文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理--知识讲解 圆周运动和向心加速度

高中物理--知识讲解 圆周运动和向心加速度

高中物理--知识讲解 圆周运动和向心加速度
高中物理--知识讲解 圆周运动和向心加速度

高中物理--知识讲解 圆周运动和向心加速度

编稿:云飞扬 审稿:吴兴旺

【学习目标】

1、理解匀速圆周运动的特点,掌握描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速的定义,理解它们的物理意义并能灵活的运用它们解决问题。

2、理解并掌握描写圆周运动的各个物理量之间的关系。

3、理解匀速圆周运动的周期性的确切含义。

4、理解向心加速度产生的原因和计算方法。 【要点梳理】

要点一、圆周运动的线速度 要点诠释:

1、线速度的定义:

圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。

公式:t

l

v ??=

(比值越大,说明线速度越大) 方向:沿着圆周上各点的切线方向 单位:m/s 2、 说明

1)线速度是指物体做圆周运动时的瞬时速度。 2)线速度的方向就是圆周上某点的切线方向

线速度的大小是

t

l

??的比值。所以v 是矢量。 3)匀速圆周运动是一个线速度大小不变的圆周运动。 4)线速度的定义式t

l

v ??=

,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ?取得足够小,公式计算的结果就是瞬时线速度

注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。

要点二、描写圆周运动的角速度 要点诠释:

1、角速度的定义:

圆周运动物体与圆心的连线扫过的角度θ?与所用时间t ?的比值叫做角速度。

公式:t

??=

θω 单位:rad s /(弧度每秒)

2、说明:

1)这里的θ?必须是弧度制的角。

2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。 3)角速度的定义式t

??=

θ

ω,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要t ?取得足够小,公式计算的结果就是瞬时角速度。 4)关于ω的方向:中学阶段不研究。

5)同一个转动的物体上,各点的角速度相等 例如:木棒以它上面的一点

为轴匀速转动时,它上面的各点与圆心

的连线在相等时间内扫过

的角度相等。

即:

3、关于弧度制的介绍

(1)角有两种度量单位:角度制和弧度制

(2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是3600

,平角

和直角分别是1800和900

(3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad 。一段长为l ?的圆弧对应的圆心角是

r

l

?=

?θ rad, θ?=?r l (4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是:()rad r

r

ππθ22==

;平角和直角分别是2

π

π和 (rad )

。 (5)同一个角的角度α和用弧度制度量的θ之间的关系是:πα

θ180

=

rad , 0180?=

π

θ

α 要点三、匀速圆周运动的周期与转速 要点诠释:

1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s 。

它描写了圆周运动的重复性。

2、周期T 的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。

观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如何?(秒针的周期最小,其针尖的线v 最大,ω也最大。) 3、匀速圆周运动的转速

转速n :指转动物体单位时间内转过的圈数。 单位: r/s (转每秒),常用的单位还有r /min (转每分)

关系式:n

T 1

=

s(n 单位为r/s)或T n =60s(n 单位为r/min)

注意:转速与角速度单位的区别:角速度转速():/():

/ωrad s n r s

??

?

要点四、描述圆周运动快慢的几个物理量的相互关系

要点诠释:

因为这几个都是描述圆周运动快慢,所以它们之间必然有内在联系 1、线速度、角速度和周期的关系

匀速圆周运动的线速度和周期的关系2r

v T π=

匀速圆周运动的角速度和周期的关系T

π

ω2=

匀速圆周运动的角速度和周期有确定的对应关系:角速度与周期成反比。 2、线速度、角速度与转速的关系:

匀速圆周运动的线速度与转速的关系:2v rn π=(n 的单位是r/s ) 匀速圆周运动的角速度与转速的关系:n πω2=(n 的单位是r/s ) 3、线速度和角速度的关系: (1)线速度和角速度关系的推导:

特例推导:

设物体沿半径为r 的圆周做匀速圆周运动,在一个T时间内转过2πr 的弧长及2π角度,则:

T T

r v πωπ22=

=

ωr v =? 一般意义上的推导:

由线速度的定义:t l v ??=

而θ?=?r l ,所以r t

v ??=θ

又因为t

??=θ

ω,所以ωr v =

(2) 线速度和角速度的关系:ωr v = ω=

v r

可知:ω一定时v r ∝,r v 一定时∝ω。 同理: v 一定时ω∝

1

r

,r 一定时ω∝v 。 (3)对于线速度与角速度关系的理解:

是一种瞬时对应关系,即某一时刻的线速度与这一时刻的角速度的关系,适应于匀速圆周运动和变速圆周运动。

【高清课程:圆周运动和向心加速度 向心加速度】 要点五、圆周运动的向心加速度 要点诠释:

1、向心加速度产生的原因:向心加速度由物体所受到的向心力产生,根据牛顿第二定律知道,其大小由向心力的大小和物体的质量决定。

2、向心加速度大小的计算方法: (1)由牛顿第二定律计算:F a m

=

向向 ;

(2)由运动学公式计算:2

2v a r v r

ωω===向

如果是匀速圆周运动则有:222

22244v a r r r f v r T

πωπω=====向 3、向心加速度a 的方向:沿着半径指向圆心,时刻在发生变化,是一个变量。

4、向心加速度的意义:在一个半径一定的圆周运动中,向心加速度描述的是线速度方向改变的快慢。

5、关于向心加速度的说明

(1)从运动学上看:速度方向时刻在发生变化,总是有0≠?v 必然有向心加速度;

(2)从动力学上看:沿着半径方向上指向圆心的的合外力必然产生指向圆心的向心加速度。

加速度是个矢量,既有大小又有方向,匀速圆周运动中加速度大小不变,而方向却不断变化。因此,匀速圆周运动不是匀变速运动。 【典型例题】

类型一、描述匀速圆周运动的各个物理量

例1、一个直径为1.4m 的圆盘以中心为轴匀速转动,转速为2转/秒,求圆盘边缘一点的线速度、角速度、周期和向心加速度。

【思路点拨】熟练的运用描写圆周运动的各个物理量之间的关系,可顺利的解题 【解析】由题意可知,。s n m r /r 2,7.0==

再根据公式,1

,n 2,2n

T rn v ===πωπ,

可得:

【总结升华】熟练的运用描写圆周运动的各个物理量之间的关系,可顺利的解题。

例2、 (2015 海南会考模拟)如图所示,钟表的秒针、分针、时针转动周期、角速度都不同,下列说法中正确的是( )

A .秒针的周期最大,角速度最大

B .秒针的周期最小,角速度最大

C .时针的周期最大,角速度最大

D .时针的周期最小,角速度最大 【答案】B

【解析】时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,秒针的周期最小,根据2T

π

ω=

可知秒针的角速度最大,故A 错误B 正确;时针的周期是12h ,分针的周期是1h ,秒针的周期是1min ,时针的周期最大,根据2T

π

ω=

可知时针的角速度最小,故CD 错误。 【总结升华】该题为基本公式的应用,一定要搞清楚时针、分针、秒针的周期。 举一反三

【变式】电风扇叶片边缘一点的线速度为56.7m/s ,若它转动半径为18cm ,求电扇转动的角速度和周期。 【解析】根据线速度与角速度的关系r v ω=得

)

s (02.022)

rad/s (315===

==v r

T T r

v r

v ππω所以又因为

类型二、向心加速度的计算

例3、在长20cm 的细绳的一端系一个小球,绳的另一端固定在水平桌面上,使小球以5m/s 的速度在桌面上做匀速圆周运动,求小球运动的向心加速度和转动的角速度。

【思路点拨】小球在水平桌面上做匀速圆周运动,可根据向心加速度公式和线速度与角速度的关系求解。 【解析】由题意可知s m v m r /5,20.0==根据向心加速度的计算公式

22

2

512502025=====v a m /s r .v

,rad /s

r

ωω向由可得角速度: 例4、如图所示,定滑轮的半径

,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重

物以加速度=2m/s 做匀加速运动。在重物由静止下落距离为1m 的瞬间,滑轮边缘上的点的角速度多

大?向心加速度多大?

【思路点拨】这是一个关于变速圆周运动向心加速度计算的问题。物体的速度时刻等于轮缘上一点的线速度,求出物体下落1m 时的瞬时速度,然后利用角速度、向心加速度和线速度的关系可以求解。 【解析】 (1)重物下落1m 时,瞬时速度为s m s m as v /2/1222=??==

显然,滑轮边缘上每一点的线速度也都是2m/s ,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为:s rad s rad r v /100/02

.02===

ω (2)向心加速度为:2

2

2

2

/200/02.0100s m s m r a =?==ω

【总结升华】此题讨论的是变速运动问题,重物落下的过程中滑轮转动的角速度,轮上各点的线速度都在不断增加,但在任何时刻角速度与线速度的关系,向心加速度与角速度、线速度的关系

r r

22ω==v a 仍然成立。

类型三、皮带传动问题

例5、如图,主动轮匀速转动,通过皮带不打滑地带动从动轮转动,已知

别为

上的中点,

轮边缘上一点,

轮边缘上一点,

为皮带上一点。试比较:

(1)A 、B 、C 点线速度的大小?

(2)A 、B 、E 、F 各点角速度的大小? (3)E 、F 点线速度的大小?

【思路点拨】分析比较各个点运动情况的异同,建立相互关系是解题的切入点。 【解析】(1)因为皮带传动过程与轮子不打滑,所以A 、B 、C 三个点可以看成是皮带上的三个点,相同时间必定通过相同的路程,因此,A 、B 、C 点的线速度相等,这也是两个轮子的联系。 即

(2)比较各点角速度: 比较B A ωω、应通过入手分析

r v

r r v v B

A B A =??

?==ω且因为2

B B B A A A r v r v ωω2

12===

所以 因为A 、F 是同一物体上的点,角速度必然相等即F A ωω=,同理E B ωω= 所以

(3)由

F E v v =所以

【总结升华】(1)同一转动物体上的各点,角速度必然相等;(2)皮带传动时,与皮带接触的点线速度相等。

例6、如图所示为录音机在工作时的示意图,轮子1是主动轮,轮子2为从动轮,轮1和轮2就是磁带盒内的两个转盘,空带一边半径为r 1=0.5cm ,满带一边半径为r 2=3cm ,已知主动轮转速不变,恒为n 1=36 r/min ,试求:

(1)从动轮2的转速变化范围; (2)磁带运动的速度变化范围.

【解析】

本题应抓住主动轮(r 1)的角速度恒定不变这一特征,再根据同一时刻两轮磁带走动的线速度相等,从磁带转动时半径的变化来求解.

(1)因为v r ω=,且两轮边缘上各点的线速度相等,所以21

21

226060

n n r r ππ=,即1212r n n r =. 当r 2=3cm 时,从动轮2的转速最小,2min 0.5

36r /min 6r /min 3

n =?=.当磁带走完,即r 2=0.5cm ,r 1=3cm 时,从动轮2的转速最大,为2max 3

36r/min 216r/min 0.5

n =?=,故从动轮2的转速变化范围是6 r/min ~216 r/min .

(2)由112v r n π=得知:

10.5r =cm 时,2236

0.5102m /s 0.019m /s 60

v π-=???

=, 13r =cm 时,2236

3102m /s 0.113m /s 60

v π-'=???=.

故磁带的速度变化范围是0.019 m/s ~0.113 m/s .

【总结升华】解答本题的关键是掌握磁带传动装置中主动轮、从动轮上各点线速度、角速度之间的关系,并且注意从动轮转速的变化及磁带速度的变化是由于转动半径的变化引起的. 举一反三

【高清课程:圆周运动和向心加速度 例题】

【变式】图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r .b 点在小轮上,到小轮中心的距离为r .c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑.则a 、b 、c 、d 的线速度之比 ;角速度之比 ;向心加速度之比 。

【答案】2:1:2:4 2:1:1:1 4:1:2:4

类型四、平抛运动和匀速圆周运动综合题 例7、如图所示,在半径为

的水平放置的圆板中心轴上距圆板高为的A 处以

沿水平抛出一个小球,

此时正在做匀速转动的圆板上的半径恰好转动到与

平行的位置,要使小球与圆板只碰一次且落点为

B 。求:

(1)小球抛出的速度

(2)圆板转动时的角速度ω。

Av0

COB

【思路点拨】思维的切入点是分析小球落在B 点的条件,即:小球平抛落地时的水平位移是R,且圆盘在这段时间内转动了整数圈。

【解析】小球落在B 点的条件即:小球平抛落地时的水平位移是R 且圆盘在这段时间内转动了整数圈。(1)“只碰一次”:若较小,小球有可能在圆板上弹跳几次后落在B点。

所以此小球第一次落至圆板上时的。由平抛运动的规律得

??

?

?

?

??????

=

??????

=

)2(

2

1

)1(

2

gt

h

t

v

R

g

h

R

t

R

v

2

=

=

?

(2)因为圆板运动具有周期性,所以小球可在空中运动的时间t内,圆盘可能转动了整数圈,设圆板周期为T,则0,1,2,3……)。

所以圆盘的角速度=

=

=

=n

h

g

n

t

n

T

(

2

2

2

2

π

π

π

ω1,2,3……)

【总结升华】解决圆周运动问题要充分注意到其周期性的特点;解决综合性的问题要重视分析物理现象发生的条件。

举一反三

【变式】(2015 河南校级模拟)如图所示,在水平匀速转动的圆盘圆心正上方一定高度处,若向同一方向以相同速度每秒抛出N个小球,不计空气阻力,发现小球仅在盘边缘共有6个均匀对称分布的落点,则圆盘转动的角速度可能是()

A.

1

3

N

πB.

1

6

N

πC.

11

3

N

πD.

8

3

N

π

【答案】A

【解析】小球在盘边缘共有6个均匀分布的落点,说明每转动

1

(2n)

3

ππ

+后就有一个小球落在圆盘的边缘,故

1

(2n)

3

θπ

?=+(n=0,1,2,3……),

1

t

N

?=,故角速度为:

1

(2n)N

3

t

θ

ωπ

?

==+

?

(n=0,1,2,3……),当n=0时,则

1

3

ωπ

=,当n=1时,则

7

3

ωπ

=,当n=2时,

13

3

ωπ

=。

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .a 、b 所受的摩擦力始终相等 B .b 比a 先达到最大静摩擦力 C .当2kg L ω=a 刚要开始滑动 D .当23kg L ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】 AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即 kmg +F =mω2?2L ① 而a 受力为 f′-F =2mω2L ② 联立①②得 f′=4mω2L -kmg 综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有 2kmg+kmg =2mω2L +mω2?2L 解得 34kg L ω=

圆周运动的问题难点突破

高中物理必修2复习--圆周运动的问题难点突破 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图1所示,当BC刚好被拉直,但其拉力T2 恰为零, 图1

高中物理选修3-1说课稿(全)讲解

第一节我们周围的磁现象说课稿 一、说教材: 本节从我国古代磁学研究的成就引入,指出指南针的发明对世界文明有重大影响。然后依次展现了三个三级主题:“无处不在的磁”、“地磁场”、“磁性材料”。这样地结构贴切地体现了本节的主题---“我们周围的磁现象”。 根据如上分析,可确定出本节教学的目标: 知识与技能: 1、列举磁现象在生活、生产中的应用。 2、了解地磁场的知识,知道磁性材料的概念及主要用途。 3、了解我国古代在磁现象方面的研究成果及其对人类文明的影响,关注与磁相关的现代技术发展。 过程与方法: 1、通过观察实物、收集资料,初步了解我们周围的磁现象,培养收集和处理信息的能力。 2、通过收集磁性材料应用实例的活动,培养学生的分析、解决问题的能力和交流、合作的能力。 情感态度与价值观: 1、通过回顾我国磁学研究的光辉篇章,培养学生的民族自豪感与爱国情怀,树立振兴中华 的使命感和责任感 2、通过了解磁现象在生活与生产中的广泛应用,使学生更加明确科学与技术、科学与社会 的密切联系。 3、通过对地磁场成因的探讨及对“信鸽认家”现象的实验研究,培养学生尊重事实的科学 态度与勇于探索的创新精神。 重点、难点分析: 知道磁现象,了解地磁场和磁性材料是重点 二、说教法、学法 本节作为全章的起始节,避免涉及枯燥抽象的概念,力求从生活生产中的磁现象入手,引起学生研究的兴趣与激情。因此,教学中应尽可能调动学生的学习主动性,让他们解决参与举例、讨论、探究等学习活动,逐步建立关于磁现象的感性认识,为进一步研究磁现象做好准备。 三、说程序 1、新课引入(复习初中知识) 磁性:能够吸引铁质物体的性质 磁体:具有磁性的物体叫磁体。 磁极:磁体上磁性最强的部分叫磁极。 小磁针静止时指南的磁极叫做南极,又叫S极;指北的磁极叫做北极,又叫N极。磁极间的相互作用:同名磁极相斥,异名磁极相吸。变无磁性物体为有磁性物体叫磁化,变有磁性物体为无磁性物体叫退磁. 2、新课教学 (1)让学生阅读课文,列举身边的磁现象 (2)地磁场 地球是一个巨大的磁体. 地磁的北(N)极在地理的南极附近,地磁的南(S)极在地理的北极附近. 地磁场:地球由于本身具有磁性而在其周围形成的磁场叫地磁场.

圆周运动中的临界问题和周期性问题

圆周运动中的临界问题和周期性问题 一、圆周运动问题的解题步骤: 1、确定研究对象 2、画出运动轨迹、找出圆心、求半径 3、分析研究对象的受力情况,画受力图 4、确定向心力的来源 5、由牛顿第二定律r T m r m r v m ma F n n 222)2(π ω====……列方程求解 二、临界问题常见类型: 1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有 绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、竖直面内的圆周运动的临界问题 1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用: mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力 ②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2) A 、最高点水不留出的最小速度? B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N

变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少? 2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题: 汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度 gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力. 例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。今给小物体一个水平初速度0v = ) A.沿球面下滑至 M 点 B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动 3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题 物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态. (一)轻杆模型 如图所示,轻杆一端连一小球,在竖直面内作圆周运动. (1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =. (2) 当0v << mg N <<0,N 仍为支持力,且N 随v 的增大而减小,

高中物理评课稿

高中物理评课稿 听了隋老师讲解《电势差》一节内容,收获不少,下面是我对这节课的评课内容: 本节课经过了精心的安排和设计: 1、从教学设计上看,本节课突现采用类比的手段将重力场中的重力、高度差、重力势、重力势能同抽象的电场力、电势差、电势、电势能概念具体化,落实了这些概念的三维目标,突破重难点。 、从课堂教学来看,老师能很好地把握住教材的要求,始终以引导学生为2 主,启迪学生思维,渗透物理思维和方法。 3、展示了该老师是有扎实的基本功,整个课结构严谨,一气呵成,课堂内容丰富充实,老师对课堂的驾驭能力在本节课堂上也发挥得淋漓尽致。 本节课的具体亮点具体体现在以下几个方面: 1、有效地为学生提供充分的思考,学习时机。上课的教师充分考虑到物理知识自身的特点,遵循学生学习的心理规律,从学生已有的知识经验出发,让学生去体验物理知识的形成教程。通过类比手段降低学生对抽象概念理解的难度,再引导学生把这些直观的感性认识进行扩展抽象上升理性认识,最后把这些认识和知识加以巩固。 2、充分利用教学素材,启迪思维,教师在主导作用和学生的主体作用得到发挥。教师在教学中应遵循和贯彻“以学生为主体,以教师为主导,以思维为主线”这一原则,现代教学观要求教师把整个学习过程尽量还给学生,无论是概念理解,还是方法选择,都尽量让学生自己主动积极表述,力争让学生在独立思考等生动有趣的活动中丰富体验,获取知识,教师始终处于主导地位,教师根据本节课的教学

内容和学生特点,结合学生现有的认知和理解水平,有明确集中的教学目标,灵活恰当的教学方法,并在必要之处作适当设疑点拔,引导学生发现问题,解决疑点。 3、有效地进行教学调控,教师对调控能力较高,体现在有效地根据学习内容和任务处理教材,教学环节紧凑,教学容量恰当,有效地组织学生进行启发式教学,教学语言准确、亲切,教态自然,整个节的的时间分配基本合理,重点概念电势差,电势突出,祥略得当。 由于课堂教学有着不同的活动形式和评价标准,这也决定着赏评一堂课时,个人有不同的评价标准。对于这堂课我个人认为课堂教学可以更接近实际生活,体现出从生活走向物理,从物理走向社会这一理念,可以列举出更多的生活实例,如跨步电压触电的现象等。 总之本节课充分运用了类比的研究方法,启发式教学,体现了“教师为主导,学生为主体”,不失为一节成功的课例。

高中物理圆周运动专题讲解

圆周运动的向心力及其应用 【要点梳理】 要点一、物体做匀速圆周运动的条件 要点诠释: 物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。 要点二、关于向心力及其来源 1、向心力 要点诠释 (1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。 (3)向心力的大小: 2 2 v F ma m mr r ω=== 向向 向心力的大小等于物体的质量和向心加速度的乘积; 对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方; 线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。 如果是匀速圆周运动则有: 22 222 2 4 4 v F ma m mr mr mr f r T π ωπ===== 向向 (4)向心力的方向:与速度方向垂直,沿半径指向圆心。 (5)关于向心力的说明: ①向心力是按效果命名的,它不是某种性质的力; ②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小; ③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。 2、向心力的来源 要点诠释 (1)向心力不是一种特殊的力。重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。 (2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):

要点三、匀速圆周运动与变速圆周运动的区别 1、从向心力看匀速圆周运动和变速圆周运动 要点诠释: (1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。 例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。 (2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个

圆周运动的实例及临界问题

圆周运动的实例及临界问题 一、汽车过拱形桥 1.汽车在拱形桥最高点时,向心力:F 合= mg -N =m v 2 R . 支持力:N =mg -mv 2 R <mg ,汽车处于失重状 态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小. 例1 一辆质量m =2 t 的轿车,驶过半径R =90 m 的一段凸形桥面,g =10 m/s 2 ,求: (1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大? (2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少? 解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示: 合力F =mg -N ,由向心力公式得mg -N =m v 2 R ,故 桥面的支持力大小N =mg -m v 2R =(2 000×10-2 000×102 90) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104 N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿 车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104 N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图1 2.运动分析:将“旋转秋千”简化为圆锥 摆模型(如图1所示) (1)向心力:F 合=mg tan_α (2)运动分析:F 合=mω2r =mω2 l sin α (3)缆绳与中心轴的夹角α满足cos α= g ω2l . 图6 例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( ) A .速度v A >v B B .角速度ωA >ωB C .向心力F A >F B D .向心加速度a A >a B 解析 设漏斗的顶角为2θ,则小球的合力为F 合 =mg tan θ,由F =F 合=mg tan θ=mω2 r =m v 2 r =ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D 错误;因r A >r B ,又由v = gr tan θ 和ω= g r tan θ 知v A >v B 、ωA <ωB ,故A 对,B 错. 答案 A 三、火车转弯 1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支 持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力. 例3 铁路在弯道处的内、外轨道高度是不 同的,已知内、外轨道平面与水平面的夹角为θ, 如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mg cos θ D .这时铁轨对火车的支持力大于mg cos θ

关于高级高中物理评课稿

评课 延吉市第二高级中学:韩昌国 11月2日在延吉市2中召开的2011年延边州高考总结分析暨备考会中,延吉市2中洪龙官老师和延边一中郑林虎老师以《磁场对运动电荷的作用》为题做了公开课。这次公开课中我学到了很多东西。下面阐述我对这次公开课的评价。 这2节课通过采用启发式教学不仅使学生掌握了《磁场对运动电荷的作用》及洛伦兹力;理解了洛伦兹力与做功的关系,也培养了学生分析、推理能力,而且还学会了用类比的方法来研究抽象的物理概念、规律,我认为这是一堂充满生命活力的课,是一堂能促进学生全面发展的课,如何采用类比的手段将抽象概念的学习具体化渗透解决问题的思想方法,是我在本节课中学到的东西。本节课经过了精心的安排和设计:首先,从教学设计上看,本节课突现采用类比的手段将让生活走向物理,让物理走向社会的基本理念,面向全体学生。这节课彻底改变了学生被动接受的传统的教学模式,"在探究状态下学习"贯穿整个课堂教学,落实了这些概念的三维目标,突破重难点。其次,从课堂教学来看,老师能很好地把握住教材的要求,始终以引导学生为主,启迪学生思维,渗透物理思维和方法。再则,展示了老师有扎实的基本功,整个课结构严谨,一气呵成,课堂内容丰富充实,老师对课堂的驾驭能力在本节课堂上也发挥得淋漓尽致。 本节课的具体亮点具体体现在以下几个方面:1、有效地为学生提供充分的思考,学习时机。2、充分利用教学素材,启迪思维,教师在主导作用和学生的主体作用得到发挥。3、有效地进行教学调控。教师对调控能力较高,体现在有效地根据学习内容和任务处理教材,教学环节紧凑,教学容量恰当,有效地组织学生进行启发式教学,教学语言准确、亲切,教态自然,整个节的的时间分配基本合理,重点《磁场对运动电荷的作用》中洛伦兹力突出,祥略得当。由于课堂教学有着不同的活动形式和评价标准,这也决定着赏评一堂课时,个人有不同的评价标准。对于这堂课我个人再提几个思考建议:1、课堂时间分布直接影响到学生的学习兴趣,对教学的完成是一个不可缺少的环节,教师在讲授一堂课时要控制好各个环节时间分配,本教师讲得太多,导致小结流于形式,更没有留时间学生消化思考巩固。2、在新课程理念背景下,教学过程不仅是学生掌握基础知识,基本技能和发展思维的过程,而且是师生互动生生互动共同发展的过程,是师生间、生生间"沟通"、"合作"、"对话"、"交往"的过程,本课堂师生互动不很明显,生生互动几乎没有体现,可在一些环节上设置激活课堂,激活学生思维的探究性问题,共同提高学习效益。3、新课程理论下从生活走向物理,从物理走向社会这一理念在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。在整个教学活动中很好的实现了情感价值目标,并实施了德育教育,注重了德育教育的实效性。 高中物理评课稿 听了隋老师讲解《电势差》一节内容,收获不少,下面是我对这节课的评课内容: 本节课经过了精心的安排和设计: 1、从教学设计上看,本节课突现采用类比的手段将重力场中的重力、高度差、重力势、重力势能同抽象的电场力、电势差、电势、电势能概念具体化,落实了这些概念的三维目标,突破重难点。 2、从课堂教学来看,老师能很好地把握住教材的要求,始终以引导学生为主,启迪学生思维,渗透物理思维和方法。 3、展示了该老师是有扎实的基本功,整个课结构严谨,一气呵成,课堂内容丰富充实,老师对课堂的驾驭能力在本节课堂上也发挥得淋漓尽致。本节课的具体亮点具体体现在以下几个方面: 1、有效地为学生提供充分的思考,学习时机。上课的教师充分考虑到物理知识自身的特

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

高中物理复习-常见的圆周运动问题

第十八课时常见的圆周运动问题 [知识梳理] 一.水平面内的匀速圆周运动 1.物体在水平面内作匀速圆周运动,其所受的合外力提供向心力,故物体所受的水平合力即为__________。竖直方向的合力为__________。 2.处理匀速圆周运动问题时,一要进行正确的受力分析,还要设法确定圆周运动的圆心和半径,这一点在磁场中尤其重要。 二.竖直平面内的圆周运动 1.运动物体在竖直平面内作圆周运动,如果物体带电,且处在电磁场中,此时物体有可能作匀速圆周运动。 2.对没有物体支撑的小球(如小球系在细绳的一端、小球在圆轨道的内侧运动等)在竖直平面内作圆周运动过最高点的临界条件:绳子和轨道对小球无力作用,则若小球作圆周运动的半径为 R,它在最高点的临界速度为:V=__________。 3.对有物体支撑的小球(如球固定在杆的一端、小球套在圆环上或小求在空心管内的运动)在竖宜平面内作圆周运动过最高点的,临界速度为:V=__________。 [能力提高] 火车转弯处的铁轨一般是外轨略高于内轨,试结合作图分析这样铺轨的原因,并说出火车转弯时要求按规定速度行驶的道理。 [典型例题] [例1]长为L的轻绳一端系一质量为M的小球,以另一端为圆心,使小球恰好能在竖直平面内做圆周运动,则小球通过最高点时,下列说法正确的是 A.绳中张力恰好为mg B.小球加速度恰好为g C.小球速度恰好为零 D.小球所受重力恰好为零 [例2]长L=0.5m、质量可忽略的杆,其下端固 定在O点,上端连接着一个零件A,A的质量为 m=2kg,它绕O点做圆周运动,如图所示,在A点通 过最高点时,求在下列两种情况下杆受的力:(1)A 的速率为1m/s;(2)A的速率为4m/s。 [例3]如图所示,一种电动夯的结构为:在固定于夯上的电动机的转轴上固定一杆,杆的另一端固定一铁块。工作时电动机 带动杆与铁块在竖直平面内匀速转动,则当铁块转至 最低点时,夯对地面将产生很大的压力而夯实地面。

高中物理说课稿(共7篇)

篇一:高中物理说课稿:《机械能守恒定律》说课稿范文 好学教育: 高中物理说课稿:《机械能守恒定律》 我说课的题目是 "机械能守恒定律 ",选自高一物理必修 2的第7章第 8节,下面我对这节课分六部分进行说明:学情分析、教材分析、设计思想、学法指导、教学方法、教学过程和设计意图。 一、学情分析 学生已经在初中学习过有关机械能的基本概念,对"机械能 "并不算陌生,接受起来相对轻松。 通过前几节内容的学习,同学们对 "机械能 "这一概念较初中有了更深认识,在此基础上学习机械能守恒定律学生比较容易理解。 二、教材分析 (一)教材所处的地位和作用本节课是本章的重点内容,要求学生能初步掌握机械能守恒定律的内容并能用来解决一些简单问题。机械能守恒条件的判定、机械能守恒定律的应用,是教学的重点。运用机械能守恒定律解答相关的问题,这一内容在整个高中力学中又起着承前启后的作用,在物理学理论和应用方面十分重要,不同运动形式的转化和守恒的思想能指引我们揭露自然规律、取得丰硕成果。但这种思想和有关的概念、规律,由于其抽象性强,学生不易理解、掌握。学生要真正的掌握和灵活运用还是很困难。机械能守恒定律的探究建立在前面所学知识的基础上,教材上通过多个具体实例,先猜测动能和势能的相互转化的关系,引出对机械能守恒定律及守恒条件的探究,联系重力势能和重力做功及弹性势能与弹力做功的关系的学习,由定性分析到定量计算,逐步深入,最后得出结论,并通过应用使学生领会定律在解决实际问题时的优越性。在教学设计时,力图通过生活实例和物理实验,展示相关情景,激发学生的求知欲,引出对机械能守恒定律的探究,体现从"生活走向物理"的理念,通过建立物理模型,由浅入 深进行探究,让学生领会科学的研究方法,并通过规律应用巩固知识,体会物理规律对生活实践的作用。(二)教学目标的确定依据根据教材特点(注重思想性、探究性、逻辑性、方法性和哲理性)和学生的特点以及高中新课程的总目标(进一步提高科学素养,满足全体学生终身发展需求)和理念(探究性、主体性、发展性、和谐性)和三维教学目标(知识与技能、过程与方法、情感态度与价值观)的要求特制定教学目标。 (三)教学目标 1.知识与技能 2.(1)知道什么是机械能。 好学教育: (2)知道物体的动能和势能可以相互转化。 (3)理解机械能守恒定律的内容。 (4)掌握机械能守恒的条件。 (5)学会在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式。 ( 6)初步学会从能量转化和守恒的观点来解释物理现象,分析问题的方法,提高运用所学知 识综合分析、解决问题的能力。 2.过程与方法 (1)学会在具体的问题中判定物体的机械能是否守恒; (2)初步学会从能量转化和守恒的观点来解释物理现象,分析问题。 3.情感、态度与价值观 (1)培养学生发现和提出问题,并利用已有知识探索学习新知识的能力。 (2)通过教学过程中各个教学环节的设计,如:观察、实验等,充分调动学生的积极性,激发学生的学习兴趣。

圆周运动专题《圆周运动中的临界问题》

圆周运动专题 (一)圆周运动中的临界问题 教学目的:理解圆周运动中的动力学特征;掌握圆周运动中临界问题的分析方法和解题;培 养学生正确分析物理过程、建立正确的物理模型的能力。 教学重点:有关圆周运动中临界问题的分析 教学过程: 一.描述圆周运动的物理量 1. 线速度 2. 角速度 3. 周期和频率 4. 向心加速度, 5. 线速度、角速度、周期和频率、向心加速度的关系 r f T r v ωππ===22 v r T r f r r v a ωππω=====22222244 解圆周运动的运动学问题关键在于熟练掌握各物理量间的关系 二.圆周运动中的向心力 1. 作用效果:产生向心加速度,以不断改变物体的速度方向,维持物体做圆周运动。 2. 大小:222 24T mr v m mr r v m ma F πωω===== 3. 产生:向心力是按效果来命名的,不是某种性质的力,因此,向心力可以由某一力提供, 也可以由几个力的合力提供或是某一个力的分力提供,要根据物体受力的实际情况判定。 4. 特点: (1) 匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存 在向心加速度,物体受到外力的合力就是向心力。可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。 (2) 变速圆周运动:速度大小发生变化,向心加速度和向心力大小都会发生变化, 求物体在某一点受到的向心力时,应使用该点的瞬时速度。在变速圆周运动中,

合外力不仅大小随时改变,其方向也不沿半径指向圆心。合外力沿半径方向的分力提供向心力,使物体产生向心加速度,改变速度的方向,合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。 (3) 物体做圆周运动的条件,是提供的向心力(沿半径方向的合力)等于需要的向 心力(F 供=F 需)。当F 供>F 需时物体做近心运动,当F 供

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力

(三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向 心加速度,由,,所以,故,D 正确。本题正确答案C、D。 点评:处理皮带问题的要点为:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等,同一轮上各点的角速度相同。

高中物理评课

评课 延吉市第二高级中学:韩昌国11月2日在延吉市2中召开的2011年延边州高考总结分析暨备考会中,延吉市2中洪龙官老师和延边一中郑林虎老师以《磁场对运动电荷的作用》为题做了公开课。这次公开课中我学到了很多东西。下面阐述我对这次公开课的评价。 这2节课通过采用启发式教学不仅使学生掌握了《磁场对运动电荷的作用》及洛伦兹力;理解了洛伦兹力与做功的关系,也培养了学生分析、推理能力,而且还学会了用类比的方法来研究抽象的物理概念、规律,我认为这是一堂充满生命活力的课,是一堂能促进学生全面发展的课,如何采用类比的手段将抽象概念的学习具体化渗透解决问题的思想方法,是我在本节课中学到的东西。本节课经过了精心的安排和设计:首先,从教学设计上看,本节课突现采用类比的手段将让生活走向物理,让物理走向社会的基本理念,面向全体学生。这节课彻底改变了学生被动接受的传统的教学模式,“在探究状态下学习”贯穿整个课堂教学,落实了这些概念的三维目标,突破重难点。其次,从课堂教学来看,老师能很好地把握住教材的要求,始终以引导学生为主,启迪学生思维,渗透物理思维和方法。再则,展示了老师有扎实的基本功,整个课结构严谨,一气呵成,课堂内容丰富充实,老师对课堂的驾驭能力在本节课堂上也发挥得淋漓尽致。 本节课的具体亮点具体体现在以下几个方面:1、有效地为学生提供充分的思考,学习时机。2、充分利用教学素材,启迪思维,教师在主导作用和学生的主体作用得到发挥。3、有效地进行教学调控。教师对调控能力较高,体现在有效地根据学习内容和任务处理教材,教学环节紧凑,教学容量恰当,有效地组织学生进行启发式教学,教学语言准确、亲切,教态自然,整个节的的时间分配基本合理,重点《磁场对运动电荷的作用》中洛伦兹力突出,祥略得当。 由于课堂教学有着不同的活动形式和评价标准,这也决定着赏评一堂课时,个人有不同的评价标准。对于这堂课我个人再提几个思考建议:1、课堂时间分布直接影响到学生的学习兴趣,对教学的完成是一个不可缺少的环节,教师在讲授一堂课时要控制好各个环节时间分配,本教师讲得太多,导致小结流于形式,更没有留时间学生消化思考巩固。2、在新课程理念背景下,教学过程不仅是学生掌握基础知识,基本技能和发展思维的过程,而且是师生互动生生互动共同发展的过程,是师生间、生生间“沟通”、“合作”、“对话”、“交往”的过程,本课堂师生互动不很明显,生生互动几乎没有体现,可在一些环节上设置激活课堂,激活学生思维的探究性问题,共同提高学习效益。3、新课程理论下从生活走向物理,从物理走向社会这一理念在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。在整个教学活动中很好的实现了情感价值目标,并实施了德育教育,注重了德育教育的实效性。

高一物理圆周运动专题练习(解析版)

一、第六章圆周运动易错题培优(难) 1.如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T,取g=10m/s2。则下列说法正确的是() A.当ω=2rad/s时,T3+1)N B.当ω=2rad/s时,T=4N C.当ω=4rad/s时,T=16N D.当ω=4rad/s时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为,则有 解得 AB.当,小球紧贴圆锥面,则 代入数据整理得 A正确,B错误; CD.当,小球离开锥面,设绳子与竖直方向夹角为,则 解得 , CD正确。 故选ACD。

2.如图,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是() A.滑块对轨道的压力为B.受到的摩擦力为 C.受到的摩擦力为μmg D.受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A.根据牛顿第二定律 根据牛顿第三定律可知对轨道的压力大小 A正确; BC.物块受到的摩擦力 BC错误; D.水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D正确。 故选AD。 3.如图甲所示,半径为R、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A时,小球受到的弹力F与其过A点速度平方(即v2)的关系如图乙所示。设细管内径略大于小球直径,则下列说法正确的是() A.当地的重力加速度大小为R b B.该小球的质量为a b R C.当v2=2b时,小球在圆管的最高点受到的弹力大小为a D.当0≤v2<b时,小球在A点对圆管的弹力方向竖直向上【答案】BC 【解析】 【分析】 【详解】 AB.在最高点,根据牛顿第二定律 2 mv mg F R -=

物理评课稿范文(共11篇)

篇一:经典优秀物理评课稿 经典优秀物理评课稿《电源和电流》评课稿 更新时间:20xx-03-05 好评度:1610 图片已关闭显示,点此查看 第二周是高二物理组研讨周,大家共同听了解鹏翔、李霞、王景军等老师的《电源和电流》一课。 陈红灵老师评课:1、课程内容多,课时无法完成。2、明确电源作用,用水位差类比,形象易理解,力争把电源理解透彻。 1、重视初高中衔接,建议各位教师把初中教材学一遍,高中教学应该站在更高的高度上。 4、教材整合。教师用教材教,但又不要拘泥于教材,可以有自己的思想。 篇二:初中物理评课稿大全 初中物理评课稿大全《压强》评课稿 1 整体感觉 老师从新课程的理念出发,采取了分阶段逐渐深入的教学模式,由浅入深给学生创设了一个开放的课堂,动态的课堂,充分让学生开展合作学习和自主学习。在轻松,平等的氛围里让学生小试牛刀,初步品尝了科学探究活动中成功的喜悦,又通过教师的例题讲解和习题落实了知识与技能目标。从引入游戏,比较大象和芭蕾舞演员的压力作用的效果,到增大压强和减小压强的应用,还有课后留下的关于路面损坏情况的调查报告,无一不体现了教师从生活走向物理,从物理走向社会的理念。在课堂教学中穿插了控制变量法和类比法。李老师落落大方,亲切自然,板书规范。 2 教学过程中的亮点 (1)引入——以竞赛的形式创设了男女生比赛切萝卜的情景,一下子就抓住了学生的眼球,激发了他们的兴趣。因为兴趣是学生最好的老师,也是学生进行探究活动源源不断的动力。 (2)探究部分——发挥了学生的积极性和主动性。学生亲身体验,观察自始至终。例如:利用身边随手可得的铅笔的笔头和笔帽做了效果不同的对比实验,贴近生活,给学生的体会深刻。 在设计实验时,老师充分融入到学生中,成为他们的合作伙伴。 在这几个过程中,学生的实验设计能力,运用科学方法能力有了极大的提高。 (3)在知识的传播中注重方法。 (4)规范化。 (5)多媒体辅助与板书相得益彰。多媒体展示精美的图片和受力分析,视频展示平台展示解题过程,板书规范、美观,三者相互配合默契。 但是教无定法,每一位老师对每节课都有自己的看法和做法。 (1)在课堂的引入部分,用游戏和竞赛的方式能引起学生探究的兴趣,但是要注意实验的方便和安全性。学生对刀具的使用并不熟练。 (2)在概念的教学上,要注意学生的理解,突破难点。在本节内容中,压力和压强的概念是难点,学生也容易弄错。 垂直和表面。 (3)在探究流程中,李老师是先要同学思考什么影响压力作用的效果呢?在让学生体验铅笔实验,我认为这不符合学生的认知规律。

相关文档
相关文档 最新文档