文档视界 最新最全的文档下载
当前位置:文档视界 › 数学百大经典例题

数学百大经典例题

数学百大经典例题
数学百大经典例题

典型例题一

例1.根据叙述作图,指出二面角的平面角并证明.

(1)如图1,已知l A l ∈=?,βα.在α内作l PA ⊥于A ,在β内作l QA ⊥于A .

(2)如图2,已知l A A l ?∈=?,,αβα.作β⊥AP 于P ,在α内作l AQ ⊥于Q ,连结PQ .

(3)已知βαβα??=?A A l ,,.作α⊥AP 于P ,β⊥AQ 于Q ,?l 平面

H PAQ =,连结PH 、QH .

作图与证明在此省略.

说明:本题介绍了作二面角的平面角的三种常用方法,其中用三垂线定理及逆定理的方法最常用,还需补充这种方法的其他典型图形.

典型例题二

例 2. 如图,在立体图形ABC D -中,若E CD AD CB AB ,,==是AC 的中点,则下列命题中正确的是( ).

(A )平面ABC ⊥平面ABD (B )平面ABD ⊥平面BDC

(C )平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE (D )平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE

分析:要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.

解:因为,CB AB =且E 是AC 的中点,所以,AC BE ⊥同理有AC DE ⊥,于是⊥AC 平面BDE .因为?A

C 平面ABC ,所以平面ABC ⊥平面BDE .又由于?AC 平面AC

D ,所以平面ACD ⊥平面BD

E .所以选C.

说明:本题意图是训练学生观察图形,发现低级位置关系以便得到高级位置关系.在某一个平面内,得到线线垂直的重要途径是出现等腰三角形底边的中线,由线线垂直得到线面垂直,由线面垂直可得到面面垂直.

典型例题三

例3.如图,P 是ABC ?所在平面外的一点,且⊥PA 平面ABC ,平面⊥PAC 平面PBC .求证AC BC ⊥.

分析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直..

证明:在平面PAC 内作PC AD ⊥,交PC 于D .因为平面⊥PAC 平面PBC 于PC ,

?AD 平面PAC ,且PC AD ⊥,所以PBC AD 平面⊥.又因为?BC 平面PBC ,于是

有BC AD ⊥①.另外⊥PA 平面ABC ,?BC 平面ABC ,所以BC PA ⊥.由①②及A PA AD = ,可知⊥BC 平面PAC .因为?AC 平面PAC ,所以AC BC ⊥. 说明:在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直?线面垂直?线线垂直.

典型例题四

例4.如图,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面PAC ⊥平面PBC .

分析:证明面面垂直的有两个依据,一是证明二面角的平面角为直角,二是利用两个平面垂直的判定定理.由于C 点的任意性,用方法一的可能性不大,所以要寻求线面垂直.

证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有AC BC ⊥①. 因为⊥PA 平面ABC ,?BC 平面ABC ,则BC PA ⊥②. 由①②及A PA AC = ,得⊥BC 平面PAC . 因为?BC 平面PBC ,有平面PAC ⊥平面PBC .

说明:低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直?线面垂直?面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.

典型例题五

例5.如图,点A 在锐二面角βα--MN 的棱MN 上,在面α内引射线AP ,使AP 与

MN 所成的角PAM ∠为 45,与面β所成的角大小为 30,求二面角βα--MN 的大小.

分析:首先根据条件作出二面角的平面角,然后将平面角放入一个可解的三角形中(最好是直角三角形),通过解三角形使问题得解.

解:在射线AP 上取一点B ,作β⊥BH 于H ,连结AH ,则BAH ∠为射线AP 与平面β所成的角,

30=∠∴BAH .再作MN BQ ⊥,交MN 于Q ,连结HQ ,则HQ 为BQ 在平面β内的

射影.由三垂线定理的逆定理,MN HQ ⊥,BQH ∠∴为二面角βα--MN 的平面角.

设a BQ =,在BAQ Rt ?中,a AB BAM BQA 2,45,90=∴=∠=∠ ,在Rt △BHQ

中,

,22,,90a BH a BQ BHQ ===∠ 2222sin ===

∠a a

BQ BH BQH , BQH ∠ 是锐角, 45=∠∴BQH ,即二面角βα--MN 等于 45.

说明:本题综合性较强,在一个图形中出现了两条直线所称的角,斜线与平面所称的角,

二面角等空间角,这些空间角都要转化为平面角,而且还要彼此联系相互依存,要根据各个平面角的定义添加适当的辅助线.

典型例题六

例6.如图,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --'.

(1)指出这个二面角的面、棱、平面角;

(2)若二面角C AD C --'是直二面角,求C C '的长; (3)求C A '与平面CD C '所成的角;

(4)若二面角C AD C --'的平面角为

120,求二面角D C C A -'-的平面角的正切

值.

分析:根据问题及图形依次解决.

解:(1)∴'⊥⊥∴⊥,,,C D AD DC AD BC AD 二面角C AD C --'的面为ADC 和面C AD ',棱为AD ,二面角的平面角为C CD '∠.

(2)若

90='∠C CD ,a C C a C D DC a AC 2

2

,21,='∴=

'=∴= . (3)⊥∴⊥'⊥AD DC AD C D AD ,, 平面C C D ',D C A '∠∴为C A '与平面CD

C '

所成的角.在直角三角形C AD '中, 30,2

1

='∠∴=

'=C DA AC C D DC ,于是 60='∠D C A .

(4)取C C '的中点E ,连结AE 、DE ,

C C DE C C AE AC C A DC C

D '⊥'⊥∴='=',,, , AED ∠∴为二面角D C C A -'-的平面角.

,4

1

,21,120a DE a CD D C DC C =∴=='='∠

在直角三角形AED 中,,2

3

a AD =DE AD AED =∠∴tan 324

123

==a a

说明:这是一个折叠问题,要不断地将折叠前后的图形加以比较,抓住折叠前后的变与不变量.

典型例题七

例7 正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点.求二面角P BD A --1的大小.

分析:求二面角关键是确定它的平面角,按定义在二面角的棱上任取了点,在二个半平面上分别作棱的垂线,方法虽简便,但因与其他条件没有联系,要求这个平面角一般是很不容易的,所以在解题中不大应用.在解题中应用得较多的是“三垂线定理”的方法,如图考虑到AB 垂直于平面1AD ,1BD 在平面1AD 上的射影就是1AD .再过P 作1AD 的垂线PF ,则PF ⊥面1ABD ,过F 作B D 1的垂线FE ,PEF ∠即为所求二面角的平面角了.

解:过P 作1BD 及1AD 的垂线,垂足分别是E 、F ,连结EF . ∵AB ⊥面1AD ,PF ?面1AD , ∴PF AB ⊥,

又1AD PF ⊥,∴PF ⊥面1ABD .

又∵1BD PE ⊥,∴1BD EF ⊥, ∴PEF ∠为所求二面角的平面角. ∵D AD Rt 1?∽PFA ?,∴

1

1AD AP

DD PF =

. 而21=

AP ,11=DD ,21=AD ,∴4

2=PF . 在1PBD ?中,2

5

1==PB PD

. ∵1BD PE ⊥,∴23

21=

=

BD BE . 在PEB Rt ?中,2

2

22=

-=

BE PB PE , 在PEF Rt ?中,2

1

sin ==∠PE PF PEF , ∴?=∠30PEF .

典型例题八

例8 在ABC ?所在平面外有一点S ,已知AB SC ⊥,SC 与底面ABC 所成角为θ,二面角C AB S --的大小为?,且?=+90?θ.求二面角A SB C --的大小.

分析:由题设易证SD SC ⊥,由已知得SC ⊥平面SAB ,显然所求的二面角是直二面角,此时只需证明二面有的两个面垂直即可.在解这种类型题时,如果去作二面角A SB C --的平面角,那么可能会走弯路.

解:如图所示,作SO ⊥平面ABC 于O ,连结CO 并延长交AB 于D ,连结SD . ∵SO ⊥平面ABC ,

∴SCO ∠是SC 与平面ABC 所成角,θ=∠SCO . ∵SO ⊥平面ABC ,AB SC ⊥, ∴CD AB ⊥,SD AB ⊥.

∴SDO ∠是二面角C AB S --的平面角,?=∠SDO . ∵?=+90?θ,∴SD SC ⊥.

又∵AB SC ⊥,∴SC ⊥平面SAB , ∴平面SBC ⊥平面SAB ,

∴二面角A SB C --的大小为?90. 说明:二面角的平面角满足三个条件:(1)顶点在棱上,(2)两边在面内,(3)两边与棱垂直.应注意CSB ∠不满足第(3)条,不是二面角A SB C --的平面角.

在求二面角大小时,若其平面角不易作出时,则可考虑判定两平面是否垂直,如果两平面垂直,则其二面角为?90,反之亦然.

典型例题九

例9 如果αβ⊥,αγ⊥,a =γβ ,那么α⊥a .

分析:(1)本题是一道高考题,考查线面垂直和面面垂直的性质和逻辑推理能力.要证α⊥a ,只要证明直线a 与平面α内的两条相交直线垂直就可以了,从而借助平面与平面垂直的性质达到证明α⊥a 的目的;(2)要证α⊥a ,只要证明a 平行于平面α的一条垂线就可以了,这也可以借助面面垂直的性质加以考虑;(3)可以用“同一法”来证明.

证法一:如图所示,设b =βα ,c =γα , 过平面α内一点P 作b PA ⊥于A ,作c PB ⊥于B .

∵αβ⊥,∴β⊥PA .

又a =γβ ,∴a PA ⊥,同理可证a PB ⊥. ∵P PB PA = 且α?PB PA 、,∴α⊥a . 证法二:如图所示,

设b =βα ,在平面β内作直线b l ⊥1. ∵βα⊥,∴α⊥1l .

设c =γα ,在平面γ内作直线c l ⊥2.同理可证a l ⊥2,因此21//l l .

由于β?1l ,β?2l ,∴β//2l .

而γ?2l ,γβ =a ,∴a l //2. 故由a l //2知,α⊥a . 证法三:如图所示

过直线a 上一点P 作直线α⊥'

a . ∵γβ =a ,a P ∈,

∴β∈P ,根据课本第37页例2(如果两个平面互相垂直,

那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内), ∴β?'a .同理可证γ?'a ,故γβ =

'a .

椐公理2可知,直线'

a 与直线a 重合.

∴α⊥a

说明:(1)本例实际上可作为两个平面垂直的性质定理,主要用于判断直线和平面的垂直,在很多习题中都可以用到本例的结论.

(2)本例的三种证明方法其思维角度不同,但都是围绕“面面垂直”、“线面面垂直”的判定与性质定理来进行思考的,希望同学们今后在解题中多进行这方面的训练,这对提高数学思维能力是大有裨益的.

典型例题十

例10 设由一点S 发出三条射线SA 、

SB 、SC ,α=∠ASB ,β=∠BSC ,θ=∠ASC ,α、β、θ均为锐角,且θβαcos cos cos =?.求证:平面ASB ⊥平面BSC .

分析:欲证两平面垂直,只需证明其中一平面内有一直线垂直于另一平面即可,此题设

法通过线段关系过渡.

证明:如图,任取点A ,作SB AB ⊥于B ,过B 作SC BC ⊥于C ,连结AC . ∵αcos ?=AS SB ,βcos ?=SB SC , 故βαcos cos ??=AS SC . 又由θβαcos cos cos =?,

则θcos ?=AS SC ,从而可得?=∠90ACS ,

即SC AC ⊥,已作SC BC ⊥,故SC ⊥平面ACB , 即有SC AB ⊥,已作SB AB ⊥,从而AB ⊥平面BSC , 故平面ASB ⊥平面BSC .

说明:本题易犯错误是:作SB AB ⊥于B ,作SC BC ⊥于C ,连结AC ,由三垂线定理得AC SC ⊥,∴SC ⊥平面ACB ,∴SC AB ⊥,∴AB ⊥平面SBC .其错误原因是作SB AB ⊥后,将AB 误认为是平面SBC 的垂线.

此题的证明也可以作SB AB ⊥于B ,SC AC ⊥于C ,连结BC .在SBC ?中,由余弦

定理及条件θβαcos cos cos =?,证明2

22SC BC SB +=,从而BC SC ⊥,∴SC ⊥面

ABC ,∴SC AB ⊥.由此进一步证明,平面ASB ⊥平面BSC .

典型例题十一

例11 如果二面角βα--l 的平面角是锐角,点P 到α、β和棱l 的距离分别为22、

4、24,求二面角的大小.

分析:如果二面角βα--l 内部,也可能在外部,应区别处理.

解:如图甲是点P 在二面角βα--l 的内部时, 乙是点P 在二面角βα--l 的外部时.

∵α⊥PA ,∴l PA ⊥. ∵l AC ⊥,∴面l PAC ⊥. 同理,面l PBC ⊥,

而面PAC 面PBC PC = ∴面PAC 与面PBC 应重合,

即A 、C 、B 、P 在同一平面内, ACB ∠是二面角的平面角. 在APC Rt ?中,2

12422sin ===∠PB PA ACP ,

∴?=∠30ACP .

在BPC Rt ?中,2

2244sin ===

∠PC PB BCP ,

∴?=∠45BCP ,

故?=?+?=∠754530ACB (图甲)或?=?-?=∠153045ACB (图乙).

说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角.这是本题得到二面平面角的方法,即所谓垂面法.

典型例题十二

例12 P 为?120的二面角βα--a 内一点,P 到α和β的距离均为10,求点P 到棱a 的距离.

分析:本题已知二面角的大小而求点到直线的距离,须做出二面角的平面角,然后将条件揉和在一起,便可解决问题.

解:如图,

过点P 作α⊥PA 于A ,β⊥PB 于B ,

设相交直线PA 、PB 确定的平面为γ,O a =γ ,则OA =αγ ,OB =βγ 连结PO ,则10==BP AP ∵α⊥PA ,β⊥PB , ∴γ⊥a ,而?PO 平面γ,

∴PO a ⊥,

∴PO 的长即为点P 到直线a 的距离. 又∵γ⊥a ,γ?OA ,γ?OB

∴AOB ∠是二面角βα--a 的平面角,即?=∠120AOB .

而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径.

∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用APB ?.

在APB ?中,10==BP AP ,?=∠60APB ,∴10=AB .

由正弦定理:3

32060sin 2=

?=

=AB R PO .

说明:(1)该题寻找?120的二面角的平面角,所采取的方法即为垂面法,由此可见,若题

目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.

(2)充分借助于四边形PAOB 为一圆内接四边形,∵OA PA ⊥,OB PB ⊥,∵PO 即为其外接圆直径,然后借助于四边有的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.

典型例题十三

例13 如图,正方体的棱长为1,O BC C B =11 ,求: (1)AO 与11C A 所成的角;

(2)AO 与平面AC 所成角的正切值; (3)平面AOB 与平面AOC 所成的角.

解:(1)∵AC C A //11,

∴AO 与11C A 所成的角就是OAC ∠. ∵OB OC ⊥,⊥AB 平面1BC , ∴OA OC ⊥(三垂线定理). 在AOC Rt ?中,2

2=

OC ,

2=AC ,

∴?=∠30OAC .

(2)作BC OE ⊥,平面1BC ⊥平面AC .

∴OE ⊥平面AC ,OAE ∠为OA 与平面AC 所成的角. 在OAE Rt ?中,21

=

OE ,2

5)21(122=+=AE . ∴5

5tan ==

∠AE OE OAE . (3)∵OA OC ⊥,OB OC ⊥,∴⊥OC 平面AOB . 又∵?OC 平面AOC ,∴平面AOB ⊥平面AOC .

说明:本题包含了线线角、线面角和面面角三类问题.求角度问题主要是求两条异面直线所成角??

? ?

?2,

0π,直线和平面所成角?

?

????

2,0π,二面角

(]π,0三种. 典型例题十四

例14 如图,矩形ABCD ,PD ⊥平面ABCD ,若2=PB ,PB 与平面PCD 所成的

角为?45,PB 与平面ABD 成?30角,求:

(1)CD 的长;

(2)求PB 与CD 所在的角;

(3)求二面角D PB C --的余弦值.

分析:从图中可以看出,四面体BCD P -是一个基础四面体,前面已推导出平面PBC 与平面BCD 所成的二面角的余弦值为

33

3

221=

??=??BD PC BC PD ,可见,基础四面体作为一部分,经常出现在某些几何体中.

解:(1)∵⊥PD 平面ABCD ,∴BC PD ⊥. 又⊥BC 平面PDC ,

∴BPC ∠为PB 与平面PCD 所在的角, 即?=∠45BPC .

同理:PBD ∠即为PB 与平面ABD 所成的角, ∴?=∠30PBD ,

在PBC Rt ?中,∵2=PB ,∴2==PC BC .

在PBD Rt ?中,?=∠30PBD ,∴1=PD ,3=BD . 在BCD Rt ?中,2=BC ,3=BD ,∴1=CD .

(2)∵CD AB //,∴PB 与CD 所成的角,

即为PB 与AB 所成的角,PBA ∠即为PB 与AB 所成的角

∵⊥PD 平面ABCD ,AB AD ⊥,∴AB PA ⊥(三垂线定理). 在PAB Rt ?中,1==CD AB ,2=PB ,∴?=∠60PBA .

(3)由点C 向BD 作垂线,垂足为E ,由点E 向PB 作垂线,垂足为F ,连结CF . ∵⊥PD 平面ABCD ,∴CE PD ⊥. 又BD CE ⊥,∴⊥CE 平面PBD ,

CF 为平面PBD 的斜线,由于PB EF ⊥, ∴由三垂线定理:CF PB ⊥.

∴CEF ∠为二面角D PB C --的平面角

在BCD Rt ?中,2=BC ,1=DC ,3=BD ,

∴3

6

=

?=

BD CD BC CE . 在PCB Rt ?中,2=BC ,2=PC ,2=PB , ∴1=?=

PB

CP

BC CF , ∴36

sin =

=

∠CF CB CFE . ∴3

3

cos =

∠CFE , ∴二面角D PB C --的余弦值为

3

3. 说明:解空间几何计算问题,一般要做两件事:一件是根据问题的需要作必要证明,如本题中的线线所成的角、面面所成的角从理认上都必须说清楚究竟是谁;

另一件事才是计算,这两件事是根据问题解答逻辑上的需要有机的结合在一起的.

典型例题十五

例15 过点S 引三条不共面的直线SA 、SB 、SC ,如图,?=∠90BSC ,?=∠=∠60ASB ASC ,若截取a SC SB SA ===

(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.

分析:要证明平面ABC ⊥平面BSC ,根据面面垂直的判定定理,须在平面ABC 或平面BSC 内找到一条与另一个平面垂直的直线.

(1)证明:∵a SC SB SA ===, 又?=∠=∠60ASB ASC ,

∴ASB ?和ASC ?都是等边三角形, ∴a AC AB ==,

取BC 的中点H ,连结AH ,∴BC AH ⊥. 在BSC Rt ?中,a CS BS ==,

∴BC SH ⊥,a BC 2=

∴2

)22(222

2

2

2

a a a CH AC AH =

-=-=,∴222

a SH =. 在SHA ?中,∴2

22

a AH =,222a SH =,2

2a SA =,

∴2

22HA SH SA +=,∴SH AH ⊥,

∴⊥AH 平面SBC .

∵?AH 平面ABC ,∴平面ABC ⊥平面BSC . 或:∵AB AC SA ==,

∴顶点A 在平面BSC 内的射影H 为BSC ?的外心, 又BSC ?为?Rt ,∴H 在斜边BC 上,

又BSC ?为等腰直角三角形,∴H 为BC 的中点, ∴⊥AH 平面BSC .

∵?AH 平面ABC ,∴平面ABC ⊥平面BSC .

(2)解:由前所证:AH SH ⊥,BC SH ⊥,∴⊥SH 平面ABC , ∴SH 的长即为点S 到平面ABC 的距离,a BC SH 2

2

2==

, ∴点S 到平面ABC 的距离为

a 2

2

. 典型例题十六

例16 判断下列命题的真假

(1)两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面.

(2)两个平面垂直,分别在两个平面内且互相垂直的两直线,一定分别与另一平面垂直; (3)两平面垂直,分别在这两个平面内的两直线互相垂直.

分析:(1)若该点在两个平面的交线上,则命题是错误的,如图,正方体C A 1中,平面AC ⊥平面1AD ,平面 AC 平面1AD AD =,在AD 上取点A ,连结1AB ,则AD AB ⊥1,即过棱上一点A 的直线1AB 与棱垂直,但1AB 与平面ABCD 不垂直,其错误的原因是1AB 没有保证在平面11A ADD 内.可以看出:线在面内这一条件的重要性;

(2)该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图,在正方体C A 1中,平面1AD ⊥平面AC ,1AD ?平面11A ADD ,AB ?平面ABCD ,且1AD AB ⊥,即AB 与1AD 相互垂直,但1AD 与平面ABCD 不垂直;

(3)如上图,正方体C A 1中,平面11A ADD ⊥平面ABCD ,1AD ?平面11A ADD ,?AC 平面ABCD ,1AD 与AC 所成的角为?60,即1AD 与AC 不垂直.

说明:必须注意两个平面垂直的性质定理成立的条件:(1)线在面内,(2)线垂直于交线,从而可得出线面垂直.

典型例题十七

例17 如图,在?60二面角βα--a 内有一点P ,P 到α、β的距离分别为3和5,

求P 到交线a 的距离.

解:作α⊥PA 于A ,β⊥PB 于B , 设PA ,PB 所确定的平面为γ,Q a = γ, 连AQ ,BQ ,∵α⊥PA , ∴a PA ⊥.

同理a PB ⊥,∴⊥a 平面γ, ∴PQ a ⊥,则PQ 是P 到a 的距离. 在四边形PAQB 中,?=∠=∠90B A , ∴PAQB 是圆的内接四边形,且R PQ 2=. 又∵?=∠60BQA ,?=∠120BPA , ∴7120cos 53253=???-+=AB ,

3314

3

2760sin 2=?=?=

=AB R PQ .

说明:本例作二面角的平面角用作垂面法,避免了再证明P 、B 、A 、Q 四点共面,同时用到正弦定理和余弦定理.

典型例题十八

例18 如图,四面体SABC 中,ABC ?是等腰三角形,a BC AB 2==,?=∠120ABC ,

且⊥SA 平面ABC ,a SA 3=.求点A 到平面SBC 的距离.

分析:考虑利用两个平面垂直的性质定理作出点A 到SBC 的垂线,先确定一个过点A 和平面SBC 垂直的平面,∵⊥SA 平面ABC ,故作BC AD ⊥于D ,连结SD ,则平面SAD ⊥平面SBC ,平面SAD 实际上就是二面角A BC S --的平面角SDA 所在的平面,因此,它的作图过程和用三垂线法作二面角A BC S --的平面角的作图过程完全相同.

解:作BC AD ⊥交BC 于D ,连结SD ,

∵⊥SA 平面ABC ,根据三垂线定理有BC SD ⊥,又D AD SD = ,

∴BC ⊥平面SAD ,又BC ?平面SBC ,

∴平面SBC ⊥平面ADS ,且平面SBC 平面ADS SD =,

∴过点A 作SD AH ⊥于H ,由平面与平面垂直的性质定理可知:⊥AH 平面SBC . 在SAD Rt ?中,a SA 3=,a AB AD 360sin =??=, ∴2

3)3()3(33222

2a a a a a AD SA AD SA AH =

+?=

+?=

, 即点A 到平面SBC 的距离为

2

3a . 说明:二面角的平面角所在的平面垂直于二面角的棱,同时垂直于二面角的两个两.从本例可以看出:要求点到平面的距离,只要过该点找到与已知平面垂直的平面,则点面距即可根据面面垂直的性质作出.

数学百大经典例题

例若<<,则不等式-- <的解是1 0a 1(x a)(x )01a [ ] A a x B x a .<<. <<11a a C x a D x x a .>或<.< 或>x a a 11 分析比较与 的大小后写出答案. a 1a 解∵<<,∴<,解应当在“两根之间”,得<< . 选. 0a 1a a x A 11a a 例有意义,则的取值范围是 .2 x x 2 --x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-???????b a a ()()121 1122 ×得 a b = =-12 12 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2 -+--+-3132 5113 12 2x x x x x x >> ()()

分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤ 32 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 11-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1或x = 0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得 >,即 >, 1x 0001111 2 2 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解. 例与不等式 ≥同解的不等式是6 0x x --32 [ ] A .(x -3)(2-x)≥0 B .0<x -2≤1 C . ≥23 0--x x D .(x -3)(2-x)≤0 解法一原不等式的同解不等式组为≥, ≠. ()()x x x ---???32020 故排除A 、C 、D ,选B . 解法二≥化为=或-->即<≤ x 320x 3(x 3)(2x)02x 3--x 两边同减去2得0<x -2≤1.选B . 说明:注意“零”. 例不等式 <的解为<或>,则的值为7 1{x|x 1x 2}a ax x -1 [ ]

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

数学百大经典例题

例1 下列语句中不是命题的是 [ ] A.台湾是中国的 B.两军相遇勇者胜 C.上海是中国最大的城市 D.连接A、B两点 分析“D”是描述性语句. 答D. 例2 命题“方程x2-4=0的解是x=±2”中,使用的逻辑联结词的情况是 [ ] A.没有使用联结词 B.使用了逻辑联结词“或” C.使用了逻辑联结词“且” D.使用了逻辑联结词“非” 分析注意到x=±2是x=2或x=-2. 答选B. 例3命题①梯形不是平行四边形;②等腰三角形的底角相等;③有两个内角互补的四边形是梯形或圆内接四边形或是平行四边形;④60是5或2的公倍数,其中复合命题有 [ ] A.①③④B.③④ C.③D.①③ 分析②是简单命题,其余的均为复合命题. 解选A. 5 例命题“的值不超过”看作非的形式,则为,看 4 3p p 作是“p或q”形式,p为________,q为________. 分析“不超过”用“≤”表示,其否定是“>”,“≤”可以看作为“<”或“=”的复合形式. 555 答依次为“>”、“<”、“=”. 333 说明:对命题的否定要“全面”,比如“>”的否定不是“<”. 例5 分别指出下列复合命题的形式及构成它的简单命题: (1)4既是8的约数,也是12的约数; (2)张明是数学课代表或英语课代数; (3)江苏省不是中国面积最大的省. 分析先寻找逻辑联结词,再确定被联结的简单命题. 解(1)p且q,p:4是8的约数,q:4是12的约数; (2)p或q,p:张明是数学课代表,q:张明是英语课代表; (3)非p、p:江苏省是中国面积最大的省. 例6以下判断正确的是 [ ] A.若p是真命题,则“p且q”一定是真命题

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

(完整版)初一年级数学经典例题

数学天地: 初一年级数学核心题目赏析 有理数及其运算篇 【核心提示】 有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面. 【核心例题】 例1计算:2007 20061 ......431321211?+ +?+?+? 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆 成 2 1 11211-=?,可利用通项 ()11111+-=+?n n n n ,把每一项都做如此变形,问题会迎刃而解. 解 原式=)20071 20061(......413131212111-++-+-+-)()()( =20071 20061......41313121211- ++-+-+- =20071 1- =2007 2006 例2 已知有理数a 、b 、c 在数轴上的对应点 分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0. 解 由数轴知,a<0,a-b<0,c-b>0 所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c 例3 计算:?? ? ??-??? ??-????? ??-??? ??-??? ??-211311 (9811991110011)

高考数学典型例题详解

高考数学典型例题详解 奇偶性与单调性 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场 (★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. ●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目. 知识依托:主要依据函数的性质去解决问题. 错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域. 技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值. 解:由? ??<<-<

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2f (0)对所有θ∈[0, 2 π ]都成立? 若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由. 命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目. 知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题. 错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ), 即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t - 2 m )2 -4 2 m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正. ∴当 2 m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2 m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-221,即m >2时,g (1)=m -1>0?m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.

数学百大经典例题

例1 比较33 +x 与x 3的大小,其中R x ∈. 解:x x 3)3(2-+ 332+-=x x , 3)23 (])23(3[222+-+-=x x , 43)23(2+-=x , 04 3 >≥, ∴ x x 332 >+. 说明:由例1可以看出实数比较大小的依据是:①b a b a >?>-0; ②b a b a =?=-0;③b a b a + 说明:两个实数比较大小,通常用作差法来进行,其一般步骤是:第一步:作差;第二步:变形,常采用配方,因式分解等恒等变形手段;第三步:定号,贵州省是能确定是大于0,还是等于0,还是小于0.最后得结论.概括为“三步,—结论”,这里的“变形”一步最为关键.

例3 R x ∈,比较)12)(1(2 ++ +x x x 与)2 1 (+x (12++x x )的大小. 分析:直接作差需要将)12)(1(2+++x x x 与)2 1(+x (12 ++x x )展开,过程复杂,式 子冗长,可否考虑根据两个式子特点,予以变形,再作差. 解:∵)12)(1(2 ++ +x x x =)1(+x (12 2+-+x x x ) )1(2 )1)(1(2+-+++=x x x x x , )1)(2 1 1()1)(21(22++-+=+++x x x x x x )1(2 1 )1)(1(22++-+++=x x x x x , ∴ )1)(2 1()12)(1(22 +++-+++x x x x x x 02 1 )1(21)1(212>=+-++=x x x x . 则有R x ∈时,)12)(1(2+++x x x >)2 1(+x (12 ++x x )恒成立. 说明:有的确问题直接作差不容易判断其符号,这时可根据两式的特点考虑先变形,到 比较易于判断符号时,再作差,予以比较,如此例就是先变形后,再作差. 典型例题四 例4 设R x ∈,比较 x +11 与x -1的大小. 解:作差x x x x +=--+1)1(112 , 1)当0=x 时,即 012 =+x x , ∴ x x -=+111 ; 2)当01<+x ,即1-+x 但0≠x ,即01<<-x 或0>x 时, 012 >+x x ,

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

相关文档
相关文档 最新文档