文档视界 最新最全的文档下载
当前位置:文档视界 › 高效液相色谱思考题试卷及答案

高效液相色谱思考题试卷及答案

高效液相色谱思考题试卷及答案
高效液相色谱思考题试卷及答案

高效液相色谱法的习题和参考答案

思考题与练习题

1.高效液相色谱是如何实现高效、快速、灵敏的?

解:

气相色谱理论和技术上的成就为液相色谱的发展创造条件,从它的高效、高速和高灵敏度得到启发,采用5-10μm微粒固定相以提高柱效,采用高压泵加快液体流动相的流速;设计高灵敏度、死体积小的紫外、荧光等检测器,提高检测灵敏度,克服经典液相色谱的缺点,从而达到高效、快速、灵敏。

2.简述液相色谱中引起色谱峰扩展的主要因素,如何减少谱带扩,提高柱效?

解:

液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动相传质、停留流动相传质及柱外效应。

在液相色谱中要减少谱带扩,提高柱效,要减少填料颗粒直径,减小填料孔穴深度,提高装填的均匀性,采用低黏度溶剂作流动相,流速尽可能低,同时要尽可能采用死体积较小的进样器、检测器、接头和传输管线等。

3.色谱柱A柱长为15cm,载体粒度为5μm。另一B柱长为30cm,载体粒度为10μm。

两柱的柱效相等吗?

解:

∵l=L/dp

∴lA=15/0.0005=30000

lB= 30/0.0010=30000

A柱的折合柱长为30000,B柱的折合柱长也为30000,表明组分在两根柱从柱入口到出口都经过30000个载体颗粒,两柱的柱效相等。

4.流动相为什么要脱气?常用的脱气方法有拿几种?

解:

流动相中溶解气体存在以下几个方面的害处

(1)气泡进入检测器,引起光吸收或电信号的变化,基线突然跳动,干扰检测;

(2)溶解在溶剂中的气体进入色谱柱时,可能与流动相或固定相发生化学反应;

(3)溶解气体还会引起某些样品的氧化降解,对分离和分析结果带来误差。因此,使用前必须进行脱气处理。

常用的脱气法有以下几种:

(1)加热脱气法;

(2)抽吸脱气法

(3)吹氦脱气法;

(4)超声波振荡脱气法。

5.在液相色谱中。常用作固定相,又可用作键合相基体的物质是

A. 分子筛

B. 硅胶

C. 氧化铝

D. 活性炭

解:

B硅胶

要形成化学键合固定相,所用的基质材料应有某种化学反应活性,在四种固体固定相中只有硅胶含有硅醇基,是能进行键合的活性官能团。

6.在150×Φ2mm硅胶柱流动相为己烷/甲醇(150:2),紫外检测器色谱条件下分离丙烯

酰胺,判断以下组分的出峰次序,为什么?

A. B.

解:

在给定的色谱条件下,组分B先出峰,组分A后出峰。以硅胶为固定相,己烷/甲醇(150:2)为流动相,该体系为正相色谱,样品的极性A>B,在正相色谱体系极性小的组分先出峰,极性大的组分后出峰,所以出峰次序为B先出,A后出。

7.在硅胶柱上,用甲苯为流动相,某组分的保留时间为30min,如果改用四氯化碳或乙醚

为流动相,试指出选用哪中溶剂能减少该组分的保留时间?为什么?

解:

该体系为正向色谱体系。在该体系中流动相的极性增大保留值减少。流动相甲苯、四氯化碳及乙醚的溶剂强度参数分别是0.29、0.18、0.38,因此选用溶剂强度参数大于甲

苯的乙醚,可缩短该化合物的保留时间。

8. 为什么体积排阻色谱中任何组分的分配系数必须符合0≤K ≤1?如果K>1说明什么问题?

解:

因为组分的分配系数为K=Cs/Cm,Cs 与Cm 分别为组分在固定相和流动相中的浓度,当分子直径大于孔径时,此时Cm=0,∴K=0.当分子直径小于固定相孔径时,组分向空隙流动相扩散,达到平衡时,一半组分在空隙,一半组分在空隙外,此时K=1.0,若分子直径介于以上两种极限情况之间,K 一定介于0与1之间,可见体积排阻色谱中,任何祖父呢的分配系数为0≤K ≤1,如果K>1说明此时的分离方式已不是纯粹的体积排阻色谱,其分离过程受到其他作用力(如吸附)的支配.

9. 为了测定邻氨基苯酚中微量杂质苯胺,现有下列固定相:硅胶,ODS 键合相,流动相有:水-甲醇,异丙醚-己烷,应选用哪种固定相,流动相?为什么?

解: 邻氨基苯酚中微量杂质苯胺测定,为了良好分离,应让苯胺先出峰,由于苯胺的极性小于邻氨基苯酚,因此应采用正相色谱法,选用硅胶为固定相,异丙醚-己烷为流动相. 10. 在ODS 键合相固定相,甲醇-水为流动相时试判断四种苯并二氮杂苯的出现峰顺序.为什

么? 1.

2.

3.

4.

解:

色谱条件为反相键合相色谱体系,在反相色谱体系中极性大的组分k小,首先出峰,按四种

苯并二氮杂苯的结构,出峰顺序为4-3-2-1.

自测题

1.在GC和LC中, 影响柱选择性的不同的因素是

A.

固定相的种类;

B. 柱温;

C.流动相

的种类;

D.分配比。

2.

在液相色谱中, 氏方程中的哪一项对柱效能的影响可以忽略不计?

A.涡流扩散项;B.分子扩散项;

C.固定相传质阻力项;D.流动相中的传质阻力。

3.在液相色谱中, 某组分的保留值大小实际反映了哪些部分的分子间作用力?

A.组分与流动相;B.组分与固定相;

C.组分与流动相和固定相;D.组分与组分。

4.在液-固色谱法中, 以硅胶为固定相, 对以下四组分, 最后流出色谱柱的组分可能是

A.

苯酚; B. 苯胺;

C.邻

羟基苯胺;

D.对

羟基苯胺。

5.在液-固色谱法中, 以硅胶为固定相, 对以下四组分, 最后流出色谱柱的组分可能是

A.

苯酚;

B. 苯胺;

C

.邻

羟基苯胺;

D .对

羟基苯胺。

6. 用液相色谱法分离长链饱和烷烃的混合物, 应采用下述哪一种检测器

?

A .紫外吸收检测器;

B .示差折光检测器;

C

.荧光检测器;

D .电化学检测器。

7. 液-液色谱法中的反相液相色谱法,其固定相、流动相和分离化合物的性质分别为:

A .非极性、极性和非极性;

B

.极性、非极性和非极性;

C .极性、非极性和极性;

D .非极性、极性和离子化合物。

8. 若在一个 1m 长的色谱柱上测得两组分的分离度为 0.68,若要使它们完全分离, 则柱长 (m) 至少应为:

A.0.5;

B. 2;

C

5;

D

.9。

9.

在液相色谱中,梯度洗脱最宜于分离:

A .几何异构体;

B .沸点相近,官能团相同的试样;

C .沸点相差大的试样;

D .分配比变化围宽的试样。

10.液-液色谱法中的反相液相色谱法,其固定相、流动相和分离化合物的性质分别为:

A. 非极性、极性和非极性;

B. 极性、非极性和非极性;

C. 极性、非极性和极性;

D. 非极性、极性和离子化合物。

正确答案:

1:(C)、2:(B)、3:(C)、4:(D)、5:(D)6:(B)、7:(A)、8:(C)、9:(D)、10:(A)!

简述色谱基础理论中的塔板理论和速率理论

1、简述色谱基础理论中的塔板理论和速率理论(10分) 塔板理论是由以下四个假设构成的:1、在柱内一小段长度H 内,组分可以在两相间迅 速达到平衡。这一小段柱长称为理论塔板高度H 。2、流动相(如载气)进入色谱柱不是连 续进行的,而是脉动式,每次进气为一个塔板体积(ΔVm )。3、所有组分开始时存在于第0 号塔板上,而且试样沿轴(纵)向扩散可忽略。4、分配系数在所有塔板上是常数,与组分 在某一塔板上的量无关。(3分) 速率理论:是由荷兰学者范弟姆特等提出的。结合塔板理论的概念,把影响塔板高度的 动力学因素结合进去,导出的塔板高度H 与载气线速度u 的关系: Cu u B A H ++= 其中:A 称为涡流扩散项,B 为分子扩散项, C 为传质阻力项 涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于 A=2λd p ,表明 A 与填充物的平均颗粒 直径 dp 的大小和填充的不均匀性 λ 有关,而与载气性质、线速度和组分无关,因此使用 适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 分子扩散项 B/u 由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很小一 段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产 生纵向扩散。而 B=2rD g r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲 因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与 组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或 载气相对分子质量的平方根,所以采用相对分子质量较大的载气 ( 如氮气 ) ,可使 B 项 降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两项。所谓气相 传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量 交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。 (7分) 2、简述HPLC 仪器的基本构成及常用的一些分离类型。(10分) HPLC 仪器一般可分为梯度淋洗系统,高压输液泵与流量控制系统,进样系统,分离柱 及检测系统等5个主要部分(5分);液相色谱有多种分离类型,根据使用的固定相不同, 主要有如下分离类型:液-固吸附色谱,液-液分配色谱、离子交换色谱,排阻色谱、亲和色 谱等。(5分) 3、色谱分析法区别于其他分析方法的主要特点是什么?(5分) 1、 分离效率高,可以分离分析复杂混合物、有机同系物、异构体、手性异构体等; 2、灵 敏度高,可以检测出μg/g 级甚至是ng/g 级的物质量;3、分析速度快,一般在几分钟或 几十分钟内可以完成一个试样的分析;4、应用范围广,气相色谱适用物沸点低于400℃ 的各种有机化合物或无机气体的分离分析。液相色谱适用于高沸点、热不稳定及生物试 样的分离分析。离子色谱适用于无机离子及有机酸碱的分离分析。 4、色谱分离过程中的热力学和动力学因素分别由哪两个参数表现出来?两个色 谱峰的保留时间较大就一定能够分离完全吗?(5分) 色谱分离过程中的热力学因数是是保留值之差,而区域宽度是色谱分离过程中的动力学因数, 他们分别是通过分离度和分配系数这两个参数表现出来的。 不一定能分离完全,判断两个峰能否分离完全是用分离度来表现的,当分离度R=1.5时,分

高效液相色谱仪(HPLC)校正方法

高效液相色谱仪(HPLC)校正方法 0.1输液系统: 0.1.1梯度误差G C不超过±3% 0.1.2泵流量设定值误差 S s<±2% 0.1.3流量稳定性误差 S R<±2% 0.2紫外检测器性能 0.2.1基线噪声不超过5×10-4AU,基线漂移不超过5×10-3AU 0.2.2定量测量重复性误差(6次进样)RSD≤1.5% 0.2.3最小检测浓度不超过1×10-7g/ml萘/甲醇溶液 0.2.4可调波长紫外可见光检测器波长示值不超过±2nm(HP1100高效液相色谱仪可由仪器自身完成) 1校正条件 1.1环境温度10-30℃,相对湿度低于65% 1.2校正设备 1.2.1秒表分度值小于0.1 s 1.2.2分析天平最大称量200g,最小分度值0.1mg 1.2.3容量瓶 1.2.4微量注射器 1.3标准物质和试剂 1.3.1HPLC用甲醇、纯水,分析纯的丙酮 1.3.21×10-4g/ml,1×10-7g/ml的萘甲醇溶液 1.3.3紫外波长标准溶液 2校正方法 2.1梯度误差G C的校正 2.1.1进行梯度洗脱程序,A溶剂为水,B溶剂为0.1%丙酮的水溶液,B经5个阶段从0变到100%, 20%—40%—60%—80%—100%,重复测量两次,取平均值,求各段梯度误差Gci,取最大作为仪器梯度误差,公式:Gci=(Li—Lm)/Lm×100% Li:第i段信号值的平均值; Lm :各段输出信号平均值的平均值 可接受标准: -3%≤Gci≤3% 2.2泵流量设定值误差Ss、流量稳定性误差S R的校正 2.2.1将仪器的输液系统、进样器、色谱柱和检测器联接好,以甲醇为流动相,按表一设定流量,待 流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确的收集10-25

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

HPLC实验高效液相色谱分析实验

仪器分析实验报告实验名称:高效液相色谱分析实验

一、实验目的 1. 了解HPLC的结构,了解仪器的开、关程序。 2. 了解流动相的制备和样品溶液的制备。 3. 知道仪器的运行程序和进行样品分析。 二、仪器和试剂 仪器:美国安捷伦1200型HPLC、10μL的微量注射器 试剂:磷酸乙腈溶液(PH=3)、重蒸水、邻氯苯甲酸 三、实验步骤 1.流动相的准备 流动相只有一组:PH=3的磷酸乙腈溶液,进过脱气,用蠕动泵输送。2.开机,色谱柱平衡 当1完成后,开机,待色谱柱平衡。 3.样品溶液的准备 配置好邻氯苯甲酸溶液,按要求选好滤纸的孔径大小。用低压过滤装置过滤,由于美国安捷伦1200型HPLC配有脱气装置,因此滤液无需事先脱气就可以进行分析。 4.基线的查看 由于仪器内部压力的变化可以引起基线的不断波动,因此,需等待压力稳定后,基线平稳才能进行进样。 5.样品进样分析

用10μL的微量注射器取5μL的邻氯苯甲酸,微量注射器中不能有气泡,将微量注射器的针头插入到注射的孔时,打开微量注射阀,将邻氯苯甲酸注射进去后,迅速关闭阀门,抽出针头,等待仪器的分析结果。 6.色谱柱的清洗 分析工作结束后,要清洗进样阀中的残留样品,也要用适当的液体来清洗色谱柱。 7.关机 实验完毕后,关闭仪器和电脑。 四、实验数据及处理 1.LC参数 2.色谱柱参数 3.四元泵状态 A:0.0%流速:1.000ml/min B:0.0%压力:91bar C:0.0% D:0.0%

5.色谱分析谱图见附页,经过注射5μL的邻氯苯甲酸,得到三组实验色谱图, 根据谱图列表数据如下: 色谱柱长(L)、理论塔板高度(H)与理论塔板数(n)三者的关系为: n = L / H 理论塔板数和色谱参数之间的关系为: n = 16 ( t R / W b ) 2 = 5.54 ( t R / Y1/2 ) 2 则取第五组数据计算得: t R=2.437 min = 146.22s Y1/2 = 2.354(0.1375min / 4 ) = 4.855125 s n = 5.54 ( t R / Y1/2 ) 2 =5025 (块)

塔板理论

第二章 气相色谱分析gas chromatographic analysis,GC 第二节 色谱理论基础fundamental of chromatograph theory 色谱理论需要解决的问题:色谱分离过程的热力学和动力学问题。影响分离及柱效的因素与提高柱效的途径,柱效与分离度的评价指标及其关系。 组分保留时间为何不同色谱峰为何变宽 组分保留时间:色谱过程的热力学因素控制;(组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制;(两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论; 一、塔板理论-柱分离效能指标 1.塔板理论(plate theory ) 半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程); 塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。 色谱柱长:L ,虚拟的塔板间距离:H ,色谱柱的理论塔板数:n , 则三者的关系为: n = L / H 理论塔板数与色谱参数之间的关系为: 保留时间包含死时间,在死时间内不参与分配! 2.有效塔板数和有效塔板高度 ?单位柱长的塔板数越多,表明柱效越高。 ?用不同物质计算可得到不同的理论塔板数。 2 22116545)()( ./b R R W t Y t n ==

?组分在t M 时间内不参与柱内分配。需引入有效塔板数和有效塔板高度: 3.塔板理论的特点和不足 (1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高,所得色谱峰越窄。 (2)不同物质在同一色谱柱上的分配系数不同,用有效塔板数和有效塔板高度作为衡量柱效能的指标时,应指明测定物质。 (3)柱效不能表示被分离组分的实际分离效果,当两组分的分配系数K 相同时,无论该色谱柱的塔板数多大,都无法分离。 (4) 塔板理论无法解释同一色谱柱在不同的载气流速下柱效不同的实验结果,也无法指出影响柱效的因素及提高柱效的途径。 二、 速率理论-影响柱效的因素 1. 速率方程(也称范弟姆特方程式) H = A + B /u + C ·u H :理论塔板高度, u :载气的线速度(cm/s) 减小A 、B 、C 三项可提高柱效; 存在着最佳流速; A 、 B 、 C 三项各与哪些因素有关 A —涡流扩散项 A = 2λdp dp :固定相的平均颗粒直径λ:固定相的填充不均匀因子 固定相颗粒越小dp ↓,填充的越均匀,A ↓,H ↓,柱效n ↑。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱峰较窄。 222/1)(16)(54.5b R R W t Y t n ==理有效 有效有效n L H W t Y t n b R R ===2'22/1')(16)(54.5

高效液相色谱(HPLC)法测定邻苯二甲酸酯

实验七高效液相色谱(HPLC)法测定邻苯二甲酸酯 一.实验目的 1、学习高效液相色谱仪的基本操作方法。 2、了解高效液相色谱仪原理和条件设定方法。 3、了解高效液相色谱法在日常分析中的应用。 二.实验原理 高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: R= 2[t (R2)-t (R1) ] /1.7*(W 1 +W 2 ) 式中 t (R2)为相邻两峰中后一峰的保留时间; t (R1) 为相邻两峰中前一峰的保留 时间; W 1及W 2 为此相邻两峰的半峰宽。除另外有规定外,分离度应大于1.5。 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。待测物性质见表1。 表1色谱柱测试条件 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。

三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul微量注射器。 2、试剂 甲醇(色谱专用),高纯水 四.实验步骤 1、色谱条件 色谱柱:辛烷基硅烷键合硅胶(C8) 柱温:室温 流动相:初始为高纯水:30%,甲醇:70% 检测器:DAD检测器; 检测波长:220nm; 进样体积:100μl定量环,实际注射每次可控制在200μl。 2、待测溶液的配制 首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。 3、色谱测定 (1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。流量为1.000ml/min。 (2) 待仪器稳定后,开始进样。将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液50ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。 (3) 记下各组分色谱峰的保留时间及峰面积及分离比。 (4) 实验完毕,清洗系统及色谱柱。依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。 五.实验结果

实验6 高效液相色谱法的定量分析

实验6 高效液相色谱法的定量分析 一. 实验目的 1. 了解HPLC仪器基本结构,熟悉高效液相色谱仪的使用方法、 2. 掌握液相色谱定性分析的方法; 3. 加深对色谱分离原理的理解,掌握主要实验条件的选择 二. 实验原理 HPLC系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC还有电脑控制系统,进行自动化仪器控制和数据处理。 色谱定量分析的依据是被测组分的量与其峰面积成正比。但是峰面积的大小不仅取决于组分的质量,而且还与它的性质有关。即当两个质量相同的不同组分在相同条件下使用同一检测器进行测定时,所得的峰面积却不相同。 保留时间(retention time,t R)——从进样开始到某个组分在柱后出现浓度极大值的时间。 峰面积A:色谱峰与峰底之间的面积。峰面积一般用mm2、mm×min或检测器的输出的信号单位表示。色谱峰的面积可由色谱仪中的积分仪求得,也可通过以下方法求得: 对于对称的色谱峰:A=1.065h W1/2 对于非对称色谱峰:A=1.065 h (W0.15+W0.85)/2 三. 实验设备 高效液相色谱(HPLC)仪:waters e2695高液相色谱仪配2998二极管阵列(PDA)检测器,自动进样器,色谱柱:Kromasil C-18 250*4.6mm 四.实验内容与主要步骤 1.样品:喹乙醇经0.45 m滤膜过滤至1 m L的样品管中。 2.色谱条件: 流动相:甲醇:乙酸铵溶液(pH=4,0.02mol/L)=2:8 检测波长:270nm 流动相流速:1.0ml/min 进样量:10ul 3.开机,平衡: 打开稳压电源,待电压稳定于220 V后,依次打开Varian 210泵,Varian 335 PDA检测器电源开关,计算机主机;显示器。双击鼠标左键打开Varian WS;待屏幕上方出现LC Workstation后,单击鼠标System control连机进入程序。点击Method,编辑方法,点击System Setup最大压力、最小压力,后点击Save。将该方法保存在指定的文件夹中,放上配制好的流动相,由File中打开Activate Method,选择编辑好的方法激活,平衡色谱柱,到基线基

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

实验四 高效液相色谱法测定水体中的苯酚及α-萘酚

高效液相色谱法测定水体中的苯酚和α-萘酚 一、实验目的 1、了解色谱法的分离原理,初步学会使用高效液相色谱仪; 2、利用高效液相色谱仪分离测定水体中的苯酚及α-萘酚。 二、实验原理 1、色谱法的分离原理 溶于流动相中的各待测组分经过色谱柱固定相时,由于各组分与固定相发生作用(吸附、分配、离子吸收、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出,达到分离的目的,又称色层法、层析法。 2、高效液相色谱仪使用原理 高效液相色谱仪由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成四个系统即高压输液系统、进样系统、分离系统和检测系统。 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 正是根据物质的定性与定量关系,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待测物所含有的物质。 3、苯酚及α-萘酚的分离原理及标准溶液准备 对于一些组分比较简单的已知范围的混合物,或无已知物的情况下,可以利用保留值定性。保留值的大小取决于分配系数之比,即与组分的性质、固定液的性质及柱温有关,与固定液的用量、柱长、流速及填充情况无关。在一定操作条件下,用对照品配成不同浓度的对照液,定量进样,用峰面积或峰高对对照品的量(或浓度)做校正曲线,求回归方程,然后在相同条件下分析试样,计算含量,这种方法称为校正曲线法。通常截距近似为零,若截距较大,说明存在一定的系统误差。本实验,苯酚的波长为270nm,α-萘酚的波长为295nm。使得两种物质

高效液相色谱定量分析分析实验

高效液相色谱定量分析实验 一、实验目的 ⑴进一步熟悉HPLC仪器的基本构造及工作原理,熟悉HPLC的基本操作; ⑵了解色谱定量操作的主要方法以及各自特点; ⑶学习未知样品中甲苯的定量分析方法。 二、实验原理 ⑴校正因子: (1)绝对校正因子;(2)相对校正因子。 ⑵常见的色谱定量分析方法主要有: (1)归一化法。特点:简单、方便、准确,但要求所有组分必须全部出峰。 (2)内标法。特点:使用相对校正因子定量,结果准确,但操作繁琐,由于需要增加内标物,增大分离的难度。 (3)标准曲线法(外标法)。简单、方便,由于采用绝对校正因子定量,结果受到操作技术因素以及具体色谱条件影响较大。 (4)内标标准曲线法。 三、仪器与试剂 LC-1000型高效液相色谱仪、甲醇(色谱纯)、二次去离子水、甲苯、系列甲苯标准溶液、平头微量注射器(100 l)、待测溶液 四、LC-1000型高效液相色谱仪操作步骤 ⑴流动相的预处理 用甲醇和二次去离子水配成500 mL (V/V=90:10)的甲醇溶液,用0.45μm 有机滤膜过滤,超声波清洗器脱气10~20 min,装入流动相贮液瓶。 ⑵高效液相色谱仪操作 (1)依次打开高压输液泵、紫外检测器电源开关 (2)打开色谱N2000在线工作站,选择通道,建立运行方法。 (3)打开三通阀(逆时针半圈),按“Purge”排除流路中的气泡。排气完毕后,按“Stop” 键,停泵,关闭三通阀。按“Flow”设置流速1.0 mL/min,“Enter”确认。 (4)按“设定”键,检测波长254 nm。按“↓”键,输入“1”,开启氘灯。 (5)按“Run”键,启动输液泵。 (6)检查基线,零点校正,待基线稳定后,用平头微量注射器取试液20 μL,将进样阀柄置于“Load”位置时注入样品,转动阀柄至“Inject”位置,同时点击软件“采集数据”。注意!平头微量注射器用甲醇清洗3次后,再用试液清洗3次,避免气泡。 (7)待所有色谱峰流出完毕后,按“停止采集”键,保存数据并在N2000离线工作站处理数据,记录组分的峰面积。 注意!注射器进不同样品前,使用专用清洗注射器在进样阀的“Load”和“Inject”位置,用流动相清洗2~3次。 (4) 结束工作:所有样品分析完毕后,流动相继续流动10~20 min,至基线稳定。关闭检测器,按“Stop”停泵。关闭泵电源。 五、实验内容 ⑴分别采集系列甲苯溶液以及未知试样的色谱图,根据保留时间定性,确定甲苯组分峰的位置,并测定各自的峰面积。 ⑵根据实验数据,利用外标法绘制标准工作曲线,并计算待测溶液中甲苯的含量。

填料精馏塔理论塔板数的测定(精)

实验五 填料精馏塔理论塔板数的测定 精馏操作是分离、精制化工产品的重要操作。塔的理论塔板数决定混合物 的分离程度,因此,理论板数的实际测定是极其重要的。在实验室内由精馏装 置测取某些数据,通过计算得到该值。这种方法同样可以用于大型装置的理论 板数校核。目前包括实验室在内使用最多的是填料精馏塔。其理论板数与塔结 构、填料形状及尺寸有关。测定时要在固定结构的塔内以一定组成的混合物进 行。 一. 实验目的 1.了解实验室填料塔的结构,学会安装、测试的操作技术。 2.掌握精馏理论,了解精馏操作的影响因素,学会填料精馏塔理论板 数的测定方法 3.掌握高纯度物质的提纯制备方法。 二. 实验原理 精馏是基于汽液平衡理论的一种分离方法。对于双组分理想溶液,平衡时 气相中易挥发组分浓度要比液相中的高;气相冷凝后再次进行汽液平衡,则气 相中易挥发组分浓度又相对提高,此种操作即是平衡蒸馏。经过多次重复的平 衡蒸馏可以使两种组分分离。平衡蒸馏中每次平衡都被看作是一块理论板。精 馏塔就是由许多块理论板组成的,理论板越多,塔的分离效率就越高。板式塔 的理论板数即为该塔的板数,而填料塔的理论板数用当量高度表示。填料精馏 塔的理论板与实际板数未必一致,其中存在塔效率问题。实验室测定填料精馏 塔的理论板数是采用间歇操作,可在回流或非回流条件下进行测定。最常用的 测定方法是在全回流条件下操作,可免去加回流比、馏出速度及其它变量影响,而且试剂能反复使用。不过要在稳定条件下同时测出塔顶、塔釜组成,再由该 组成通过计算或图解法进行求解。具体方法如下: 1.计算法 二元组份在塔内具有n 块理论板的第一块板的汽液平衡关系符合平衡方 程式为: 1 11y y -=w w N m x x -+11α (1) y 1——第一块板的气相组成 x w ——塔釜液的组成 m α——全塔(包括再沸器)α(相对挥发度)的几何平均值m α=w p αα N ——理论板数

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

高效液相色谱实验

实验1 气相色谱分析条件的选择和色谱峰的定性鉴定 一、目的要求 1.了解气相色谱仪的基本结构、工作原理与操作技术; 2.学习选择气相色谱分析的最佳条件,了解气相色谱分离样品的基本原理; 3.掌握根据保留值,作已知物对照定性的分忻方法。 4.掌握归一化法测定混合物各组分的含量。 二、基本原理 气相色谱是对气体物质或可以在一定温度下转化为气体的物质进行检测分析。由于物质的物性不同,其试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,虽然载气流速相同,各组份在色谱柱中的运行速度就不同,经过一定时间的流动后,便彼此分离,按顺序离开色谱柱进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。 对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。而其中气相色谱分离条件的选择至为关键。主要涉及以下几个方面: 1. 载气对柱效的影响: 载气对柱效的影响主要表现在组分在载气中的扩散系数D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有较小的D m(g) 。根据速率方程: (1)涡流扩散项与载气流速无关; (2)当载气流速u 小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数D m(g)较小,从而减小分子扩散的影响,提高柱效; (3)当载气流速u 较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如 H2、He 作载气可以减小气相传质阻力,提高柱效。 2. 载气流速(u)对柱效的影响: 从速率方程可知,分子扩散项与流速成反比,传质阻力项与流速 成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。 对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u 图。 由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所 对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间, 选用的载气流速稍高于最佳流速。 3. 固定液的配比又称为液担比。

实验一_苯酚的高效液相色谱法

实验一高效液相色谱法-紫外法测定水中的苯酚含量 一、实验目的 1、熟悉高效液相色谱仪的结构 2、掌握苯酚的高效液相色谱-紫外测定法 3、熟练掌握高效液相色谱仪的操作 二、实验原理 苯酚是最简单的酚,为无色固体,有特殊气味,显酸性。苯酚是有机化工工业的基本原料,可通过多种途径对环境水体造成污染,对人类、鱼类以及农作物带来严重危害。根据国家环保部门有关规定,工作场所苯酚的最高允许质量浓度为5 ×10 - 6 μg/ L,饮用水中为2μg/ L,地面水中为0.1 mg/ L。苯酚的测量方法有多种,如溴化容量法、比色法、高效液相色谱法等。但前两种方法分析速度较慢、精度较低,高效液相色谱法是近年来发展起来的一种新技术,具有分析速度快、检测灵敏度高、操作简便、样品用量少等特点。 三、仪器和试剂 1、设备及试剂 安捷伦高效液相色谱仪1100,紫外检测器,C18色谱柱。 苯酚(分析纯) ,甲醇(色谱纯),二次蒸馏水。 2、操作条件 色谱柱为C18柱;流动相为甲醇/ 二次蒸馏水= 80∶20 (体积比);检测波长为270nm;流速为1.0 ml/ min;进样量为20μL。 四、实验步骤 1、标准曲线的制备 称取纯苯酚600 mg 于100.0 ml 容量瓶中,用适量甲醇溶解,用甲醇稀释至刻度。分别吸取该溶液(单位:ml) 0.0、1.0、2.0、3.0、4.0、5.0 于50 ml 的容量瓶中,用甲醇稀释至刻度。得到标准系列溶液。分别采用高效液相色谱-紫外法测定标准溶液,记录色谱峰面积,以浓度为横坐标、峰面积为纵坐标绘制标准曲线。 2、样品分析

将水样经过滤(0.45 um 滤膜) 处理后,测定其峰面积值,根据标准曲线进行定量。 五、实验数据 1 标准曲线的绘制 2 样品分析数据 六、数据处理 仪器和试剂1、仪器:⑴岛津(SHIMADZU)LC-20A液相色谱仪:①流动相:乙腈、MQ水(由铝箔纸包裹,防止其中产生藻类,堵塞进口)②高压输液泵:并联式微体积柱塞往复泵(Prominence LIQUID CHROMATOGRAPH)型号:LC-20AD 厂家:UFLC SHIMADZU ③色谱柱:固定相填充物:十八碳(C18)型号:Intertsil ODS-SP 参数:填充物粒径:5 μm 内径×长度:4.6×250 mm ④检测器:二极管阵列检测器(PDA)型号:SPD-M20A 电压:230V 厂家:SHIMADZU ⑤脱气装置:型号:DQO-20A5 ⑥进样装置:高压六通进样阀两个状态: Load:样品进入六通阀,未入色谱柱 Inject:位于六通阀的样品进入色谱柱种类:SIL-10A 、SIL-10Ai 、SIL-10ADVP ⑦淋洗液(洗针、洗阀):甲醇⑵移液管 2 mL、5 mL各一支⑶具塞离心管 10 mL三支、1.5 mL一次性离心管一支 2. 试剂:甲醇(色谱纯);苯酚标准使用溶液(10 mg/L)待测水样

高效液相色谱技术(HPLC)

140 7 高效液相色谱技术(HPLC ) 高效液相色谱(HPLC :High Performance Liquid Chromatography )是化学、生物化 学与分子生物学、医药学、农业、环保、商检、药检、法检等学科领域与专业最为重要的 分离分析技术,是分析化学家、生物化学家等用以解决他们面临的各种实际分离分析课题 必不可缺少的工具。国际市场调查表明,高效液相色谱仪在分析仪器销售市场中占有最大 的份额,增长速度最快。 高效液相色谱的优点是:检测的分辨率和灵敏度高,分析速度快,重复性好,定量精 度高,应用范围广。适用于分析高沸点、大分子、强极性、热稳定性差的化合物。其缺点 是:价格昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗 大且有毒性的居多。目前的发展趋势是向生物化学和药物分析及制备型倾斜。 7.1 基本原理 固定相 流动相 A B C C B A 固定相 —— 柱内填料,流动相 —— 洗脱剂。 HPLC 是利用样品中的溶质在固定相和流动相之间分配系数的不同,进行连续的无数 次的交换和分配而达到分离的过程。 通常,按溶质(样品)在两相分离过程的物理化学性质可以作如下的分类: 分配色谱:—— 分配系数 亲和色谱:—— 亲和力 吸附色谱:—— 吸附力 离子交换色谱:—— 离子交换能力 凝胶色谱(体积排阻色谱):—— 分子大小而引起的体积排阻 分配色谱又可分为:

正相色谱:固定相为极性,流动相为非极性。 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。 固定相(柱填料): 固定相又分为两类,一类是使用最多的微粒硅胶,另一类是使用较少的高分子微球。后者的优点是强度大、化学惰性,使用pH范围大,pH=1~14,缺点是柱效较小,常用于离子交换色谱和凝胶色谱。 最常使用的全孔微粒硅胶(3~10μm)是化学键合相硅胶,这种固定相要占所有柱填料的80%。它是通过化学反应把某种适当的化学官能团(例如各种有机硅烷),键合到硅胶表面上,取代了羟基(-OH)而成。它是近代高效液相色谱技术中最重要的柱填料类型。 使用微粒硅胶要特别注意它的使用pH范围是2~7.5,若过碱(>pH7.5),硅胶会粉碎或溶解;若过酸(<pH2),键合相的化学键会断裂。 键合相使用硅胶作基质的优点是:①硅胶的强度大;②微粒硅胶的了孔结构和表面积易人为控制。③化学稳定性好。 硅胶( SiO2?n H2O) :OH OH —Si—O—Si— 重要的键合相是:硅烷化键合相,它是硅胶与有机硅烷反应的产物。 最常用的键合相键型是: —Si—O—Si—C R1R1 —Si—OH + X—Si—R —Si—O—Si—R + HX R2R2 硅胶有机硅烷键合相 X ━Cl,CH3O,C2H5O等。 R ━烷:C8H17(即C8填料),C10H21,C18H37等。 R1、R2 ━X、CH3等。 最常用的“万能柱”填料为“C18”,简称“ODS”柱,即十八烷基硅烷键合硅胶填料(Octadecylsilyl,简称ODS)。这种填料在反相色谱中发挥着极为重要的作用,它可完成高效液相色谱70~80%的分析任务。由于C18(ODS)是长链烷基键合相,有较高的碳含量和更好的疏水性,对各种类型的生物大分子有更强的适应能力,因此在生物化学分析工作中应用的最为广泛,近年来,为适应氨基酸、小肽等生物分子的分析任务,又发展了 141

高效液相色谱实验

化学与材料工程学院 环境监测分析实验报告 实验名称:高效液相色谱分析苯-甲苯混合物 专业班级:应化13 学号: 150313135 姓名:朱建南 指导教师:翟春 实验地点:敬行楼A210 实验日期: 2016年 11月 28日

高效液相色谱实验 一、实验目的 1.了解HPLC仪器的基本构造和工作原理,掌握HPLC的基本操作; 2.学习苯-甲苯混合物的定性分析方法; 3.评价色谱柱柱效; 4.了解色谱定量操作的主要方法以及各自特点; 5.学习未知样品的定量分析方法。 二、实验原理 不同组分因在互不相溶的流动相与固定相中的分配比不同,当两相做相对运动时,组分在两相之间反复进行多次分配,最终实现不同组分的分离。 色谱仪器的构成:包括高压输液系统、进样系统、分离系统,检测系统等 1.色谱定性分析方法 a保留时间定性 b 峰高增量定性 2.色谱定量分析方法 a 归一化法,要求所有组分必须全部出峰。 b 标准曲线法(外标法)。简单、方便, 结果受到操作技术因素以及具体色谱条件影响较大。 三、仪器与试剂 LC-1602A型高效液相色谱仪、甲醇(色谱纯) 、苯、甲苯、苯-甲苯 四、高效液相色谱仪操作步骤 1. 流动相的预处理 甲醇溶液,用0.45μm 有机滤膜过滤,超声波清洗器脱气10~20 min,装入流动相贮液瓶。 2. 准备苯-甲苯混合试样和苯、甲苯标样 3. 高效液相色谱仪操作 a 依次高压输液泵和检测器电源开关; b 打开色谱工作站,在仪器控制面板中,设置波长,并开灯; c打开三通阀,在仪器控制面板中,设置流速为5ml/min, 启动高压泵,排除流路中的气泡。排气结束后,点击停止按钮,停止高压泵。 d 关闭三通阀,设置最小压力(0.1)和最大压力(20),并设置实验需要的流速 (0.5ml/min),启动高压泵。 e用平头微量注射器洗涤进样口后,取试液30 μL,将进样阀柄置于“Load”位置时

实验四__高效液相色谱实验(3.7)

实验一高压液相色谱系列实验 一、实验目的 1.熟悉岛津液相色谱仪的整套装置、工作原理、工作流程;会较熟练操作和使用LC Solution工作站。 2.掌握外标法测定植物胡萝卜素的实验方法。 二、实验原理 液相色谱法就是同一时刻进入色谱柱中的各组分,由于在流动相和固定相之间溶解、吸附、渗透或离子交换等作用的不同,随流动相在色谱柱中运行时,在两相间进行反复多次(103~106次)地分配过程,使得原来分配系数具有微小差别的各组分,产生了保留能力明显差异的效果,进而各组分在色谱柱中的移动速度就不同,经过一定长度的色谱柱后,彼此分离开来,最后按顺序流出色谱柱而进入信号检测器,在记录仪上或色谱数据机上显示出各组分的色谱行为和谱峰数值。测定各组分在色谱图上的保留时间(或保留距离),可直接进行组分的定性;测量各峰的峰面积,即可作为定量测定的参数,采用工作曲线法(即外标法)测定相应组分的含量。 液相色谱仪工作原理图 高效液相色谱仪是实现液相色谱分离分析过程的装置,如上图所示。贮液器中存贮的载液(用作流动相的液体常需除气)经过过滤后由高压泵输送到色谱柱入口(当采用梯度洗脱时,一般需用双泵系统来完成输送)。样品由进样器注入载液系统,而后送到色谱柱进行分离。分离后的组分由检测器检测,输出信号供给记录仪或数据处理装置。如果需收集馏分作进一步分析,则在色谱柱出口将样品馏分收集起来,对于非破坏型检测器,可直接收集通过检测器后的流出液。其中输液泵,色谱柱及检测器是仪器的关键部件。

三、仪器与试剂 1.仪器 1)液相色谱仪(岛津公司) 2)微量注射器、容量瓶等 2.试剂 甲醇(色谱纯)、二次蒸馏水、胡萝卜素、异丙醇、乙腈 四、实验条件 UV检测器:280nm 流动相:乙腈:醇=4:1 流速:1.0ml/min 进样量:20 μl 柱温:25 五、实验步骤 1、熟悉仪器基本构成、流动相的流路系统;熟悉仪器的基本操作 2.配制测定溶液各取200ul胡萝卜素标准溶液及样品溶液于2ml试管中混合。 3.开启电脑及色谱仪各部分,等系统稳定后准备使用。 4.用微量注射器准确抽取20.0 μL溶液,注射入进样口。注意不要将气泡抽入针筒。在相同的色谱条件下,以内标法确定样品的浓度。 六、思考题 1.如何快速建立未知物的液相色谱方法?一般应考虑哪些主要因素?如何选择合适的色谱柱? 2.哪些条件会影响浓度测定值的准确性? 3. 与气相色谱法比较,液相色谱法有那些优点?

相关文档
相关文档 最新文档