文档视界 最新最全的文档下载
当前位置:文档视界 › 水合肼化学还原硫酸铜制备纳米铜粉的研究

水合肼化学还原硫酸铜制备纳米铜粉的研究

水合肼化学还原硫酸铜制备纳米铜粉的研究
水合肼化学还原硫酸铜制备纳米铜粉的研究

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

电化学法制备纳米铜粉

文章编号:167325196(2008)0320009203 电化学法制备纳米铜粉 徐建林1,2,陈纪东1,2,张定军1,2,马应霞1,2,冉 奋1,2,龙大伟1,2 (1.兰州理工大学甘肃省有色金属新材料重点实验室,甘肃兰州 730050;2.兰州理工大学有色金属合金及加工教育部重点实验室,甘肃 兰州 730050) 摘要:在十二烷基硫酸钠、吐温80、苯、正丁醇、十二烷基硫醇和硫酸铜混合而成的乳液中,采用电化学合成的方法制备稳定的、粒径均匀的Cu 纳米颗粒.采用XRD 、TEM 及FT -IR 对所制备的Cu 纳米颗粒的结构、形貌、粒径大小及表面键合性质进行表征.结果表明,制备的纳米铜粉为球型颗粒,分散较好,尺寸较为均匀,约为60~80nm ,并且具有立方晶型结构;得到的纳米铜颗粒表面含有一层有机物质,形成了包覆层较薄的核壳结构,这种包覆层阻止了纳米铜粉在空气中或水中的团聚和氧化,起到提高纳米铜颗粒的分散性和稳定性的作用.关键词:纳米颗粒;Cu ;乳液;电化学中图分类号:TB383 文献标识码:A Preparation of copper nano 2powder by using electrochemical method XU Jian 2lin 1,2,C H EN Ji 2dong 1,2,ZHAN G Ding 2jun 1,2 MA Y ing 2xia 1,2,RAN Fen 1,2,LON G Da 2wei 1,2 (1.State Key Lab.of Gansu Advanced Non 2ferrous Metal Materials ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ;2.Key Lab.of Non 2ferrous Metal Alloys ,The Ministry of Education ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ) Abstract :Stable and uniform Cu nanoparticles was p repared wit h electrochemical met hod in emulsio ns containing of sodium dodecyl sulfate ,tween 80,benzene ,12butanol ,dodecyl mercaptan and CuSO4?5H 2O.The morp hology and struct ure of t he resulting copper nanoparticles were investigated wit h XRD ,TEM and F T 2IR.It was found t hat t he copper nano 2powder was of sp herical st ruct ure wit h a better dis 2persity ,uniform particlesize.t he average size being 60~80nm and cubic crystalline.A layer of organic compound was absorbed on t he surface of copper nanoparticles ,forming a shell 2core st ruct ure wit h t hin surface coating film ,which could be p revent t he Cu nano 2powder f rom aggregation and oxidation in t he at 2mo sp here or water ,and increase t he dispersibility and stability of t he Cu nanoparticles as well. K ey w ords :nanoparticles ;Cu ;emulsions ;elect rochemist ry 纳米铜颗粒的比表面积大,表面活性中心数多,在石油化工和冶金中是良好的润滑剂;此外,纳米铜颗粒具有极高的活性和选择性,可以用作高分子聚合物的氢化和脱氢化反应的催化剂[1,2].1995年,Pekka [3]等指出纳米铜由于其低电阻而可用于电子 连接,引起电子界的很大兴趣.纳米铜粉也可用于制 造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化生产起重要作用. 目前,常用的制备纳米铜粉的方法有:机械化学 收稿日期:2007201207 作者简介:徐建林(19702),男,陕西岐山人,博士,副教授. 法、气相蒸汽法、化学还原法、辐照还原法等.此外,Gedanken 等人报道了一种用自还原前驱体制备纳米铜的方法[4],Pileni 等人用表面活性剂囊泡技术制备了各种形状的铜纳米颗粒[5].机械化学法制备的粉体组成不易均匀,粉末易团聚,粒径分布宽,所以缺乏现实意义;气相蒸汽法所需原料气体价格昂贵,设备复杂,成本高.目前研究最多的是液相还原法,但是液相还原又需要用到一些剧毒的还原剂,这对研究者本身或者是环境都会造成危害.电化学合成方法具有反应条件温和、仪器设备简单、无毒无污染的优点,是合成纳米材料的有效手段之一[6,7]. 本文采用电化学电解法,在十二烷基硫酸钠、吐 第34卷第3期2008年6月兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.3 J un.2008

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米铜粉.纳米铜粉的作用

纳米铜粉.纳米铜粉的作用 关键词: 纳米铜粉 时间:2011-11-18来源:金粉点击:25次 摘要:纳米铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。纳米铜粉的研究还处于开发阶段,而其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景。 超细颗粒材料是指其颗粒尺寸在1~1 00 nm之间的粉末,也称为纳米颗粒材料(在应用中有人将超细颗粒材料扩展到几微米)。纳米粒子具有小尺寸效应,大的比表面和宏观量子隧道效应,因而纳米微粉显示出许多优良的性能是微米级粉末所没有的。纳米铜粉的比表面大、表面活性中心数目多,在冶金和石油化工中是优良的催化剂。 在汽车尾气净化处理过程中,纳米铜粉作为催化剂可以用来部分地代替贵金属铂和钌,使有毒性的一氧化碳转化为二氧化碳,使一氧化氮转变为二氧化氮。 随着电子工业的发展,由纳米铜粉制备的超细厚膜浆料将在大规模集成电路中起着重要的作用,同时价格比贵金属银粉、钯粉低廉,具有广阔的应用前景。 在高分子聚合物的氢化和脱氢反应中,纳米铜粉催化剂有极高的活性和选择性,在乙炔聚合反应用来制作导电纤维的过程中,纳米铜粉是很有效的催化剂。 超细铜粉是导电率好、强度高的纳米铜材不可缺少的基础原料。由于其优异的电气性能,广泛应用于导电胶、导电涂料和电极材料,近年来研究发现可用于制作催化剂、润滑油添加剂,甚至可以用于治疗骨质疏松、骨折等。 纳米铜粉的研制是一项可能带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。纳米铜粉的研究还处于开发阶段,而其广泛的用途将使得纳米铜粉的研究具有更好的市场价值和市场前景。 目前采用的还原剂包括甲醛、抗坏血酸、次磷酸钠、硼氯化钠、水合肼等,但是这些还原剂有的有剧毒,有的还原能力差,有的成本太高,还有的反应过程易引入其他杂质,因此,寻找更为合适的还原剂或复合还原剂,研究更为理想的反应体系成为纳米铜粉制备研究的重要课题。此外,由于纳米铜粉的粒径较小,表面活性较大,易于团聚,并且粉末表面易被氧化成Cu20,因此如何改善纳米铜粉的分散性及怎样防止铜粉被氧化也是一个重要研究方向。 目前,工业生产超细微材料方法有:冷冻干燥法、沉淀转化法、*相合成法、超声波法、水解法、机械合金化技术、均匀沉淀法、还原一保护法等。上述各法中,有的需要庞大的设备,有的复杂,有的制备成本高,有的合格率及产量低。而液相化学还原法制备纳米铜粉有其独到的优点,如设备简单、艺流程短、投资小、产量大、成本低、易工业化生产等。 纳米铜润滑油添加剂是以纳米摩擦学为理论指导、以纳米技术为支撑的一种新型的润滑油添加剂产品,它具有优良的抗磨减摩和节能环保功效。将纳米铜润滑油添加剂添加到汽车

氧化还原法制备纳米铜研究报告

纳米铜粉制备工艺研究报告 2011年10月18日,欧盟定义纳米材料是指一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。这种材料由于量子尺寸效应,表面效应,体积效应等特性而具备特殊的性能。近些年来,随着金属及其合金制备方法的提高,越来越纯及越来越小的金属颗粒被制备出来,纳米金属的研究迅速发展。研究发现,纳米金属材料具有较好的机械性能如屈服强度、拉伸强度等[1],以及优异的电学性能,磁学性能,光学性能等等。 1铜在材料方面的应用 1.1 氧化铜的应用 铜是与人类关系非常密切的有色金属,铜是唯一能大量天然产出的金属,存在于各种矿石中;它在有色金属材料的消费中仅次于铝。其氧化物—CuO有着广泛的应用,除作为制铜盐的原料外,它还广泛应用于其他领域:如在催化领域,它对高氯酸钱的分解,一氧化碳、乙醇、乙酸乙醋以及甲苯的完全氧化都具有较高的催化活性,且对前4种反应的催化活性均排在金属氧化物之前列;在传感器方面,用CuO作传感器的包覆膜,能够大大提高传感器对CO的选择性和灵敏度;近年来,由于含铜氧化物在高温超导领域的异常特性,使CuO又成为重要的模型化合物,用于解释复杂氧化物的光谱特征。此外,它还用于玻璃、陶瓷的着色剂,油漆的防皱以及有机分析中测定化合物含碳量的助氧剂,甚至有望用作汽车尾气的净化材料[2]。 1.2纳米铜的应用 由于纳米铜粉具有小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应及介电限域效应等特点,因此它的物理化学性质也与传统材料大不相同。自1995年IBM的C K HU等指出纳米铜粉由于其低电阻可以用于电子连接后,其性质引起了电子界的很大兴趣。纳米铜粉作为重要的工业原料,代替贵金属粉末在制作高级润滑油、导电浆料、高效催化剂等方面可大大降低工业成本,有着广阔的应用前景。 在镍氢电池的负极中添加3-10wt.%型号VK-Cu01纳米氧化铜,就可以有效提高电池的比能量和比功率,提高电池的负极性能,还降低了负极电池的质量。纳米氧化铜(VK-Cu01,99.9%)可作为常温脱硫剂的唯一组分。纳米氧化铜在常温25-30℃条件下脱硫精度高,硫容高达18.3%-28.7%。比同等条件下的分析纯氧化铜硫容的4.65倍,是纳米氧化锌硫容的4-8倍,是首选的常温脱硫剂。美国国家标准与技术研究院(NIST)的研究人员马克肯在润滑剂和制冷剂的标准混合物中加入适量的不同纳米粒子,发现在普通聚酯润滑剂上充分分散直径为30nm的氧化铜VK-Cu01粒子,并与普通的制冷剂(R134a)混合,可把制冷器的热传递提高50-275%。。M.M. Rashad等人[4]利用工业废料,采用水热法制得立方铁酸铜合金(CuFe2O4),结果表明在特定的温度条件下,其催化效率达到了95.9%,

胶体金(纳米金Gold Nanoparticles)的制备步骤和注意事项

胶体金(纳米金Gold Nanoparticles)的详细制备步骤和注意事项 胶体金的制备一般采用还原法,常用的还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。下面介绍最常用的制备方法及注意事项。 1、玻璃容器的清洁:玻璃表面少量的污染会干扰胶体金颗粒的生成,一切玻璃容器应绝对清洁,用前经过酸洗、硅化。硅化过程一般是将玻璃容器浸泡于5%二氯二甲硅烷的氯仿溶液中1分钟,室温干燥后蒸馏水冲洗,再干燥备用。专用的清洁器皿以第一次生成的胶体金稳定其表面,弃去后以双蒸馏水淋洗,可代替硅化处理。 2、试剂、水质和环境:氯金酸极易吸潮,对金属有强烈的腐蚀性,不能使用金属药匙,避免接触天平称盘。其1%水溶液在4℃可稳定数月不变。实验用水一般用双蒸馏水。实验室中的尘粒要尽量减少,否则实验的结果将缺乏重复性。 金颗粒容易吸附于电极上使之堵塞,故不能用pH电极测定金溶液的pH值。为了使溶液pH值不发生改变,应选用缓冲容量足够大的缓冲系统,一般采用柠檬酸磷酸盐(pH3~5.8)、Tris-HCL (pH5.8~8.3)和硼酸氢氧化钠(pH8.5~10.3)等缓冲系统。但应注意不应使缓冲液浓度过高而使金溶胶自凝。 3、柠檬酸三钠还原法制备金溶胶: 取0.01%氯金酸水溶液100ml 加热至沸,搅动下准确加入1%柠檬酸三钠水溶液0.7ml,金黄色的氯金酸水溶液在2分钟内变为紫红色,继续煮沸15分钟,冷却后以蒸馏水恢复到原体积,如此制备的金溶胶其可见光区最高吸收峰在535nm,A1cm/535=1.12。金溶胶的光散射性与溶胶颗粒的大小密切相关,一旦颗粒大小发生变化,光散射也随之发生变异,产生肉眼可见的显著的颜色变化,这就是金溶胶用于免疫沉淀或称免疫凝集试验的基础。 金溶胶颗粒的直径和制备时加入的柠檬酸三钠量是密切相关的,保持其他条件恒定,仅改变加入的柠檬酸三钠量,可制得不同颜色的金溶胶,也就是不同粒径的金溶胶,见附表。附表100 ml 氯金酸中柠檬酸三钠的加入量对金溶胶粒径的影响 1%柠檬酸三钠ml 0.30 0.45 0.70 1.00 1.50 2.00 金溶胶颜色蓝灰紫灰紫红红橙红橙 吸收峰(nm) 220 240 535 525 522 518 径粒(nm) 147 97.5 71.5 41 24.5 15 4、柠檬酸三钠-鞣酸混合还原剂:用此混合还原剂可以得到比较满意的金溶胶,操作方法如下:取4ml1%柠檬酸三钠(Na3C6H5O7.2H2O),加入0~5ml1%鞣酸,0~5ml 25mmo/L K2CO2(体积与鞣酸加入量相等),以双蒸馏水补至溶液最终体积为20ml,加热至60℃取1ml1%的HAuCl4,加于79ml双蒸馏水中,水浴加热至60℃,然后迅速将上述柠檬酸-鞣酸溶液加入,于此温度下保持一定时间,待溶液颜色变成深红色(约需0.5~1小时)后,将溶液加热至沸腾,保持沸腾5分钟即可。改变鞣酸的加入量,制得的胶体颗粒大小不同。 5、白磷还原法:在120ml双蒸馏水中加入1.5ml1%氯金酸和1.4ml 0.1mol/L K2CO3,然后加入1ml五分之一饱和度的白磷乙醚溶液,混匀后室温放置15分钟,在回流下煮沸直至红褐色转变为红色。此法制得的胶体金直径约6nm,并有很好的均匀度,但白磷和乙醚均易燃易爆,一般实验室不宜采用。 要得到大小更均匀的胶体金颗粒,可采用甘油或蔗糖密度梯度离心,经分级后制得胶体金颗粒直径的变异系数(CV)可小于15%。 免疫胶体金制备 1、蛋白质的处理:由于盐类成分能影响金溶胶对蛋白质的吸附,并可使溶胶聚沉,故致敏前应先对低离子强度的水透析。必须注意,蛋白质溶液应绝对澄清无细小微粒,否则应

纳米铜粉

纳米铜粉指标: 颜色:紫红色 粒径:100纳米 纯度:99.5% 比表面积:6.67平方米/克 纳米铜粉应用领域: 1、导电浆料:用此方法生产的100纳米铜粉配成铜电子浆料,可以烧结出仅有0.6个微米厚的电极,用于MLCC,使MLCC器件小型化,优化微电子工艺,代替银电等贵金属电子浆料,大幅度降价成本。 2、高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 3、药物添加材料:纳米铜粉为原料制成药物(重量比为0.2~0.4%),具有明显降低MDA含量,改善由于氧自由基所造成的脂质过氧化损害,明显增加SOD含量,增强机体SOD水平,调节其功能活性表达的特性,从而达到延缓人体的老化过程,干预、推迟其机体组织结构向衰老转化,开辟了生命科学领域抗衰老的新途径。有研究者作为制备抗衰老和脑缺血、脑血栓后遗症等的治疗药物,且疗效确切,服用方便、安全。更有专家教授用于治疗癌症,取得了奇效后反过头来探索其机理。纳米铜粉也可以用于治疗骨质疏松,骨质增生等新特效药的添加材料。 4、纳米铜粉弥散强化铜合金等,大幅度提高铜合金的强度和硬度,大幅度提高铜合金的软化温度,同时大幅度提高铜合金的导电和导热能力。 5、油墨导电填料:此方法生产的100纳米铜粉具有纳米材料独有的场发射效应和量子隧道效应,在高导电油墨里替代银粉做高导电填料,大幅度降低成本。 6、金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 7、块体金属纳米材料用原料:采用惰性气体保护粉末冶金烧结制备大块铜金属纳米复合结构材料。 8、金属纳米润滑添加剂:添加0.1~0.6%至润滑油、润滑脂中,在摩檫过程中使摩檫副表面形成自润滑、自修复膜,显著提高摩檫副的抗磨减摩性能。 9、纳米金属自修复剂:添加至各种机械设备金属摩擦副润滑油中,实现金属摩擦已磨损部分自修复,节能降耗,提高设备使用寿命及维修周期。

柠檬酸钠还原法制备金纳米粒子

柠檬酸钠还原法制备金纳米粒子实验 一、试剂和材料 1) 柠檬酸钠(Na3C6H507?2H2O,AR) 天津市化学试剂三厂 2) 氯金酸溶液(HAu Cl4?4 H2O),用王水(硝酸:盐酸=1:3(浓溶液的体积比)配制)溶解99.99%纯金制备。 3) 所用水均为超纯水(电阻值大于15 MΩ) 4) 所用玻璃仪器均经王水洗液充分浸泡处理,使用前用超纯水洗净并烘干。 5)仪器圆底瓶(50 mL)、冷凝管(含2 条橡皮管)、漏斗、滴管、刻度吸量管(10 mL)、量筒(50 mL)、安全吸球、磁搅拌子、电磁加热搅拌器、烧杯、计时器、试管(1 支)、样品瓶(25 mL)等. 实验方法 (一)小粒径金纳米粒子(约15 nm)的制备 1. 取5 mL 浓硝酸与15 mL 浓盐酸混合于100 mL 烧杯中配制王水。将所需使用的圆底瓶、吸量管、磁搅拌子、样品瓶等以王水浸润约1 分钟,再将王水倒入回收烧杯中,以大量去离子水将器皿冲洗干净,最后以超纯水淋洗2 次,而后倒置滴干。 注1:反应器具需以王水(HNO3/HCl = 1/3 (v/v))浸洗器皿内壁,王水必须完全冲洗干净,以免残余王水影响后续制备反应。 注2:王水因具强腐蚀性及刺激臭味,使用时需穿戴乳胶手套并在通

风橱中清洗。王水用后回收作为最后清洗器具使用。 2. 使用已洗净后的量筒量取1 mM 的四氯金酸溶液45 mL 至100mL 圆底瓶中,加入1 个磁搅拌子。 3. 如图2-1架设回流加热装置:以铁夹固定圆底瓶于铁支架上,再将圆底瓶置于电磁搅拌器上,调整至适当位置使搅拌子能顺利搅拌。 4. 装接冷凝管于圆底瓶的上方使磨砂口接合紧密,以铁夹固定冷凝管;连接冷凝管的橡皮管,让冷却水自下端流入、上方排出。 注:橡皮管需先沾水以便利装接,装接的深度应足够以免脱落。冷凝管充满水后,将冷却水水量调小,以节省用水。 5. 开启电磁加热搅拌器之加热及搅拌调控钮让溶液均匀搅拌及加热至溶液沸腾。

制备纳米材料的物理方法和化学方法

制备纳米材料的物理方法和化学方法 (********) 纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元—纳米微粒,制造材料或微型器件的科学技术。 纳米材料的制备方法甚多,目前制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。 1物理制备方法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,这些方法我们统称为物理凝聚法,物理凝聚法主要分为 (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm 。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到410Pa 或更高的真空度,然后注人少量的惰性气体或性2N 、3NH 等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气体的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1 , Nb- Si 等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备

纳米铜微粒制备实验

纳米铜微粒制备 (物教101林晗) 摘要 纳米科技正是指在纳米尺度上研究物质的特性和相互作用以及利用这些特性的科学技术。经过近十几年的急速发展,纳米科技已经形成纳米物理学、纳米化学、纳米生物学、纳米电子学、纳米材料学、纳米力学和纳米加工学等学科领域。 本实验用冷凝法制备纳米颗粒铜,不同压力下颗粒大小和色泽是不同的,对结果做了一些讨论分析。 关键字:纳米颗粒铜蒸汽冷凝法 引言 20世纪80年代末以来,一项令世人瞩目的纳米科学技术正在迅速发展。纳米科技将在21世纪促使许多产业领域发生革命性变化。关注纳米技术并尽快投入到与纳米科技有关的研究,是本世纪许多科技工作者的历史使命。 在物理学发展的历史上,人类对宏观领域和微观领域已经进行了长期的、不断深入的研究。然而介于宏观和微观之间的所谓介观领域,却是一块长期以来未引起人们足够重视的领域。这一领域的特征是以相干量子输运现象为主,包括团簇、纳米体系和亚微米体系,尺寸范围约为1~1000nm。 但习惯上人们将100~1000nm范围内有关现象的研究,特别是电输运现象的研究领域称为介观领域。因而1~100nm的范围就特指为纳米尺度,在此尺度范围的研究领域称为纳米体系。

目录 摘要 (1) 引言 (1) 1.纳米微粒的制备 (2) 1.1纳米微粒制备方法 (2) 1.2本实验的蒸汽冷凝法 (3) 2.实验仪器 (4) 2.1实验总设备 (4) 2.2实验仪器部件 (4) 3.实验内容 (5) 3.1准备工作 (5) 3.2制备铜纳米微粒 (5) 4实验现象的记录与分析 (6) 4.1实验现象 (6) 4.2实验现象分析 (6) 总结 (7) 参考文献 (7) 1.纳米微粒的制备 1.1纳米微粒制备方法 利用宏观材料制备微粒,通常有两条路径。一种是由大变小,即所谓粉碎法;一种是由小变大,即由原子气通过冷凝、成核、生长过程,形成原子簇进而长大为微粒,称为聚集法。由于各种化学反应过程的介入,实际上已发展了多种制备方法。 微粒制备通常有以下几种方法:(1)粉碎法(2)化学液相法(3)气相法

光化学法制备金纳米粒子

班级:12应化1 W学号 :12331106 姓名 : 陈柏霖 《贵金属纳米材料》课程作业(02) 查阅中外文文献,实例说明:运用微乳液法或光化学合成法合成贵金属纳米粒子。要求:给出原料、列出详细可靠的实验过程、给出所获得的贵金属纳米粒子的物相、形貌和粒度等直观证据、给出来源文献。 光化学法制备金纳米粒子 一.原料 氯金酸(HAuCl4,天津市文达稀贵试剂化工厂),分析纯; 二水合柠檬酸三钠(C6H5Na3O7?2H2O,天津市化学试剂一厂),分析纯,简TSC; N-聚乙烯吡咯烷酮([OC(CH2)3NCHCH3]n,K30,聚合度 360,天津市博迪化工有限公司),分析纯,简称 PVP;单宁酸(C76H52O46,天津市化学试剂六厂),分析纯; 聚已二醇(HO(CH2CH2O)nH(n=68-84),平均分子量 4000,天津市科欧化学试剂开发中心),化学纯,简称 PVA; 实验用水均为二次蒸馏水。 实验光源一:500 W 卤钨灯,工作波段为 250~2500 nm; 实验光源二:30 W 紫外灯(U 型),紫外线波长约 95%为 253.7 nm; UV-1100紫外/可见分光光度计(北京瑞利分析仪器有限公司); JEM-100CXII 型透射电镜(日本电子公司)。 二.纳米金溶胶的制备方法 1、柠檬酸钠还原法制备金胶体 取 100 m L 0.01wt%HAuCl4煮沸后逐滴加入不同量的 0.01wt%的柠檬酸三钠溶液,维持沸腾10钟,得到紫红色的金纳米粒子的溶胶。 2、光还原和光诱导制备金胶体 按方法 1 在煮沸的氯金酸滴加柠檬酸钠以后,移至光源下照射,观察颜色由深变浅最后稳定为紫红色,并与不经煮沸直接光源照射的试样比较。 3、单宁酸-柠檬酸钠还原法制备金胶体

纳米铜粉的制备进展

纳米铜粉的制备进展 黄 东,南 海,吴 鹤 (北京航空材料研究院,北京100095) 作者简介:黄东(1971-) ,男,工程师,主要从事金属材料的研究与开发工作。摘 要:本文较系统地介绍了用于制备纳米铜粉的各种方法,对这些方法的制备过程、优缺点及其应用情况进行了 评述,并指出了存在的问题及未来的发展方向。关键词:纳米铜粉;制备;进展中图分类号:T B 44;T F 123.72 文献标识码:A 文章编号:1005-$192(2004)02-0030-05 D eVel o p m ent on pre p arati on f or nanocr y st alli ne Co pp er powder ~UANG on g ,NAN ~ai ,W u ~e (B e i j i n g I nstitute o f A eronautical m aterials ,B e i j i n g 100095,Ch i na ) ABSTRACT :T he m et hods f or p re p ari n g nanocr y stalli ne co pp er p oW der are revieW ed s y nt heticall y .T he p rocess o f p re p ara-tion and t he ir advanta g es and d isadvanta g es are i ntroduced.A nd t he ir a pp lication s ituation is i ntroduced also.B es i des ,t he p rob le m and f uture deve lo p m ent o f m et hods are p o i nted out. KEY W ORD S :nanocr y stalli ne co pp er p oW der ;p re p aration ; deve lo p m ent 1 前言 纳米材料一般是指颗粒尺寸在1!100n m 之间的材料,由于存在着小尺寸效应、表面界面效应、量子尺度效应及量子隧道效应等基本特征,使其具有许多与相同成分的常规材料不同的性质,在力学、电学、磁学及化学等领域有许多特异性能和极大的潜 在应用价值〔1〕。纳米铜粉可用于高级润滑剂,其以 适宜的方式分散于各种润滑油中形成一种稳定的悬浮液,这种润滑剂每升含有数百万个超细的金属微粒,它们与固体表面结合形成一个光滑的保护层,同 时将微划痕填塞,可大幅度降低磨损和摩擦〔2〕,尤 其在重载、低速和高温振动情况下作用更加显著。1995年,I Bm 的Pekka 〔3〕 等指出纳米铜由于其低电 阻而可被用于电子连接后,其性质引起电子界的很大兴趣。纳米铜粉可用于制造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化起重要作用。P.G .s anders 〔4〕等得到了纳米铜材(晶粒尺寸 10! 100n m ) 的拉伸力学性能,发现其屈服强度是一般退火铜(晶粒尺寸20"m )的10倍,其延伸率也可达$%以上, 纳米铜粉是高导电率、高强度的纳米铜材不可缺少的基础原料。因此纳米铜粉的研制是一项可以带来铜及其合金革命性变化的关键技术,具有重要的理论意义和实用价值。 纳米铜粉的制备技术 近年来,有关纳米铜粉的制备研究,国内外都有不少报道,如气相蒸气法、#-射线法、等离子法、机械化学法等,但是制备纳米铜粉较为活跃的方法是液相还原法,现将对各种制备方法的制备过程、优缺点及其应用情况进行评述。 .1 气相蒸气法 〔5!6〕该方法是制备金属粉末最直接、最有效的方法,法国的Lairli C usd 公司采用感应加热法,用改进的气 相蒸气法制粉技术制备了铜超微粉末,产率为0.5k g /h 。感应加热法是将盛放在陶瓷坩埚内的金属材料在高频或中频电流感应下,靠自身发热而蒸 第11卷第2期2004年4月金属功能材料m etallic Functional m aterials V o l .11,N o.2 A p ril ,2004

复合纳米金膜的制备及其光学性质

第29卷 第3期Vo l 129 No 13材 料 科 学 与 工 程 学 报Journal of M aterials Science &Engineering 总第131期Jun.2011 文章编号:1673-2812(2011)03-0405-06 复合纳米金膜的制备及其光学性质 万 淼1,2,魏 刚1,袁 红1,洪汉烈2 (1.数学与物理学院,中国地质大学,湖北武汉 430074;2.地球科学学院,中国地质大学,湖北武汉 430074) =摘 要> 本文利用化学还原法制备了不同尺寸的金纳米颗粒,并利用离子自组装多层技术在玻璃基底上沉积了基于金纳米颗粒的复合纳米金膜,研究了颗粒尺寸和成膜厚度对复合金膜光学性质的影响。不同比例的柠檬酸钠与氯金酸产生的金纳米颗粒溶液的紫外-可见光谱随着金颗粒直径增大而 红移展宽。适量比例的柠檬酸钠与氯金酸能够产生平均直径为14?1.2nm 且尺寸分布均匀的金纳米球;其溶液在518nm 处有一特征吸收峰。不同大小的金纳米颗粒形成的薄膜的紫外-可见光谱形状不同,局域表面等离子体共振峰的位置随着颗粒直径的减小而向短波方向迁移。薄膜的沉积层数越多,薄膜表面的颗粒分布越均匀,局域表面等离子体峰的峰值变化也将减小。本工作证实了利用离子自组装多层技术能够快速、简易、低成本地在玻璃基底上沉积具有局域表面等离子体共振的复合纳米金膜。 =关键词> 金纳米颗粒;离子自组装多层技术;局域表面等离子体共振;复合纳米金膜;光学性质中图分类号:T Q031.6;O648.16;O657.3 文献标识码:A Preparation and Optical Properties of Gold -nanoparticles Containing Composite Films WAN Miao 1,2,WEI Gang 1,YUAN Hong 1,HONG Han -lie 2 (1.School of Mathematics and Physics,C hina University of Geosciences,Wuhan 430074,China; 2.Faculty of Earth Sciences,C hina University of Geosciences,Wuhan 430074,China) =Abstract > Go ld -nanoparticles (AuNPs)w ith different diameter s w ere prepar ed by chemical reduction method,then co mpo site go ld films w ere depo sited o n g lass slides by ionic self -assem bled m ultilayers (ISAM )technique.Go ld co lloid w ith different diameter s can be produced by differ ent r atios o f so dium citrate to H AuCl 4,and the UV -vis peak w avelength o f collo id shifts to shor ter w aveleng th w ith decreasing AuNPs size.Go ld -nanospheres w ith unifor m size (14?1.2nm average diameter)and g ood size distribution can be prepared,and the UV -vis adso rption peak o f this colloid locates at 518nm.Optical properties o f the composite go ld films depend on both AuNPs size and ISAM film thickness.T he po sitio n of localized surface plasmo n reso nance (LSPR)of the gold film shifts to shorter w aveleng th w ith decr easing AuNPs size.With increasing the number of deposited lay er s,the film surface gets unifo rm character istic and stable LSPR position. =Key words > go ld -nano particles;ionic self -assembled multilayers;lo calized surface plasmon resonance;com po site gold film;optical pro perty 收稿日期:2010-07-01;修订日期:2010-09-25 基金项目:中央高校基本科研业务费专项资金资助项目(CU GL100240) 作者简介:万 淼(1980-),女,讲师,E -m ail:wm wh dz07@https://www.docsj.com/doc/b814005305.html, 。通讯作者:洪汉烈,教授,E -mail:hong hl8311@yah https://www.docsj.com/doc/b814005305.html, 1 引 言 离子自组装多层技术(Io nic Self -assembled Multilay er s,ISAM )是层层自组装技术(Layer -by -Lay er,LbL)的一种。1991年Decher 小组首次利用阴 阳离子聚电解质的静电自组装成功制备了多层复合平板膜 [1] ,并研究了多层薄膜的结构和性质 [2] ,从此之后

相关文档