文档视界 最新最全的文档下载
当前位置:文档视界 › 雷达抗干扰性能的评估模型

雷达抗干扰性能的评估模型

雷达抗干扰性能的评估模型
雷达抗干扰性能的评估模型

雷达抗干扰性能的评估模型研究

胡中泽1,曹菲1,乔术旗1,那熙宇2

(1.第二炮兵工程大学陕西西安710025;2.二炮装备研究院北京100161)

摘要:雷达的抗干扰(ECCM )性能成为现代雷达的重要参数,如何客观、全面地评估雷达性能,是装备研制和使用均关注的问题,分析了雷达干扰环境,构建了雷达评估指标体系,建立了抗干扰评估模型,得到了评估结果,最后对结果进行了简要分析。

关键词:雷达;抗干扰;评估模型;研究中图分类号:TN97

文献标识码:A

文章编号:1674-6236(2012)24-0134-03

Radar ECCM performance assessment model

HU Zhong -ze 1,CAO Fei 1,QIAO Shu -qi 1,NA Xi -yu 2

(1.The Second Artillery Engineering University ,Xi ’an 710025,China ;

2.The Second Artillery Academy of Armament ,Beijing 100161,China )

Abstract:The performance of radar anti -jamming (ECCM )to become an important parameter in modern radar ,how objective and comprehensive assessment of the performance of radar equipment development and use are of concern ,this paper analyzes the radar -jamming environment ,build a radar evaluation index systemestablished anti -interference assessment models ,the results of the assessment ,and finally a brief analysis of the results.Key words:radar ;ECCM ;evaluation model ;research

收稿日期:2012-09-03

稿件编号:201209010

作者简介:胡中泽(1984—),男,湖南怀化人,硕士,助理工程师。研究方向:兵器科学与技术。

电子对抗是现代战争的三大支柱之一,随着现代战争中电子对抗(ECM )的日趋激烈,干扰技术和雷达抗干扰技术不断得到发展,雷达的抗干扰(ECCM )性能成为现代雷达的重要参数,如何客观、全面地评估雷达性能,是装备研制和使用均关注的问题,因此,对雷达抗干扰效能评估进行研究是很有意义的,本文介绍了雷达抗干扰效能评估的一般步骤和方法。

1

对雷达实施的干扰和雷达抗干扰的措施

1.1

对雷达实施的干扰

电子干扰按干扰源区分,可分为有源干扰与无源干扰;

按其目的可分为有意和无意干扰;按其作用可分为压制性干扰和欺骗性干扰。雷达干扰的分类方法很多,图1给出了一种典型的分类结果。

1.2雷达的抗干扰措施

目前,雷达抗干扰措施较多,每一种抗干扰措施的使用

都有其目的。雷达采取了一种抗干扰措施以后,其某些方面的抗干扰性能将会得到改善,通过分析哪些性能得到改善,以及寻找相应的评估指标来体现这些性能的改善,就可以建立雷达抗干扰措施评估指标集。以下是对几种常用抗干扰措施的分析:

1)副瓣对消(SLC ):目的是抑制通过雷达副瓣进入的具有

高占空比和类似噪声的干扰,从而提高雷达接收机的信干比。

2)频率捷变和频率分集:目的是强迫干扰机将其能量在

雷达带宽上扩展以减小其干扰效果,这相当于减小干扰机的功率密度从而提高雷达接收机的信干比。同时,频率捷变和频率分集将信息载体信号在频率、空间、时间上展开以减小被

ESM ,ARM 探测到的概率,从而提高雷达抗欺骗式干扰概率。

3)降低雷达发射天线副瓣:目的是降低被侦查的概率,

从而增大雷达抗欺骗式干扰概率。

电子设计工程

Electronic Design Engineering

第20卷Vol.20第24期No.242012年12月Dec.2012

图1

雷达干扰分类图

Fig.1Radar jamming classificat

单片机抗干扰能力

单片机抗干扰能力 单片机的抗干扰性能历来为大家所重视,现在市面上的单片机就我所接触过的,就有 十家左右了,韩国的三星和现代;日本的三菱,日立,东芝,富士通,NEC;台湾的 EMC,松汉,麦肯特,合泰;美国的摩托罗拉,国半的cop8系列,microchip系列,TI 的msp430系列,AVR系列,51系列,欧洲意法半导体的ST系列。。。。。。 这些单片机的抗干扰性能大多数鄙人亲自测试过,所用机器是上海三基出的两种 高频脉冲干扰仪,一种是欧洲采用的标准,一种是日本采用的标准;

日本的标准是高 频脉冲连续发出,脉冲宽度从50ns到250ns可调,欧洲采用的标准是脉冲间歇(间歇 时间和发出时间可调)发出,脉宽也是从50ns到250ns可调;我们国家采用的是欧洲 标准。 一般情况下,脉冲干扰这一项能够耐受2000V以上就算不错了(好像我国家电标准 是1200V),有些可以达到3000V,于是很多人为此很得意。 单片机在高频脉冲干扰下程序运行是否正常,或者说抗干扰是否通过,有些人以

程序不飞掉,或者说“死机”为标准,有些人以不复位并且程序正常运行为标准。 很多情况下,芯片复位程序是可以继续运行的,表面上看的不是很清楚。我一般就看 单片机在干扰下是否复位,复位了我就认为不行了。不复位并且程序正常运行当然比 复位来说要好了。 好多人看到自己做的电路抗干扰达到2000V或者3000V就很高兴,实际上芯片的抗 干扰并不一定就很好。这里我不能不说一下日本的标准,高频脉冲连续发出的形式。 别小看一个连续和一个间歇的区别,实际上,大家如果有机会,用日本的标准测试一

下你的芯片和电路,你就会发现,几乎和欧洲标准差别很大很大,采用日本标准你会 很伤心,因为大多数单片机过不了! 日本的标准是1600V。上面我提到的十几家单片机: 意法的也就是ST的≥1800 三菱的≥1800 富士通和日立的≥1600V nec的≥1500 东芝的≥1300V 摩托罗拉的≥1300

谈谈PLC的抗干扰能力

PLC为何如此可靠? 这不是一个简单问题,要回答清楚不是一两篇文章就行的。这里,仅作为STIPLC总工程师多年 的经验与朋友们交流一些: 1,搞清可靠性包括那些内容? 可靠性是指产品能在规定的条件下,能准确完成所设计的全部功能。电子产品一般包括:(1)机械性能 (2)电气性能 (3)热力性能 (4)化学性能 (5)生物性能 (6)使用性能 等方面的可靠性,只要从这几个方面全方位的仔细的科学的落实,产品一定可靠。 机械性能:主要考虑在各种工况下连接的可靠性,如震动,冲击,摔落,冷热涨缩, 腐蚀,霉烂,粉尘。还有机械接口的电气强度,通流能力,插拔寿命等。 重要的应该冗余(一个电信号连几个针)。 按试验标准规定的振动频率范围内,最好无共振点,如有,应确保连接 可靠。 热力性能:主要考虑功率部件的热设计,考虑最坏情况下,功率元器件的结温在允许 值之下。这主要应熟悉传热学。此外,功率元器件的驱动边沿要抖,减少开关 功耗。 要注意元器件在产品规定的温度范围内的参数变化,要有足够余量。 对精密检测要从设计上消除温漂。 化学性能:要根据可能场合,如酸碱,盐雾(如海轮,港口),进行处理。 生物性能:对潮湿高温场合(如海轮),霉菌侵蚀是常见的,所用一些材料应符合 标准(如船用标准),并进性相关处理。 使用性能:要考虑用户错误使用时(如接错,接反),尽可能不坏。 电气性能:(1)要满足基本性能:电气强度(耐压),绝缘电阻,电压波动(如 +25%----30%),频率波动。 要注意PCB布线,及内部连线的爬电距离(高湿度下),内部线缆,PCB印刷线的通流 能力。 (2)特别注意电源的设计:容量足够(在高温满载下),负载很轻很重及 从小容性到大容性下,要动态静特性好,上断电无过冲(或少量)(软起动), 要能抵抗电网电压瞬时中断(如能不间断维持240毫秒供电), 要能抵抗过滤浪涌电压,电快速脉冲群,等的工模与差模干扰及破坏。 还要有过载短路保护能力。 (3)地线设计是极为重要的,一点共地原则永远记牢。 大电流与小电流,模拟与数字,强电与弱电分开(必须分区域)布线。可不共地也可 一点共地。 (4)驱动感性负载应加缓冲隔离,不要用触发器或锁存器直接驱动。感性负栽在加续流。(5)对大电流负载不要与逻辑电路共电源。要保正大电流负载动作时拉低总电源时,其它电路供电正常。 (6)输出采用:密码刷新,3中取2。 (7)输入采用:滤波,3中取2。

随机信号雷达抗干扰性能分析

第23卷第1期电波科学学报 2008年2月CHINESEJOURNALOFRADIOSCIENCEV01.23。No.1February。2008 文章编号1005—0388(2008)Ol一0189—06 随机信号雷达抗干扰性能分析 张新相1吴铁平2陈天麒1 (1.电子科技大学电子工程学院.四川成都610054; 2.空军装备研究院雷达所,北京100085) 摘要研究了采用带限高斯白噪声波形的随机信号雷达在噪声和欺骗干扰环境下的工作性能。通过研究接收机输入/输出信噪比关系和检测性能,分析了随机信号波形抗噪声干扰的性能;采用仿真方法,分析了抗欺骗干扰性能。仿真和分析结果表明,随机信号波形比线性调频脉冲压缩波形具有更好的抗欺骗干扰能力。 关键词随机信号雷达;抗干扰≯噪声干扰;欺骗干扰 中图分类号TN911文献标识码A ECCMcapabilitiesofrandomsignalradar ZHANGXin-xiangWUTie-pingCHENTian-qi (1.CollegeofE.E.,Univ.ofElectronicScienceandTechno(ogyofChina.Chengdu Sichuan610054,China2.RadarInst.,AirforceEquipment Academy,Beijing100085,China) AbstractThepedormanceofrandomsignalradar(RSR)isanalyzedbyemplo—yingaband-limitedwhitegaussnoisewaveforminactivejammingenvironments.Theinputandoutputsignal-to-noiseratioandprobabilityofdetectionofthereceiv—erarediscussed.SimulationisperformedtOshowtheperformanceindeceptivejam—mingcondition.Analysisandsimulationindicatethatrandomsignalwaveformpos—sessesbetterelectroniccounter-countermeasure(ECCM)capabilitiesthanlinearfrequencymodulated(LFM)waveform. Keywordsrandomsignalradar;ECCM;noisejamming;deceptivejamming 1引言 随机信号雷达(RSR)采用射频噪声或噪声调制 信号作为发射波形[1],其最佳接收一般采用相关接 收机。对随机信号雷达的试验研究始于20世纪中期,Horton[2]首先提出了一种噪声测距雷达,此后 CopperC33等研究了一种实验型随机信号雷达。由于 随机信号波形的低截获(LPI)性和优良的检测性能,近年来出现了一些随机信号雷达的研究和试验 系统[1“石],涵盖了探地、SAR/ISAR成像、雷达截面 积测量等方面的应用。 随机信号雷达采用非周期的噪声或类噪声波 收稿日期:2006-i0-20 189形,其模糊函数接近理想的图钉型,除具有良好的距离、速度分辨力和低截获性能【6]外,随机信号雷达的抗干扰能力也是其受到众多关注的主要原因之一.现有文献中,针对随机信号雷达抗干扰性能分析的较少见,其研究对象主要是连续波随机信号波形,研究方法侧重于定性分析、仿真分析和对比试验。刘国岁教授[7]等以对比试验方式,比较了随机二相码调制和伪随机二相码调制两种连续波随机信号雷达的抗干扰性能,实验数据表明,随机二相码调制波形具有更强的抗各类干扰的能力。Garmatyuk[8]对随机信号SAR在杂波/噪声和欺骗式干扰环境下的成像性能进行了仿真研究,通过与线性调频波形比较,  万方数据

传感器、变送器的抗干扰能力设计

传感器及变送器抗干扰能力的设计 一、前言. 传感器变送器的应用非常广泛,不论是在工业、农业、国防建设,还是在日常生活、教育事业以及科学研究等领域,处处可见模拟传感器的身影。但在模拟传感器的设计和使用中,都有一个如何使其测量精度达到最高的问题。 而众多的干扰一直影响着传感器的测量精度,如:现场大耗能设备多,特别是大功率感性负载的启停往往会使电网产生几百伏甚至几千伏的尖脉冲干扰;工业电网欠压或过压(涉县钢铁厂供电电压在160V~310V波动),常常达到额定电压的35%左右,这种恶劣的供电有时长达几分钟、几小时,甚至几天;各种信号线绑扎在一起或走同一根多芯电缆,信号会受到干扰,特别是信号线与交流动力线同走一个长的管道中干扰尤甚; 多路开关或保持器性能不好,也会引起通道信号的窜扰;空间各种电磁、气象条件、雷电甚至地磁场的变化也会干扰传感器的正常工作;此外,现场温度、湿度的变化可能引起电路参数发生变化,腐蚀性气体、酸碱盐的作用,野外的风沙、雨淋,甚至鼠咬虫蛀等都会影响传感器的可靠性。 模拟传感器输出的一般都是小信号,都存在小信号放大、处理、整形以及抗干扰问题,也就是将传感器的微弱信号精确地放大到所需要的统一标准信号(如1VDC~5VDC或4mADC~20mADC),并达到所需要的技术指标。 这就要求设计制作者必须注意到模拟传感器电路图上未表示出来的某些问题,即抗干扰问题。只有搞清楚模拟传感器的干扰源以及干扰作用方式,设计出消除干扰的电路或预防干扰的措施,才能达到应用模拟传感器的最佳状态。 二、干扰源、干扰种类及干扰现象. 传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。 1、主要干扰源 (1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境差,还容易受到机械干扰、热干扰及化学干扰等。

雷达抗干扰性能评估方法研究_王瑞革

总第191期2010年第5期 舰船电子工程 Ship Electr onic Engineering V o l.30No.5 115雷达抗干扰性能评估方法研究* 王瑞革王瑞恒刘大成 (92785部队秦皇岛066200) 摘要雷达抗干扰效果评估是雷达作战效能评估的一个重要环节。文章通过对现有雷达抗干扰技术和战术性能指标的深入分析,以及雷达抗干扰效能评估方法研究,建立了评定雷达抗有源压制性干扰的模型,并给出了雷达抗干扰效果评估的方法和步骤。 关键词雷达;评估指标;抗干扰评估 中图分类号T N9 Radar Ant-i interference Function Analysis and the Valuation Method Research W ang R uige Wa ng R uihe ng L iu D acheng (N o.92785T r oops of P LA,Qinhuang dao066200) A bstract T he strength o f radar ant-i jamming play s a decisive ro le in the w ar.In this pa per,t he exist ing t echnolog y and tactical perfo rmance,as well as perfo rmance assessment method o f r adar ant-i jamming,ar e analy zed deeply,the co mpo s-ite assessment indicator of ant-i active blanket jamm ing r adar is est ablished,and bot h the method and pr ocedures o f assess-ment of r adar ant-i jamming effect are proposed. Key Words r adar,assessment indicato rs,sant-i jamming assessment Class Nu mber T N9 1引言 随着各种新技术、新体制雷达不断涌现,现代的雷达对抗技术已经发展到了相当高的水平。现代雷达为了抑制干扰,往往采用多种抗干扰手段;相应地,一些新型干扰装备和干扰技术也随之出现。雷达干扰和雷达抗干扰作为一对对立统一体,正是在这种相互制约相互促进的过程中共同发展的[1]。对于干扰方来说,主要关心干扰对雷达是否有效,效果如何,而雷达方则关心其在干扰条件下的工作能力。同时作战双方电子对抗手段的高低已经成为影响双方战争进程的重要因素。因此,对作为雷达对抗效能评估重要一环的雷达抗干扰效果评估进行研究是很有意义的。2雷达抗干扰性能分析 针对不同的干扰情况,雷达有着不同的抗干扰措施。具体的抗干扰技术可以从以下几个方面说明: 2.1功率对抗 常用的技术手段是增加发射功率、提高天线增益、提高接收机灵敏度和提高发射信号的占空比(即增加发射脉冲宽度和提高发射脉冲重复频率)[2]。 2.2空间对抗 空间对抗是利用干扰源和目标空间位置的差异,来选择目标回波信号的抗干扰方法,它要求雷达窄波束、窄脉冲工作,减小雷达的空间分辨单元 *收稿日期:2010年1月3日,修回日期:2010年2月5日作者简介:王瑞革,男,助理工程师,研究方向:雷达技术。

多属性决策在雷达干扰效果评估中的应用研究

多属性决策在雷达干扰效果 评估中的应用研究 周林,娄寿春,张文 (空军工程大学导弹学院,陕西三原713800) 摘要:结合空防对抗的特点和雷达干扰的方法,对影响雷达干扰效果的各种因素 进行分析,依据多属性决策(M ADM)的理论和方法,提出了基于MADM的雷达干 扰效果评估模型,有效地解决了雷达干扰效果评估这一复杂问题。 关键词:雷达干扰;MADM;效益函数;效果评估 中图分类号:T N97文献标识码:A文章编号:1009-0401(2001)02-0014-05 Study on the Application of Effect Assess for Radar Interference w ith MADM ZHOU Lin,LOU Shou-chun,ZHANG Wen (M issile College,A ir-f orce Engineering University,Sanyuan713800,China) Abstract:Combined w ith the features of air-defense countermeasure and the methods of radar in-terference,the factors affecting radar interference effect are analyzed in this paper.According to the theory and method of MADM,the radar interference effect assess model based on MADM is proposed and the complicated problem of radar interference effect assess is efficiently solved. Key words:radar interference;MADM;benefit function;effect assess 1引言 从海湾战争到科索沃战争,一再表明,空袭与反空袭作战是现代战争的主要样式,空、海、天、地、电一体化是现代战争的特点,电子战是现代战争的一种重要作战手段,电子战的效果对战争的胜负起着重要作用。因此,进行电子干扰效果评估研究,对电子干扰机的研制、生产和电子干扰方案的制定、实施都具有重要意义。由于影响干扰效果的因素繁多,各因素在干扰过程中所起的作用不相同,各因素与干扰效果之间的关系复杂。要想得出客观、可靠的评估结果,必须通过大量的对抗试验来获取相应的数据,并依据效率准则来评价干扰效果。但事实上,基于效率准则的大量对抗试验的实现往往受到各种因素的制约而难以有效地进行。本文 收稿日期:2001-01-03 作者简介:周林(1965-),男,江苏涟水人,讲师,博士研究生,从事防空作战建模、计算机仿真方面的研究。

雷达抗干扰性能的评估模型

雷达抗干扰性能的评估模型研究 胡中泽1,曹菲1,乔术旗1,那熙宇2 (1.第二炮兵工程大学陕西西安710025;2.二炮装备研究院北京100161) 摘要:雷达的抗干扰(ECCM )性能成为现代雷达的重要参数,如何客观、全面地评估雷达性能,是装备研制和使用均关注的问题,分析了雷达干扰环境,构建了雷达评估指标体系,建立了抗干扰评估模型,得到了评估结果,最后对结果进行了简要分析。 关键词:雷达;抗干扰;评估模型;研究中图分类号:TN97 文献标识码:A 文章编号:1674-6236(2012)24-0134-03 Radar ECCM performance assessment model HU Zhong -ze 1,CAO Fei 1,QIAO Shu -qi 1,NA Xi -yu 2 (1.The Second Artillery Engineering University ,Xi ’an 710025,China ; 2.The Second Artillery Academy of Armament ,Beijing 100161,China ) Abstract:The performance of radar anti -jamming (ECCM )to become an important parameter in modern radar ,how objective and comprehensive assessment of the performance of radar equipment development and use are of concern ,this paper analyzes the radar -jamming environment ,build a radar evaluation index systemestablished anti -interference assessment models ,the results of the assessment ,and finally a brief analysis of the results.Key words:radar ;ECCM ;evaluation model ;research 收稿日期:2012-09-03 稿件编号:201209010 作者简介:胡中泽(1984—),男,湖南怀化人,硕士,助理工程师。研究方向:兵器科学与技术。 电子对抗是现代战争的三大支柱之一,随着现代战争中电子对抗(ECM )的日趋激烈,干扰技术和雷达抗干扰技术不断得到发展,雷达的抗干扰(ECCM )性能成为现代雷达的重要参数,如何客观、全面地评估雷达性能,是装备研制和使用均关注的问题,因此,对雷达抗干扰效能评估进行研究是很有意义的,本文介绍了雷达抗干扰效能评估的一般步骤和方法。 1 对雷达实施的干扰和雷达抗干扰的措施 1.1 对雷达实施的干扰 电子干扰按干扰源区分,可分为有源干扰与无源干扰; 按其目的可分为有意和无意干扰;按其作用可分为压制性干扰和欺骗性干扰。雷达干扰的分类方法很多,图1给出了一种典型的分类结果。 1.2雷达的抗干扰措施 目前,雷达抗干扰措施较多,每一种抗干扰措施的使用 都有其目的。雷达采取了一种抗干扰措施以后,其某些方面的抗干扰性能将会得到改善,通过分析哪些性能得到改善,以及寻找相应的评估指标来体现这些性能的改善,就可以建立雷达抗干扰措施评估指标集。以下是对几种常用抗干扰措施的分析: 1)副瓣对消(SLC ):目的是抑制通过雷达副瓣进入的具有 高占空比和类似噪声的干扰,从而提高雷达接收机的信干比。 2)频率捷变和频率分集:目的是强迫干扰机将其能量在 雷达带宽上扩展以减小其干扰效果,这相当于减小干扰机的功率密度从而提高雷达接收机的信干比。同时,频率捷变和频率分集将信息载体信号在频率、空间、时间上展开以减小被 ESM ,ARM 探测到的概率,从而提高雷达抗欺骗式干扰概率。 3)降低雷达发射天线副瓣:目的是降低被侦查的概率, 从而增大雷达抗欺骗式干扰概率。 电子设计工程 Electronic Design Engineering 第20卷Vol.20第24期No.242012年12月Dec.2012 图1 雷达干扰分类图 Fig.1Radar jamming classificat

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与抗干扰技术 近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。 一、雷达干扰技术 1、对雷达实施干扰的目的和方法 雷达干扰的目的是使敌方雷达无法获得探测、跟踪、定位及识别目标的信息,或使有用的信息淹没在许多假目标中,以致无法提取真正的信息。 根据雷达工作原理,雷达是通过辐射电磁波在空间传播至目标,由目标散射回波被雷达接收实现探测目标。因此对雷达实施干扰可以从传播空间和目标这两处着手。具体来说就是辐射干扰信号,反射雷达信号,吸收雷达信号三个方面。 为了实现对雷达实现有效的干扰,一般需要满足下面几个条件。空间上,干扰方向必须对准雷达,使得雷达能够接收到干扰信号。频域上,干扰频率必须覆盖雷达工作频率或者和雷达工作频点相同。能量上,干扰的能量必须足够大,使得雷达接收机接收的能量大于其最小可接收功率(灵敏度)。极化方式上,干扰电磁波的极化方式应当和雷达接收天线的极化方式尽量接近,使得极化损失最小。信号形式上,干扰的信号形式应当能够对雷达接收机实施有效干扰,增加其信号处理的难度。 2、雷达干扰分类 雷达面临的复杂电子干扰可分为有意干扰和无意干扰两大类,这两者又分别包括有源和无源干扰,具体如下图所示。

有意干扰无意干扰有源干扰无源干扰有源干扰 无源干扰遮盖性干扰欺骗性干扰自然界的人为的欺骗性干扰遮盖性干扰自然界的人为的噪声调频干扰复合调频干扰噪声调相干扰随机脉冲干扰距离欺骗干扰角度欺骗干扰速度欺骗干扰等箔条走廊干扰箔条区域干扰反雷达伪装雷达诱饵宇宙干扰雷电干扰等工业干扰友邻干扰等鸟群干扰等 人工建筑干扰 地物、气象干扰 {友邻物体干扰{{{{{{{{{{{{{{ 雷达干扰 二、雷达抗干扰技术 雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中。 1、与天线有关的抗干扰技术 雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距

无线通信抗干扰技术性能

无线通信抗干扰技术性能 随着人们生活水平的提高,无线通信技术在人们生活中起到了越来越重要的作用。无线通信技术的发展,使人们能够打破时间、空间的限制,随时随地进行信息交流,使得工作效率大大提高,为人类社会的发展做出了巨大的贡献。然而在无线通信技术的使用中,经常会受到通信环境等因素的干扰,因此,无线通信抗干扰技术就显得十分的重要。 1无线通信抗干扰技术发展现状 无线通信受到的干扰主要包括码间、共道和多址三种常见的类型。无线通信会受到干扰是有其本身的特性所导致的,在无线信号的使用中会受到调制、频率以及带宽等多方面的影响,其中一部分是自然存在的,一部分是由于人为原因导致的。这些因素共同对无线信号的传输造成一定的影响,继而对无线通信形成干扰。因此,我们就需要对无线通信技术抗干扰技术进行深入的研究目前在无线通信抗干扰技术中,主要应用的技术包括以下几类:(1)频域处理抗干扰技术。该类技术又可以分为直接序列扩频抗干扰技术和跳频抗干扰技术。(2)空间处理抗干扰技术。主要包括自适应天线技术和分集技术。(3)时域处理抗干扰技术。主要包括跳时技术和通信猝发技术。此外,目前多维联合抗干扰、认知抗干扰等新技术也得到了较好的发展。 2无线通信抗干扰技术性能分析 2.1频域处理抗干扰技术 2.1.1直接序列扩频抗干扰技术 直接序列扩频抗干扰技术目前在各个领域都得到了较为广泛的应用,其主要是通过调整信号频率并解码、保存信号,将单位频带的功率降低来隐藏通信信号,从而使信号受到的外界干扰减少。该技术抗多径干扰、抗截获的能力较强,但是其处理增益会受到码片速率和信源的比特率限制,因此在实际的应用中可能会遇到频道数少、带宽大等问题。 2.1.2跳频抗干扰技术

单片机系统抗干扰性能方面分析方案

时间:来源: 前言 作为工业自动化核心部件地称重仪表,不同于商用衡器,往往面临更复杂地工况.对于拌和站电磁环境比较恶劣地情况下,一些大规模集成电路常常会受到干扰,导致不能正常工作或在错误状态下运行,造成地后果往往是很严重地.因此对抗干扰性能地了解是称量仪表选型地关键.我们在对珠海市长陆工业自动控制系统有限公司生产地与和其它同类厂家产品进行反复比较过程中,获得了一个好单片机系统(称重仪表)应具备地抗干扰性能方面地分析经验.在此与同行分享,希望以此促进行业技术水平地提高.资料个人收集整理,勿做商业用途 仪表电磁兼容性()是一项重要指标,它包含系统地发射和敏感度两方面地问题.如果一个单片机系统符条件合下面三个条件,则该系统是电磁兼容地:资料个人收集整理,勿做商业用途 .对其他系统不产生干扰; .对其他系统地发射不敏感; .对系统本身不产生干扰; 假若干扰不能完全消除,但也要使干扰减少到最小.干扰地产生不是直接地(通过导体、公共阻抗耦合等),就是间接地(通过串扰或辐射耦合).电磁干扰地产生是通过导体和通过辐射,很多磁电发射源、如光照、继电器、电机和日光灯都可以引起干扰;电源线、互连电缆、金属电缆和子系统地内部电路也都可能产生辐射或接收到不希望地信号.在高速单片机系统中,时钟电路通常是宽带噪声地最大产生源,这些电路可产生高达地谐波失真,在系统中应该把他们去掉.另外,在单片机系统中最容易受影响地是复位线,中断线和控制线.资料个人收集整理,勿做商业用途 .干扰地耦合方式 ()传导性 一种最明显而往往被忽略地能引起电路中噪声地路径是经过导体.一条穿过噪声环境地导线可检拾噪声并把噪声送到其他电路引起干扰.设计人员必须避免导线检拾噪声和在噪声引起干扰前用去耦办法去除噪声.最普通地例子是噪声通过电源进入电路.若电源本身或连接到电源地其他电路是干扰源,则在电源线进入电路之前必须对其去耦.资料个人收集整理,勿做商业用途 ()公共阻抗耦合 当来自两个不同电路地电流流经一个公共阻抗时就会产生共阻抗耦合.阻抗上地压降由两个电路决定,来自两个电路地地电流流过共地阻抗.电路地地电位被电流调制,噪声信号或补偿经共地阻抗从电路耦合到电路.资料个人收集整理,勿做商业用途 ()辐射耦合 经辐射地耦合通称串扰.串扰发生在电流流经导体时产生电磁场,而电磁场在邻近地导体中感应瞬态电流. ()辐射发射 辐射发射有两种基本类型;差分模式()和共模().共模辐射或单极天线辐射是由无意地压降引起地,它使电路中所有地连接抬高到系统电地位之上.就电场大小而言,辐射是比辐射更为严重地问题.为使辐射最小,必须用切合实际地设计使共模电流降到零.资料个人收集整理,勿做商业用途 .影响地因数

几种器件的抗干扰能力

几种电源的抗干扰实验 -------厦门超力电子有限公司总工程师林宗璠 许多书本推荐采用“滤波器”、“开关电源”、“隔离变压器”、“UPS电源”等消除电磁干扰。其效果如何,不得而知。抗干扰实验需要电磁干扰发生器,价格昂贵。我们获得留学回国人员科研资助,进行了实验研究,现公布于众,大家共享。 1、滤波器 滤波器由L、C组成,都是无耗元件,自身不吸收、不消耗电磁干扰能量。厦门超力电子公司设计的实验电路如下图所示。 图1 滤波器抗干扰性能实验配置 受试设备EUI是滤波器保护的智能走马灯。智能走马灯都由“普通开关电源+单片机AT89C51控制”,电灯用于调节滤波器的负载功率。走马灯电路不含干扰源,也不含抗干扰软、硬件,是“纯裸机”。智能走马灯统一制作的,可以代表普通的大多数智能设备。 电磁干扰发生器输出较低的干扰电压时,智能走马灯工作正常;干扰电压较高时,走马灯工作不正常,发生复位、死机、显示错乱等故障。智能走马灯能承受的最高干扰电压值便可测得,根据国际标准IEC 61000,或者国家标准GB/T 17626,或者厦门超力电子有限公司制定的“电磁抗干扰器”标准Q/XMCL 001-2011,可以确定对应的抗扰度,并将之作为滤波器抗干扰性能的指标。 我们采用10种不同滤波器产品逐一代替图1中的滤波器,并测试智能走马灯的抗扰度。10种滤波器是:瑞士SCHAFFNER,德国VAC,日本TDK、日本三基,韩国BIT;中国航天706所、北京爱科创业电子、上海埃德电子(前身为中国航空无线电电子所电磁兼容研究所)、上海安州电子、常州坚力电子制造的,并按要求接地。实验结果是,10种滤波器保护的智能走马灯的电磁兼容性相当一致。 (1)“射频场感应的传导骚扰”抗扰度3级(国际标准最高等级),都能承受干扰试验电压10V。这表明滤波器是消除无线电干扰的好器件。 (2)“脉冲群”抗扰度2级左右,能承受干扰试验电压相接近,约900~1200V,频率100K Hz。其中中国航天706所的滤波器抗扰度最高,达到1200V;可惜远未达到2000V(抗扰度3级)的要求,都不适应典型的工业环境。 如果没有滤波器保护,智能走马灯自身可承受脉冲群干扰700~800V。可见“滤波器+接地”的贡献为200~400V。如果滤波器不接地,单独贡献约几十伏。实验表明,滤波器消除脉冲群干扰的能力很弱。 (3)“浪涌”抗扰度0级,都不能承受浪涌500V,表明滤波器没有抗浪涌干扰功能。 将2个滤波器串联使用,观察效果的提高,都在测量误差范围内,观察不到。 结论:一般智能设备由开关电源或者隔离变压器稳压供电,再采用滤波器保护,接地或者不接地,都不能适应工业环境,即滤波器,接地或者不接地,都不能消除工业干扰。 按照GB/T 7343-1987标准,滤波器的全称是“无源无线电干扰滤波器”,用于消除几伏电压的无线电干扰。它用于消除工业干扰没有标准依据。

雷达抗干扰

雷达抗干扰 雷达抗干扰,属于军事领域,是一种在军事对抗中对抵御敌对方干扰的方法 雷达抗干扰- 正文 无论战时或战前,军用雷达都处于电子对抗环境中。对方通过电子侦察测定雷达辐射的有关参数,以便战时有针对性地对雷达实施电子干扰或用反辐射导弹等加以摧毁,防止或减少雷达取得己方目标的有用信息(见雷达对抗)。军用雷达则应具备电子防护手段,以保证战时能有效地获取目标信息(发现目标与测定目标参数)。抗干扰就是电子防护的重要内容。 发展概况第二次世界大战时,在地面防空、海战、空战中广泛使用雷达(如用于警戒、炮火控制、探照灯控制等),促进了雷达干扰技术的发展。战争后期,普遍使用噪声调幅干扰机、铝箔条和二者的混合干扰,从而又促进了雷达抗干扰技术的发展。除雷达频段向微波波段扩展以增强抗干扰能力外,还出现了许多其他抗干扰技术。这些抗干扰技术包括:雷达工作频率的跳变;有风速补偿的动目标显示;视频信号积累器;脉冲宽度、幅度鉴别电路;采用各种自动增益控制技术或对数放大器,以防止接收机过载和减少虚警;天线旁瓣匿影器;脉冲压缩等。50年代初期,军用雷达已普遍采用变频速度为秒级的机械变频技术和动目标显示技术。50年代后期至60年代,单脉冲、脉冲压缩、频率分集、旁瓣匿影和抑制调频干扰的一些技术已在雷达中应用。70年代以来,以行波管、行波速调管、前向波放大器、微波功率晶体三极管等作发射机末级放大器的雷达,变频范围达到6%~14%。在发射周期间捷变频、寻找干扰频段空隙瞬时躲避干扰的自适应捷变频技术已普遍采用。对于难以用变频躲避的快速宽带扫频干扰,许多雷达采用宽带限幅后再匹配接收的非线性处理方法。有些雷达已采用相干旁瓣对消技术,对干扰机的方位、仰角实现定向的无源技术。复杂的编码发射波形如线性调频、相位编码等也得到普遍应用。相控阵体制使雷达频率、脉宽、重复频率、波束指向和扫描速率更有随机性。雷达采取几个重复周期变频一次,或采取程序化的重复周期间变频并利用大容量存储器,把几个周期的回波存储起来,选择同发射频率的回波进行动目标显示滤波处理,已可解决雷达捷变频与动目标显示的兼容问题。 干扰威胁雷达与一般无线电设备相比更易受到干扰,因为目标散射的能量微弱,不大的干扰能量就能超过它。对于搜索雷达,对方主要是用杂乱信号或假目标扰乱雷达操纵员的观测,造成雷达测距、测角、测速的误差;或使操纵员无法观测和使自动化目标检测的计算机过载,从而破坏雷达对目标的检测。对于跟踪雷达,则使其跟踪假目标,从而丢失对真正目标的跟踪。干扰按性质分为消极干扰和积极干扰两种。①消极干扰:又称无源干扰,靠反射或吸收雷达的辐射能量使雷达观测目标困难(见雷达无源干扰技术)。反射的办法如投放长度为雷达半波长左右的小束金属箔条、敷金属膜的介质和其他反射体等。当少量投放时,投放的瞬间其回波类似飞机回波,借以欺骗执行炮火控制任务的跟踪雷达;当大批投放时,可形成杂波走廊,对目标起掩护作用。②积极干扰:又称有源干扰,用干扰发射机产生干扰能量,可分为压制性和欺骗性干扰两类(见雷达有源干扰样式)。压制性干扰的主要目的是妨碍雷达对目标的检测,包括瞄准式噪声干扰、阻塞式噪声干扰、扫频干扰、脉冲干扰、连续波干扰等。欺骗性干扰的目的是使雷达对假目标进行检测或跟踪,从而作出错误的判断。 雷达的干扰环境空袭中对雷达施放的干扰有自卫式、护航式、远方掩护式等方式,各有不同的用途和特点。自卫式干扰是由攻击飞机自身携带的干扰器材和设备所施放的干扰,旨在保护本身不被雷达发现或不被武器控制雷达所跟踪。飞机的主要任务是攻击,因此所带的干扰机和消极干扰器材只占飞机载荷的较小部分,一般只能携带对飞机威胁最大的雷达频段的干扰设备。由于自卫式干扰能力有限,在轰炸机和战斗轰炸机的编队中往往配备一定数量专门携带干扰设备的飞机以掩护其他飞机,或彼此携带不同频段干扰设备以互相掩护。只有当掩护者与被掩护者间的距离保持在雷达的同一角度分辨单元内,护航式干扰才能奏效。远方掩护式干扰是为了补救自卫式和护航式干扰之不足,由一些专门装载干扰设备的飞机,在远离敌方的安全地区进行干扰,其干扰频段较宽、强度较大。但是,因掩护者与被掩护者不在同一地区,常是从雷达天线旁瓣对雷达进行干扰。 抗干扰方法对付高斯噪声干扰的最佳接收方法是采用匹配滤波器(见检测理论)。强干扰时,处理后的信号干扰比约为2E/N0。式中E为收到的雷达信号能量;N0为噪声干扰频谱密度。增大发射信号能量、使用高增益发射天线、采用宽频带工作,都能提高抗干扰性能。单部雷达的抗干扰能力有限;若以多种不同频段雷达组成雷达网,则易对付机载干扰设备的干扰。最佳策略是把雷达频率分布于尽可能宽的频带,以躲避干扰。如无法躲避,则可迫使干扰机功率分散于雷达频段内,从而降低每赫兹的噪声干扰功率强度。网中雷达采用的扩展频谱信号、频率分集、频率捷变,都是为达到此目的而采取的有效措施。采用分辨力高的方位、仰角接收波束,可使护航式干扰难以互相掩护。低旁瓣天线可以减少受干扰的角域,对任何干扰均有效。采用天线增益大于雷达主天线旁瓣增益的宽波束辅助天线,能使信号与主天线信号进行比较,如旁瓣匿影器,可进一步抑制旁瓣来的脉冲干扰。有自适应功能的相干旁瓣对消器,能进一步抑制包括噪声干扰在内的高占空比干扰。抗干扰效果取决于干扰机的数目、空间分布和对消器的环数。对付用M型返波管产生的宽带快速扫频干扰,采用宽带接收和限幅后匹配滤波的技术,是有效的抑制措施。对于以倍频程工作的行波管产生欺骗雷达的回答干扰,雷达不能靠变频来回避,但采用随机变化的参数(如脉宽、重复周期、波束扫描速率等)、复杂而宽带的发射波形(如线性调频、二相码、四相码等)的方法

抗干扰技术总结

抗干扰技术总结 2009-12-26 16:45:03 1、概述 电磁兼容性设计(EMC:electromagnetic compatibility) 包括如下含义:1.设备或系统具有抵抗给定电磁干扰的能力;2. 设备或系统具有不产生超过限度的电磁干扰的能力。 干扰的基本要素有三个: (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线的传导和空间的辐射。 (3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。干扰耦合传播途径: 传导干扰;辐射干扰。 抗干扰设计的基本原则: 抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 主要手段:接地;屏蔽和隔离;滤波和吸收。 2、干扰耦合途径 2.1 传导耦合 传导耦合是骚扰源与敏感设备之间的主要耦合途径之一。传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰。按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合。在开关电源中,这三种耦合方式同时存在,互相联系。 ⑴电路性耦合 电路性耦合是最常见、最简单的传导耦合方式。其又有以下几种: ①直接传导耦合 导线经过存在骚扰的环境时,即拾取骚扰能量并沿导线传导至电路而造成对电路的干扰。 ②共阻抗耦合 由于两个以上电路有公共阻抗,当两个电路的电流流经一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路,这就是共阻抗耦合。形成共阻抗耦合骚扰的有:电源输出阻抗、接地线的公共阻抗等。 ⑵电容性耦合 电容性耦合也称为电耦合,由于两个电路之间存在寄生电容,使一个电路的电荷通过寄生电容影响到另一条支路。 ⑶电感性耦合 电感性耦合也称为磁耦合,两个电路之间存在互感时,当干扰源是以电源形式出现时,此电流所产生的磁场通过互感耦合对邻近信号形成干扰。 2.2 辐射耦合 通过辐射途径造成的骚扰耦合称为辐射耦合。辐射耦合是以电磁场的形式将电磁能量从骚扰源经空间传输到接受器。通常存在四种主要耦合途径:天线耦合、导线感应耦合、闭合回路耦合和孔缝耦合。 ⑴天线与天线间的辐射耦合

谈PIC和AVR的自身抗干扰性能

也谈PIC和A VR的自身抗干扰性能 在我一次产品中有AVR和PIC两种芯片同时存在,当用AVR推动继电器--再推动接触器。用PIC来显示。发现PIC居然有点小小的干扰,不得不在外围电路上加措施才解决问题。都说PIC的抗干扰一流的,我怀疑之下对两种单片机做一个小小的测试。 首先说明,我只是比较单个芯片的最小系统,比较单片机的自身抗干扰能力。1。电源用变压器变压12V,7805稳压,输入输出均接电解电容和104电容。2。单片机最小系统,用3个I/O,按钮,指示灯,驱动三极管(继电器--再推动接触器)不用的管脚不管。 3。干扰源,由于没有仪器,只好用接触器的线圈来做干扰源,为了加强干扰,接触器线圈两端没有加104电容。 4。软件,最小最简单,不加任何处理只推动作用。 5。元件选择,PIC的用PIC16C54,PIC16F54,PIC16F877A,PIC16F716。AVR的选用M8。AT28,AT13。 接下来做测试了: PIC16C54: 先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,真是稳如泰山。再用接触器线圈引线缠绕芯片。在6圈以下还是稳如泰山。上了7圈就有干扰了。看来PIC16C54真是强悍啊。佩服。接下去就试PIC16F54了。 PIC16F54: 先是接触器放在芯片旁边。不得了!程序简直没有办法运行,和PIC16C54简直一个在天上,一个在地下。万思不得其解。查阅PIC资料都说PIC的F系列比C 系列差,就是F系列的不同产品抗干扰也不一样。于是又测试PIC16F716。 PIC16F716: 先是接触器放在芯片旁边。果然好多了,10次也就1次复位。 PIC16F877A: 先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1圈就有干扰复位了。 以上就是对我有的几种PIC片子的测试结果。接下来对AVR的M8做测试。 M8: 先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1圈就有干扰复位了。 AT28:结果和PIC16F54一样。 AT13: 先是接触器放在芯片旁边。先是接触器放在芯片旁边。无论怎么按动按钮,接触器的干扰对它一点反映也没有,再用接触器线圈引线缠绕芯片。在1-2圈就有干扰复位了。 从我自己测试的效果看,PIC的C系列很好。F系列的早期产品如PIC16F54很差,还不如51。后期的F系列如PIC16F877还可以。个人估计:原来PIC是生

无线通信抗干扰技术性能分析

无线通信抗干扰技术性能分析 摘要如今我国的无线通信技术得到了前所未有的发展机遇,但是在其发展过程中,随着外部通信环境的变化,导致干扰因素也随之发生变化,在一定程度上阻碍了无线通信技术的发展,因此,需要对其进行分析和研究,并对现有的无线通信抗干扰技术进行优化、改造和升级,在提高其运行性能的同时,还可以有效降低无线通信干扰概率,为无线通信的发展提供一个良好的运行环境。 关键词无线通信;抗干扰技术;性能分析 前言 在无线通信发展历程中,外界干扰是无法避免的问题,需要采取有效措施给予解决,此时可以把抗干扰技术引入到无线通信系统中,这样既能够有效降低外界干扰带来的影响,而且还可以提高无线通信系统的运行质量。 1 无线通信中存在的干扰因素分析 1.1 自然环境因素 在无线通信技术传播过程中,将会面临众多的问题,复杂的传播环境就是其中的一项,主要包括地理条件和传播环境的复杂性。在通信信号的传播过程中,由于不同的通信设备之间存在一定的距离,所以传播过程中会因为不同的地理环境而损耗相应的信号。比如当信号经过山区或者高层建筑时,会产生一定的信号损失,导致信号变得更加微弱,在到达终端时可能出现问题。另外,由于现代社会通信设备的使用十分广泛,所以会有一定复杂的通信环境,部分通信信号在传输的过程中可能会受到其他信號的干扰而导致信号出现错误,从而降低信号的质量[1]。 1.2 互调干扰因素 当运行无线通信设备时,通常都会存在很多的信号,当不同的信号频率经过非线性的电路过程中可能会产生相同的频率。这时不同的信号之间就会产生冲突而干扰通信信号的传输质量。通常情况下,发射机、接收机、和一些因素是容易产生干扰的因素。这几个因素会极大影响通信的准确性和及时性。如果这几个因素存在问题,或者无法将相关问题解决,设备就会无法正常使用。 2 无线通信抗干扰技术及性能 2.1 频谱扩展抗干扰技术及性能 (1)FH跳频技术。其能够借助跳变载波频率的方式来完成对频谱的有效扩展,由于该技术水平发展到相对比较成熟的地步,且具有非常强的抗干扰能力,

相关文档