5]

微观粒子具有穿越势垒的能力称为隧道效应。人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。量子隧道效应是未来微电子器件的基础,它确定了现存微电子器件进一步微型化的极限。

2 金属氧化物纳米材料的表征[6]

2.1 XRD

X 射线衍射是分析固体物质结构的重要工具,它依据 X 射线在晶体中的衍射遵守布拉格定律,对试样的相组成,晶格常数,结晶度和颗粒尺寸进行分析。其基本原理是用波长λ的X射线照射到试样上,在不同角度出现一系列不同强度的衍射峰,通过分析峰的位置,强度和形状即可获知晶体结构特性。

2.2 SEM

扫描电子显微镜是研究材料微观形貌的有力工具,广泛应用于材料,化学,医学等相关领域中。其基本原理是聚焦在试样上的电子束在一定范围内作栅状扫描运动,在试样表层产生背散射电子、二次电子、可见荧光、X 射线等,通过探测这些信号,可获知试样的微观组织、形貌、均匀性、颗粒大小及表面形态等信息。同时,还可以通过配套的 X 射线能谱仪(EDS)对材料的元素组成及分布进行定性和半定量分析。

2.3 TEM

TEM 透射电子显微镜是一种高分辨率、高放大倍数的显微镜,通常可用于观察微小样品的形貌及内部结构,是一种准确、可靠、直观的测定分析方法。其基本原理是把加速和聚焦的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,得到透射电子作为信号的实像。经放大后可在观察屏上投射出所测试样的像,从而对试样的微观结构,形貌和组织特点进行分析。

2.4 FTIR

红外光谱与分子的结构密切相关,是表征分子结构的一种重要手段。其基本原理是将一束不同波长的红外射线照射到物质的分子上,分子中某些基团的振动频率或转动频率和一定波长的红外射线的频率一样时,伴随能量的吸收,分子就由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,这一过程中即伴随着分子的红外吸收光谱的产生。把试样的红外光谱与标准光谱进行比对即可快速判定试样成分

2.5 BET

即测量在一定压力下,气体在固体表面的吸附特性,并以著名的 BET 理论为基础,利用理论模型等效求出待测样品的比表面积及孔径分布。BET 被广泛应用于颗粒表面吸附性能研究及相关检测数据的处理。

2.6 TG

热分析是利用热力学参数或物理参数随温度变化进行分析的方法,它能快速测定物质的晶型转变、吸附、升华、熔融、脱水等相变。常用的技术包括差热分析,热重分析。

3金属氧化物纳米材料制备研究进展

尽管纳米材料的研究年限还不长,但目前为止,己有多种方法用于金属氧化

物纳米材料的制备研究[7, 8]。按不同分类标准,有不同的方法[9]。如:按制备方法一一可分为物理和化学方法;按反应原料的物态一一可分为固相,气相和液相法等。此外,常见方法还有溶胶凝胶法,共沉淀法,溶剂热法,燃烧法,模板法,化学气相沉积,前驱体等等[10]。其中,溶剂法,又称水热法,指以溶液为反应环境,运用各种方法使溶质发生反应,生成沉淀的一种方法。它是目前纳米材料制备的一个研究热点。相比其它方法,水热法具有以下优势[11]:

①广泛的适用性:可以合成不同维度,不同尺寸的纳米材料;

②实验操作简单,对实验室要求不高,产物形貌结构多样,分散性好,结晶度良好,产率较高;

③可在较大范围内进行参数调节,如反应的温度,反应时间,溶液浓度,加温速率,溶液PH调节等,达到对纳米晶体材料的可控生长;

④反应可以选择在敞开或密闭容器中进行,即根据实际需要选择反应气氛,达到某些亚稳态纳米材料的制备。

近年来,水热法合成金属纳米氧化物得到长足的发展,本文着重介绍了Fe,Co,Mn,Zn等金属氧化物纳米材料的水热制备方法研究进展,并简述了基于金属氧化物纳米材料的应用进展。

3.1 水溶剂水热法

水溶剂水热法是最经典也是最早出现的水热法,典型的反应溶剂是碱性水溶液。如Kang等[12]也利用类似方法制备了纳米多孔氧化钴纳米线(如图1)。董玉明等[13]在搅拌条件下将13mL浓盐酸滴入 70 mL0.056 mol/L 的高锰酸钾水溶液中,滴加完毕后继续搅拌20 min,然后转入高压反应釜中于140℃水热反应12h,

自然冷却至室温,干燥后获得二氧化锰纳米管。Zhou 等[14]将适量的 VOSO

4·xH

2

O

和KMnO

4

溶解后,用硝酸调至pH1.0-2.0,高压釜160℃反应24h,生成了大量直

径30-50 nm、长几百μm的超长V

2O

5

纳米线。

图1纳米多孔氧化钴纳米线的扫描电镜图[12]

水溶剂水热法作为最经典的方法,已被广泛应用,但其反应周期长,一般需要4~12h,甚至24h,这种明显缺点成为制约水热法发展的一大因素[15]。

3.2 有机溶剂水热法

研究者们在水溶剂水热法的基础上发展出有机溶剂水热法,在水溶液中添加有机溶剂,用于合成在水溶液中易于水解氧化而无法生成的材料[16]。如Wu等[17]

通过乙酰丙酮铁和水合肼水热合成了不同粒径的 Fe

3O

4

纳米颗粒,通过改变水合

肼浓度合成出不同粒径大小的 Fe

3O

4

纳米颗粒。Zhang等[18]以九水硝酸铁为原料,

水、乙醇、聚乙烯吡咯烷酮、氨水为反应溶剂,混合物在反应釜中200℃加热18h,

合成出α-Fe

2O

3

立方体纳米粒子。有机溶剂水热法不仅仅局限于反应溶剂,如

Tarlani 等[19]使用溶剂水热法合成了纳米氧化锌,将醋酸锌溶于乙醇-水溶液(1∶1),分别添加不同比例的L-赖氨酸(图 2a)、L-半胱氨酸(图 2b)和L-精氨酸(图 2c),以脲或草酸作为 pH 值调节剂,通过控制调节剂的添加量和反应方

式(高压或煅烧),合成出六角棒、立方体状、粒状、片状等不同形状的纳米结构。

在有机溶剂水热法中,用有机溶剂作反应介质,能够利用非水介质的一些特性(如极性或非极性、配位性能、热稳定性等)完成许多在水溶液条件下无法进行的反应。但存在多数有机溶剂有毒、易对人体造成危害的弊端。

图2不同形态下ZnO纳米材料的SEM 图[19]

3.3 超声辅助水热法

超声辅助水热法利用超声波能量使溶质蒸气扩散进入气泡从而使气泡体积增加,当气泡大小达到其最大值时气泡发生塌陷,产生高温( >5 000 K)和高压(1800 atm),这些极端条件可驱动各种化学反应合成纳米级材料[20]。通过不同的超声方式,可获得不同类型的纳米粒子。如Sharifalhoseini 等[21]采用两种不同的超声辅助水热法,一种方法是将前驱物Zn(OH)2-

4

转至65℃恒温水浴槽中,用超声发生器直接对溶液进行超声处理;另一种方法则用超声水浴机对前驱物进行超声处理。这两种方法分别获得了尖状六角花和片状六角花形态的 ZnO 纳米粒子,该作者认为在高强度(图 3a)超声辐照下,ZnO 形成六角棱镜晶核,并以柱状形式生长,在低强度(图3b)超声条件下,ZnO 先形成片状结晶,再汇聚成六角花状形式生长。利用超声波水热法制备的纳米材料虽形貌多样,但设备依赖性高,成本高。且多数反应需要容器处于敞口状态,易造成溶剂挥发。

图 3 尖状六角花(a)和片状六角花(b)的生长机理[21]

3.4 微波辅助水热法

微波辅助水热法是在水热法基础上通过微波加热或辅助加热制备纳米材料前驱物的一种方法。与传统的加热方法相比,微波加热技术具有反应时间短、选择性高、产量高、更节能等优点,被应用于纳米材料的快速合成[22-23]。Wang等[24]将过氧化氢和浓硝酸与钼酸溶液混合过夜后,用微波于150℃加热 10 min,反

应得到白色 MoO

3

纳米带。Liang 等[25]用微波加热(800 W)两种不同浓度的六水硝酸锌和氨水混合溶液8 min,再超声处理30min后,分别获得纳米花和纳米棒两种不同形态的 ZnO 纳米粒子。Sun 等[26]将乙醇铵、六水三氯化铁和乙二醇混

合后,使用微波加热至180℃,保持3h,可获得α-Fe

2O

3

的纳米片组装层空心孔

微球(图 4)。Shinga-nge 等[27]用六水硝酸锌、环六亚甲基四胺和水合肼通过微

波水热法合成 ZnO 纳米棒,实验结果显示,随着反应时间的延长,ZnO 纳米棒

的尺寸减少。Yao 等[28]以聚乙二醇(PEG)为模板纤维制备CuO 纳米粒子,发现在反应时间 10 ~ 60 min 和温度 100 ~180 ℃的不同条件下,微波水热法中的 CuO 晶体相对于水热法更易转换成多种形态的 Cu

2

O 晶体,作者认为在强微

波作用下,PEG 纤维可充当还原剂并将 CuO还原成 Cu

2

O。

图4a-Fe2O3纳米片组装层空心孔微球的 SEM(a~ c)与TEM(d)图[26]

3.5 两步水热法

两步水热法是指采用水热法先形成结晶层基底,该结晶层称为种子层,再以种子层为基底通过水热法生长出纳米线、纳米棒、纳米片等纳米材料。由于该方法合成出的纳米材料具有比表面积大、电子输运快和电子注入效率高等优点,已被广泛应用于染料敏化太阳能电池、纳米发电机、气体传感器以及场发射器件等领域[29]。Alshanableh 等[30]用等量的醋酸锌和二乙醇胺作为种子液,涂抹于FTO 基板,100℃加热10min制备出基底,然后以六水醋酸锌和环六亚甲基四胺(HMT)作为种子液,基底浸泡于种子液中并在 90℃下加热45 min,制备出纳米氧化锌六角管阵列。Li等[31]将1.5 mmol/L 六水硝酸钴、6.0 mmol/L 氟化铵和7.5 mmol/L 氨水溶于15 mL去离子水中,以碳纳米布为基底,采用超声辅助水热法

合成出 Co

3O

4

纳米线,再以此为基底,结晶生长出 NiMoO

4

纳米壳(见图5)。Zhang

等[32]根据文献[33]合成出Co

3O

4

纳米线阵列,再以Co

3

O

4

纳米线为骨干,硝酸镍为

原料,通过水热法生长出NiO六角片,形成 NiO@Co

3O

4

串状复合材料(图6)。

图5 Co3O4@NiMoO4的核/壳纳米线阵列示意图[31]

图 6 Co3O4纳米线(a,b)和 NiO@ Co3O4串状复合材料(c-e)的SEM-TEM 图像[38]

4金属氧化物纳米材料的应用

4.1食品检测领域的应用

食品是人类赖以生存和发展的物质基础,而食品安全问题是关系到人类健康

和国民生计的重大问题。加强对食品安全的快速检测已成为控制食品安全的重要手段之一。电化学感器由于具有灵敏度高、成本低、灵活便携等优点,已成为食品安全检测领域的研究热点。为提高电化学传感器的检测灵敏度,通常使用纳米材料修饰电极将检测信号放大。在众多纳米材料中,金属氧化物纳米材料因具有卓越的导电性和催化特性而引起了研究学者的密切关注,并被广泛用作修饰电极材料。目前,修饰金属氧化物纳米材料的方法主要有滴涂法[34-35]和电沉积法[36-37],而金属纳米材料在电化学传感器中的应用主要有以下两个方面: ①作为电催化材料[38-40],直接催化待测物发生相应的氧化还原反应;②作为固定生物识别元件的基材[41-43]。下文从基于金属氧化物的电化学传感器在农药残留检测、违禁添加物检测和真菌毒素检测3个方面进行简要叙述。

4.1.1 农药残留检测

农药作为人类文明发展的产物,曾为粮食产量的提高作出不可磨灭的贡献。但随着人口的增加,人类对粮食的需求越来越大,因盲目追求粮食产量,农药被大量和不合理使用,食品中的残留农药对人类健康所造成的影响受到人们的密切关注,成为目前食品安全的主要问题之一。在诸多检测方法中,修饰纳米材料的电化学传感器因检出限低、响应时间短、操作成本低的优点得到了广泛关注。Wang 等[44]开发出一种新型氧化钴/还原型氧化石墨烯复合纳米材料,该材料具有非常好的电化学活性,以其进行电极修饰,可直接催化呋喃丹和西维因氧化,适用于水果蔬菜中这两种农药的同时检测。

4.1.2 违禁添加物检测

近年来,随着科学技术的发展,用于食品加工、养殖种植的非食用级添加剂层出不穷,这些违禁添加剂在人体内的积累,会引发一系列毒副作用,因此建立有效、快速的检测手段对提前预防和实时检测违禁添加物的工作具有重要意义。詹盼等[45]基于酶联免疫原理开发出一种新的电流型传感器用于瘦肉精盐酸克伦特罗的检测,该传感器采用氧化锆探针进行信号放大,线性范围0.003~100g/L,检出限为1ng/mL,回收率为93.6%。Najafi等[46]制备出的新型纳米氧化锌/碳纳米管复合材料,能催化氧化双酚A和苏丹红Ⅰ,并检测食品中这两种物质含量,检出限分别达到9.0nmol/L和80nmol/L。Wang 等[47]将制备出的二氧化锰纳米花/三维还原氧化石墨烯/泡沫镍纳米复合材料用于修饰电极,该传感器可同时检测猪肉中β-兴奋剂沙丁胺醇和莱克多巴胺,线性范围分别为42~1463nmol/L 和17~962 nmol/L,检出限分别为23.0nmol/L和11.6nmol/L。

4.1.3 真菌毒素检测

真菌毒素是某些丝状真菌产生的二级代谢产物,极少量即可引起急性中毒。真菌毒素对食品生产各个环节的危害性很大,主要存在于谷物、坚果、豆类等粮食中,因此加强对其检测至关重要。电化学传感器在真菌毒素检测方面也得到了广泛的应用。Chauhan 等[48]开发出一种石英晶体微天平免疫传感器,用电化学石英晶体微天平循环伏安法检测玉米片中黄曲霉素B

1

,该传感器的二抗标记 Au@

Fe

3O

4

,并可重复利用,对黄曲霉素B

1

的线性范围为0.05~5 ng/mL。Rivas 等[49]

用氧化铱纳米粒子和硫堇修饰丝网印刷电极,再通过柠檬酸盐和氨基的静电吸引力在氧化铱纳米粒子表面固定核酸适配体,制备出一种检测赭曲霉毒素 A 的阻抗电化学传感器,用于检测白葡萄酒,检出限达5.65ng/kg。

4.2 气敏传感器领域的应用

气体传感器通过测出气敏材料在不同气氛下的电导率,可以实现对气体种类和浓度的检测。因此,气敏材料是气体传感器的核心。一些金属氧化物,SnO

2

In

2O

3

,Fe

2

O

3

,Zn0,WO

3

等,以其灵敏度高、响应迅速、成本低廉等优点,成为应

用最为广泛的气敏材料。但是,在实际应用中,金属氧化物气敏材料仍存在一些问题,如选择性及稳定性差、工作温度高(300℃左右)导致的能量耗损大、危险系数高和气敏机理复杂等。

4.3 锂离子电池中的应用

目前锂离子电池的发展趋势[50]是朝着混合动力车锂电电动车和大功率蓄电储能系统方向前进,这些大功率,高能量密度方面的应用对锂离子电池的电极材料提出了更高的要求,即材料具有高的能量和功率密度,超长循环寿命和较高的安全稳定性[51]。

金属氧化物纳米材料[52],具有高于现有碳材料的理论容量,并且材料的纳米化使其在动力学,结构稳定和储铿容量方面具有新的特点,成为目前锂离子二次电池研究的热点[53]。

5总结与展望

几种常用的水热合成法具有各自的优点和不足,其制备出的金属氧化物纳米材料的形貌和特性也不同,在实际应用中应根据需要进行选择。由于水热法具有简单、成本低、易操作、晶体可控、产率高等特点,因此是制备过渡金属纳米氧化物粒子的首选方法,也是重要途径,但水热合成过渡金属纳米氧化物的方法仍存在不足之处,需要在控制纳米粒子形貌、缩短制备周期、提高自动化程度以及完善基础的理论架构等方面进行深入研究,从而推进其商品化的应用进程。

“纳米时代”才刚刚开始,纳米技术拥有广阔的发展空间,完全可控地设计纳米结构,以及简化工艺和降低成本是未来纳米技术的发展方向。金属纳米氧化物材料由于具有电信号放大、特殊功能化、易修饰、催化作用、生物亲和等优点已被广泛用于电化学传感器修饰材料,但仍有关键问题需解决,尚需探究更灵活简便的修饰传感器方法,以进一步提高传感器的精确度和灵敏度,同时保证传感器的重复性和稳定性。

参考文献:

[1]Kamat P V, et al. Colloidal semiconductors as photocatalysts for solar energy conversion[J].SolarEnergy,1990,44(2):83.

[2]Cavicchi R E, et al. Coulomb suppression of tunneling rate from small metal particles[J].PhysRewLett,1984,52(16): 1453.

[3]BucherJP, et al. Magnetic properties of free cobalt cluster[J].PhyRevLett,1991,66(23):3052.

[4]Ball P,et al. Science at the atomic scale [J]. Nature, 1992, 355:761.

[5]张立德,等. 物理学与新型功能材料专题系列介绍开拓原子和物质的中间领域:纳米微粒与纳米固体[J].物理,1992,21(3):1671

[6]杨中民,等.纳米粒子及纳米化学研究进展[J].云南化工,2000,27(1):241

[7]汪信, 陆路德. 纳米金属氧化物的制备及应用研究的若干进展. 无机化学学报, 2000, 16(2): 213-217

[8] Vaysieres L. On the design of advanced metal oxide nanomaterials.International Journal of Nanotechnology, 2004, 1(1):1一4.

[9] Hulteen J. Journal of Materials Chemistry, 1997, 7(7): 1075一1087.

[10] Rodriguez J A, Fern A M. Synthesis, properties and applications of oxide nanomaterials. Wiley-Interscience, 2007, 342一356.

[11] BoT, Jiechao G, Chunxian W, et al. Chemical Industry and Engineering Progress, 2002, 21(10):707一712.

[12] Kang L Q, He D P, Bie L L, Jiang P. Sens. Actuator B, 2015, 220: 888-894.

[13] Dong Y M, Zhang J J, He Z H,Jiang P P.J. Instrum. Anal.2014,33(2): 173 -178.

[14] Zhou J H, Wang T, Chen Y C, Zhang Y G. Chemistry, 2008, (7): 510-517.[15]Meng A, Xing J, Li Z J, Wei Q, Li Q D J. Mol. Catal. A, 2016, 411: 290-298.[16]Xia J. Construction of Micro/Nanostructural Transition Metal(Fe/Mo) Oxide and Their Applications.Hefei: University ofScience and Technology of China, 2015.[17] Wu X, Tang J Y, Zhang Y C, Wang H.Mater. Sci. Eng. B, 2009, 157(1/3): 81-86.

[18] Zhang L L, Dai P, Yu X X, Li Y, Bao Z W, Zhu J, Zhu KR, Wu M Z, Liu X S, Li G, Bi H.Appl. Surf. Sci.2015,359: 723-728.

[19] Tarlani A, Fallah M, Mirza-Aghayan M.Biosens. Bioelectron.2015, 67: 601-607.

[20] Masjedi-Arani M, Salavati-Niasari M.Ultrason. Sonochem.2016, 29: 226-235.

[21] Sharifalhoseini Z,Entezari M H,Jalal R.Ultrason. Sonochem.2015, 27: 466-473.

[22] Zhu Y J, Chen F.Chem.Rev. 2014, 114(12): 6462-6555.

[23] Zhu Y J, Wang W W,Qi R J,Hu X L.Angew. Chem. Int. Ed.2004,43(11): 1410-1414.

[24] Wang L N, Zhang X, Ma Y, Yang M, Qi Y X.Mater. Lett.2016, 164: 623-626.

[25]Liang S, Zhu L F, Zhang P X.Ultrason. Sonochem.2014, 21(4): 1335-1342.

[26] Sun T W, Zhu Y J, Qi C, Ding G J, Chen F, Wu J.J. Colloid Interface Sci.2016, 463: 107-117.

[27] Shingange K, Ntwaeaborwa O M. J. Alloys Compd.2016,657: 917-926.

[28] Yao K, Liu S, Dong Y Y, Wang B, Bian J, Ma M G.Mater. Des.2016, 90: 129-136.

[29] HaoR, Deng X, Yang Y B, Chen D Y.Acta Chim. Sin.2014, (12): 1199-1208.

[30] Alshanableh A, Yap C C, Tan S T, Lee H B, Tan C H, GintingRT, Jumali M H H.Mater. Lett.2016, 165: 75-78.

[31] Li Y F, Wang H, Fan Y, Yu L, Zhou J L, Sun M.RSC Adv.2016,6(17): 13957-13963.

[32] Zhang W,Yan X Y,Tong X L,Yang J,Miao L,Sun Y Y,Peng L Y.Mater. Lett.,2015,159: 313 -316.

[33] Hao W J, Chen S M, Zhang L, Li Z X, J. Mater. Chem. A, 2014, 2(34): 13801-13804.

[34] Fang L X, Liu B, Liu L L, Li Y H, Huang K J, Zhang Q Y.Sens. Actuators B, 2016, 222: 1096-1102.

[35] Shanmugasundaram K, Sai-Anand G, Gopalan A I, Lee H G, Yeo H K, Kang S W, Lee K P.Sens. Actuators B, 2016, 228: 737-747.

[36] Qin Y Y, Li Y L, Tian Z, Wu Y L, Cui Y P.NanoscaleRes. Lett.2016, 11(32).

[37] Cai H, Liang P P, Hu Z G, Shi L Q, Wu J D.NanoscaleRes. Lett.2016, 11(1):104.

[38] Shanmugasundaram K, Sai-Anand G, Gopalan A I, Lee H G, Yeo H K, Kang S W, Lee K P.Sens. Actuators B, 2016, 228: 737-747.

[39] Liu Y G, Zhang X M, He D N, Ma F Y, Fua Q, Hu Y.RSC Adv.2016,6(22): 18654-18661.

[40] Huang J F, Zhu Y H, Yang X L, Chen W, Zhou Y, Li C Z.Nanoscale,2015, 7(2): 559-569.

[41] Li M, Kong Q, Ge S G, Zhang Y, Yu J H, Yan M.Biosens. Bioelectron.2015,65: 176-182.

[42] Park J G, Jang Y S, Kim M J, Min N K, Pak J J.Sens. Actuators B,2014,200: 173-180.

[43] Liu J, He Z M, Khoo S Y, Tan T T Y.Biosens. Bioelectron.2016, 77: 942-949.

[44] Wang M Y, Huang JR, Wang M, Zhang D G, Chen J.Food Chem.2014, 151: 191-197.

[45] Zhan P, Du X W, Gan N, Lin S C, Li T H, Cao Y T, Sang W G.Chin. J. Anal. Chem.

[46] Najafi M, Khalilzadeh M A, Karimi-Maleh H.Food Chem.2014, 158: 125-131.

[47] Wang M Y, Ma J J, Zhang D E, Tong Z W, Chen J. Bioelectron.2016,78: 259-266.

[48] ChauhanR, Singh J, Solanki PR, Basu T, O'KennedyR, Malhotra B D.Biochem. Eng. J.2015, 103: 103-113.

[49] Ansari A A, Kaushik A, Malhotra B D.Bioelectrochemistry, 2010, 77(2): 75-81.

[50] Aric A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature materials, 2005, 4(5):366一377 [51] Lee K T, Cho J. Roles of nanosize in lithium reactive nanomaterials for lithiumion batteries. Nano Today, 2011, 6(1):2一41

[52] Bruce P G, Scrosati B. Angewandte Chemie International Edition, 2008, 47(16):

2930一2946

[53]Jiang C, Hosono E, Zhou H. Nano Today,2006, 1(4): 28一33

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

碳纳米管材料的研究现状及发展展望[英文]

Research status and development prospect of carbon nanotubes Abstract: Carbon nanotubes due to their unique structure and excellent physical and chemical properties, and has wide application prospect and huge commercial value. This paper reviewed the methods for preparing carbon nanotubes, structural properties, application and development trend of carbon nanotubes. Keywords: carbon nanotubes; preparation; antistatic; stealth; radar absorbing coating Nanometer material because of its size in the transition region junction of atomic clusters and macroscopic objects, with the quantum size effect, small size effect, surface effect and the macroscopic quantum tunnel effect and other characteristics, exhibit many unique physical and chemical properties. Nanometer material nineteen eighties early after the formation of the concept, the world have paid great attention. It has unique properties, physical, chemical, material research, biology, medicine and other fields with meters of new opportunities. 1, carbon nanotube preparation, structure and properties 1.1, the preparation of carbon nanotubes

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

德国碳纳米管及石墨烯的发展概况

德国碳纳米管及石墨烯的发展概况 碳纳米管和石墨烯是世界材料行业飞速发展的产物,因为它们代表着更高的性能,更轻的质量,更可靠的环保责任。德国在该领域的研究虽然起步较晚,但随着其后续大量的投入,已经让它成为世界上相关产品研发的领跑者。碳纳米管和石墨的发展前景虽被看好,但高昂的制备成本和较低的产量却严重遏制其大规模应用。 图为:单壁碳纳米管(左),多壁碳纳米管(右) 随着行业对于材料性能的要求越来越高,传统材料的发展占空间逐渐走向萎缩,而高新科技材料将会取而代之成为行业选择的未来之路。众所周知,碳纳米管(CNTs)和石墨烯(graphene)及其复合材料因其卓越的电气及机械特性,已经在诸多领域,如光电,传感器,半导体器件,显示器,指挥,智能

纺织品和能量转换装置(例如,燃料电池,收割机和电池)等,显示出巨大的应用潜能。 从化学结构看,碳纳米管(CNTs)可以用作有机或无机半导体的替代物,但高昂的成本是目前限制其广泛用的最大难题。然而,碳纳米管作为一种新型材料有望在不久的将来实现成本低廉化大规模生产。 在电子学应用领域(电磁屏蔽除外),碳纳米管最大的用途是导体。它不仅具有高电导率,其材料还能呈现透明状,使用起来非常灵活便于拉伸。因此可以取代ITO,用于制作显示器,触摸屏,光电与显示母线和其他产品。经实验证明,碳纳米管的迁移率高于硅,这就意味着碳纳米管可以用于制造快速转换晶体管。此外,碳纳米管能够用于制备高性能的大面积加工设备,如印刷设备,从而帮助提高生产工艺,并显著降低生产成本。碳纳米管还适用于制造超级电容器,其原理是通过利用电容和晶体管的功率密度来平衡电池的能量密度,从而达到弥合电池和电容器的差距的目的。 从目前发展程度来看,碳纳米管的最大挑战是材料纯度,设备制造,以及对其他设备材料(如适当的电介质)的需要。但毋庸置疑的是其无法超越的性能优点(比如高性能,灵活

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

碳纳米材料综述

碳纳米材料综述 课程:纳米材料 日期:2015年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

相关文档
相关文档 最新文档