文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学百大经典例题——棱柱

高考数学百大经典例题——棱柱

高考数学百大经典例题——棱柱
高考数学百大经典例题——棱柱

典型例题一

例1 设有四个命题:

①底面是矩形的平行六面体是长方体;

②棱长都相等的直四棱柱是正方体;

③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;

④对角线相等的平行六面体是直平行六面体.

其中真命题的个数是( )

A .1

B .2

C .3

D .4

分析:命题①是假命题.因为底面是矩形的直平行六面体才是长方体.底面是矩形,侧棱不垂直于底面,这样的四棱柱仍是斜平行六面体;

命题②是假命题.底面是菱形,底面边长与棱长相等的直四棱柱不是正方体;

命题③是假命题.因为有两条侧棱垂直于义面一边不能推出侧棱与底面垂直.

命题④是真命题,如图所示,平行六面体

1111-D C B A A B C D 中所有对角线相等,对角面11BDD B 是

平行四边形,对角线D B BD 11=,所以四边形11BDD B 是

矩形,即BD BB ⊥1,同理四边形11ACC A 是矩形,所以

AC AA ⊥1,由11//BB AA 知⊥1BB 底面ABCD ,即该平

行六面体是直平行六面体.

故选A .

说明:解这类选择题的关键在于理清各种棱柱之间的联系与区别,要紧扣底面形状及侧棱与底面的位置关系来解题.

下面我们列表来说明平行四边形与平行六面体的性质的“类比”,由此,我们可以发现立体几何与平面几何许多知识是可以进行类比的.见表

典型例题二

例2 如图,正四棱柱1111-D C B A ABCD 中,对角线81=BD ,1BD 与侧面C C BB 11所成角为

30,求:(1)1BD 与底面ABCD 所成角;(2)异面直线1BD 与AD 所成角;(3)正四棱柱的全面积.

分析:正四棱柱是一种特殊的长方体,它的两底面

ABCD 、1111D C B A 是正方形,长方体中有比较多的线面垂直

关系,而线面垂直关系往往是解决立体几何问题的关键条

件.题中无论是已知线面成角,还是求线面成角,都要把它们

转化为具体的角,落实线面成角,先要找线面垂直关系.异面

直线1BD 与AD 所成角通过11//D A AD ,落实为具体的

B D A 11∠.正四棱柱各个面都是矩形,求面积只要用矩形面积公式.

解:(1)在正四棱柱C A 1中,∵⊥11C D 面C C BB 11,

∴11BC D ∠是B D 1与侧面C C BB 11所成角,即

3011=∠BC D .

∵ 81=BD ,∴ 411=C D ,341=BC ,

∵ 1111D C B A 是正方形,∴41111==C D C B , ⊥D D 1平面ABCD ,∴ BD D 1∠是B D 1与底面ABCD 所成角,

在Rt △DB D 1中,2411==D B BD ,81=BD , ∴2

2cos 11==∠BD BD BD D ,∴ 451=∠BD D , 即1BD 与底面ABCD 所成角为 45.

(2)∵11//D A AD ,

∴B D A 11∠是1BD 与AD 所成角(或补角).

∵⊥11A D 平面B B AA 11,∴ B A A D 111⊥,

Rt △B D A 11中,411=D A ,81=BD , ∴2

1cos 11=∠B D A ,∴ 6011=∠B D A , 即异面直线AD 与1BD 所成角为 60.

(3)Rt △11C BB 中,411=C B ,341=BC .

∴ 241=BB ,

∴ ()()

12232244244442+=?+?+?=全S .

说明:长方体是一种特殊的棱柱,充分感受其中丰富的线面垂直、线线垂直关系是

灵活解题的关键,各种垂直关系是解决立体几何中证明和计算的重要条件.

典型例题三

例3 如图,已知长方体1111-D C B A ABCD 中,棱长51=AA ,12=AB ,求直线11C B 与平面11BCD A 的距离.

分析:求直线到平面的距离,首先要找直线上的点到平

面的垂线,而找平面的垂线的一个很有用的思路是,找平面

内一条直线与某一平面垂直,这里我们不难看出,长方体中

有⊥CB 平面11BB AA ,这样,只要作B A H B 11⊥,又有

CB H B ⊥1,得到⊥H B 1平面11A BCD .

解:长方体1AC 中,有⊥BC 平面11BB AA ,过1B 作B A H B 11⊥于H ,又有H B BC 1⊥,

∴ ⊥H B 1平11A BCD ,即H B 1是11C B 到平面11BCD A 的距离.

在Rt △11A BB 中,由已知可得,51=BB ,1211=B A ,

∴ 131=B A ,∴13

601=H B . 即H B 1是11C B 到平面11BCD A 的距离为

1360. 说明:长方体中有棱与面的线面垂直关系,正方体除此之外,还有对角线与对角面的线面垂直关系,比如,求正方体

1AC 中,11C A 与面BD C 1所成角.这

里,要找11C A 与BD C 1所成角,必须找1A 到平面BD C 1的垂线,

因为⊥BD 面C C AA 11,在对角面1AC 内,过1A 作11OC H A ⊥于

H ,则H A BD 1⊥,所以⊥H A 1面BD C 1,可以得到O C A 11∠为

11C A 与面BD C 1所成角,在对角面C C AA 11中可计算

2arctan 11=∠O C A .

典型例题四

例4 如图,已知直三棱柱1111-D C B A ABCD 中,AC AB =,F 为侧棱1BB 上一点,

a BC BF 2==,a FB =1.

(1)若D 为BC 的中点,E 为AD 上不同于A 、D 的任一点,求证:1FC EF ⊥;(2)若a B A 311=,求1FC 与平面B B AA 11所成角的大小.

分析:E 点在AD 上变化,EF 为平面ADF 内变化的一组

相交直线(都过定点F ),要证明F C 1与EF 垂直,必有⊥

F C 1平面ADF .求1FC 与平面11A ABB 所成角的关键是找1C 到面

11A ABB 的垂线,从而落实线面成角,直三棱柱中,侧棱⊥

1AA 平面111C B A 给找点1C 到面1AB 的垂线创造了方便的条件.

解:(1)∵AC AB =,且D 是BC 的中点,∴BC AD ⊥,

又∵ 直三棱柱中⊥1BB 平面ABC ,∴1BB AD ⊥,

∴ ⊥AD 平面C C BB 11,∴F C AD 1⊥.

在矩形C C BB 11中,a BC BF 2==,a F B =1, ∴a DF 5=,a FC 51=,a DC 101=, ∴21212DC FC DF =+,∴ 901=∠DFC ,即DF FC ⊥1,

∴⊥1FC 平面ADF ,∴EF FC ⊥1.

(2)过1C 作111B A H C ⊥于H ,∵⊥1AA 平面C B A 11,∴H C AA 11⊥,

∴⊥H C 1平面B B AA 11,连接FH ,FH C 1∠是F C 1与平面1AB 所成角.

在等腰△ABC 中,a AC AB 3==,a BC 2=,∴a AD 22=,

在等腰△111C B A 中,由面积相等可得,a a H C 22231?=?, ∴a H C 3

241=,又a F C 51=, 在Rt △HF C 1中,15104sin 1=

∠FH C ,

∴15

104arcsin 1=∠FH C , 即F C 1与平面1AB 所成角为15104arcsin

. 说明:由于点E 在AD 上变化,给思考增加了难度,但仔细思考,它又提供了解题的突破口,使得线线垂直成为了1CF 与一组直线垂直.本题的证明还有一个可行的思路,虽然E 在AD 上变化,但是由于⊥AD 平面C C BB 11,所以E 点在平面1BC 上的射影是定点D ,EF 在平面

1BC 上射影为定直线DF ,使用三垂线定理,可由

DF F C ⊥1,直接证明EF F C ⊥1.三垂线定理是转化空间

线线垂直为平面内线线垂直的一个有力工具,再看一个例子,

正方体1AC 中,O 是底面ABCD 的中心,E 是11B A 上动点,

F 是1DD 中点,求AF 与OE 所成角.我们取AD 中点

G ,

虽然E 点变化,但OE 在面1AD 上射影为定直线G A 1,在正方形D D AA 11中,易证AF B A ⊥1,所以,OE AF ⊥,即AF 与OE 所成角为 90.

典型例题五

例5 如图,正三棱柱111-C B A ABC 的底面边长为4,侧棱长为a ,过BC 的截面与底

面成

30的二面角,分别就(1)3=a ;(2)1=a 计算截面的面积.

分析:要求出截面的面积,首先必须确定截面的形状,截面与底

面成 30的二面角,如果a 较大,此时截面是三角形;但是如果a 较

小,此时截面与侧棱不交,而与上底面相交,截面为梯形.

解:截面与侧棱1AA 所在直线交于D 点,取BC 中点E ,连AE 、DE ,

△ABC 是等边三角形,∴BC AE ⊥,

∵⊥1AA 平面ABC ,∴BC DE ⊥.

∴DEA ∠为截面与底面所成二面角的平面角,

30=∠DEA .

∵等边△ABC 边长为4,∴32=AE .

在Rt △DAE 中,2tan =∠=DEA AE DA .

(1)当3=a 时,D 点在侧棱1AA 上,截面为△BCD ,

在Rt △DAE 中,422=+=

AE AD DE , ∴8442

121=??=?=?DE BC S BCD . (2)当1=a 时,D 点在1AA 延长线上,截面为梯形BCMN ,

∵2=AD ,11=AA ∴MN 是△DBC 的中位线, ∴684

343=?==?DBC BCMN S S 梯形. 说明:涉及多面体的截面问题,都要经过先确定截面形状,再解决问题的过程,本

例通过改变侧棱长而改变了截面形状,我们也可以通过确定侧棱长,改变截面与底面成角而改变截面形状.

典型例题六

例6 斜三棱柱111-C B A ABC 中,平面⊥C C AA 11底面ABC ,2=BC ,32=AC ,

90=∠ABC ,C A AA 11⊥,且C A AA 11=.

(1)求1AA 与平面ABC 所成角;

(2)求平面11ABB A 与平面ABC 所成二面角的大小;

(3)求侧棱1BB 到侧面C C AA 11的距离.

分析:按照一般思路,首先转化条件中的面面垂直关系,由

C A A A 11=,取AC 的中点

D ,连D A 1,则有AC D A ⊥1,从而有⊥D A 1平面ABC ,在此基础上,A A 1与底面所成角以及平面11ABB A 与底面所成二面角都能方便地找到,同时⊥D A 1底面ABC 也为寻找B 点到面C C AA 11的垂线创造了条件.

解:(1)取AC 的中点D ,连接D A 1,

∵C A A A 11=,∴AC D A ⊥1,∵平面⊥C C AA 11底面ABC ,

∴⊥D A 1底面ABC ,∴AC A 1∠为A A 1与底面ABC 所成角.

∵C A AA 11=且C A AA 11⊥,∴ 451=∠AC A .

(2)取AB 中点E ,则BC DE //,

∵ 90=∠ABC ,∴AB CB ⊥,∴AB DE ⊥.

连E A 1,∵⊥D A 1底面ABC ,∴E A 1在平面ABC 上射影为DE ,

∴AB E A ⊥1,∴ED A 1∠为侧面B A 1与底面ABC 所成二面角的平面角.

在等腰Rt △AC A 1中,32=AC ,∴31=D A .

在Rt △ABC 中,2=BC ,∴1=DE .

在Rt △DE A 1中,3tan 11==

∠DE D A ED A , ∴ 601=∠ED A ,即侧面B B AA 11与底面ABC 所成二面角的大小为 60.

(3)过B 作AC BH ⊥于H ,

∵⊥D A 1底面ABC ,∴BH D A ⊥1,∴⊥BH 平面C C AA 11,

在Rt △ABC 中,32=AC ,2=BC ,∴22=AB , ∴632=?=AD BC AB BH ,即1BB 到平面C C AA 11的距离为63

2. 说明:简单的多面体是研究空间线面关系的载体,而线面垂直关系又是各种关系中

最重要的关系,立体几何中的证明与计算往往都与线面垂直发生联系,所以在几何体中发现并使用线面垂直关系往往是解题的关键.

典型例题七

例7 斜三棱柱111-C B A ABC 的底面△ABC 是直角三角形,

90=∠C ,cm 2=BC ,1B 在底面上的射影D 恰好是BC 的中点,侧棱与底面成 60角,侧面B B AA 11与侧面C C BB 11所成角为 30,求斜棱柱的侧面积与体积.

分析:

1B 在底面ABC 上射影D 为BC 中点,提供了线面

垂直⊥D B 1平面ABC ,另外又有

90=∠C ,即BC AC ⊥,

又可以得到⊥AC 平面C C BB 11,利用这两个线面垂直关系,可

以方便地找到条件中的线面角以及二面角的平面角.

解:∵1B 在底面ABC 上,射影D 为BC 中点.

∴⊥D B 1平面ABC .

∴BD B 1∠为侧棱B B 1与底面ABC 所成角,即 601=∠BD B ,

∵ 90=∠C ,即BC AC ⊥,又D B AC 1⊥,

∴⊥AC 平面C C BB 11,过A 作B B AE 1⊥于E ,连接CE ,则B B CE 1⊥.

∴AEC ∠是侧面B B AA 11与侧面B B CC 11所成二面角的平面角,

∴ 30=∠AEC ,

在直角△CEB 中,∵ 60=∠CEB ,2=BC ,∴3=CE ,

在直角△ACE 中,∵ 30=∠CEA ,3=CE ,

∴130tan == EC AC ,22==AC AE ,

在直角△DB B 1中, 601=∠BD B ,121==

BC BD , ∴221==BD BB ,360sin 11== BB D B .

∴侧面积为111AA AC BB AE BB CE S ?+?+?=侧

()()()

2cm 3322332123+=?+=?++=. 体积为311cm 33212

121=???=??=?=?D B BC AC D B S V ABC . 说明:本例中△ACE 是斜棱柱的一个截面,而且有侧棱与该截面垂直,这个截面称为斜棱柱的直截面,我们可以用这个截面把斜棱柱分成两部分,并且用这两部分拼凑在一个以该截面为底面的直棱柱,斜棱柱的侧面积等于该截面周长乘以侧棱长,体积为该截面面积乘以侧棱长.

典型例题八

例8 如图所示,在平行六面体1111D C B A ABCD -中,已知a AD AB 2==,a AA =1,又?=∠=∠=∠6011AB A DAB AD A .

(1)求证:1AA ⊥截面C D B 11;

(2)求对角面11ACC A 的面积.

分析:

(1)由题设易证111D B AA ⊥,再只需证C B AA 11⊥,即证11CD CC ⊥.而由对称性知,若C B CC 11⊥,则11CD CC ⊥,故不必证111D B AA ⊥.

(2)关键在于求对角面的高.

证明:(1)∵a AD C B 211==,a A A CC ==11,?=∠=∠60111AD A C C B ,

∴在C C B 11?中,由余弦定理,得2213a C B =.

再由勾股定理的逆定理,得C B C C 11⊥.

同理可证:11CD C C ⊥.∴C C 1⊥平面C D B 11.

又A A C C 11//,∴1AA ⊥平面C D B 11.

解:(2)∵AD AB =,∴平行四边形ABCD 为菱形.AC 为BAD ∠的平分线.

作O A 1∴⊥平面AC 于O ,

由AB A AD A 11∠=∠,知AC O ∈.作AB M A ⊥1于M ,连OM ,则AB OM ⊥. 在AM A Rt 1?中,a A A AM 2160cos 1=

??=, 在AOM Rt ?中,3

30sec a AM AO =??=. 在AO A Rt 1?中,a AO A A O A 322211=

-=. 又在ABC ?中,由余弦定理,得a AC 32=. ∴2

12211a O A AC S ACC A =?=.

说明:本题解答中用到了教材习题中的一个结论——经过一个角的顶点引这个角所在平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线

所在的直线.

另外,还有一个值得注意的结论就是:如果一个角所在平面外一点到角的两边所在直线的距离相等,那么这一点在平面上的射影在这个角的平分线所在的直线上.

典型例题九

例9 如图所示,已知:直三棱柱111C B A ABC -中,?=∠90ACB ,?=∠30BAC ,1=BC ,61=AA ,M 是1CC 的中点.

求证:M A AB 11⊥.

分析:根据条件,正三棱柱形状和大小及M 点的位置都是确定的,故可通过计算求出M A 1与1AB 两异面直线所成的角.

因为C C C B 111⊥,1111C A C B ⊥,所以11C B ⊥侧面C C AA 11.1AC 是斜线1AB 在平面C C AA 11的射影,设1AC 与M A 1的交点为D ,只需证得?=∠901MDC 即可.

证明:∵C C C B 111⊥,1111C A C B ⊥,C C 1与11C A 交于点1C ,

∴11C B ⊥面C C AA 11.

∵M 为1CC 的中点,∴2

62111==C C MC . 在111B C A Rt ?中,?=∠30111C A B ,

∴221111==C B B A ,311=

C A .

在M C A Rt 11?中, ()22

332622211211=+

???? ??=+=C A MC M A .

在11C AA Rt ?中,3362

2211211=+=+=C A AA AC . 又1MDC ?∽DA A 1?且21=MC AA ∶, ∴22

122331311=?==M A MD , 133

13111=?==AC D C . 在1MDC ?中,23122122212=+??

? ??=+D C MD , 23262

21=???

? ??=M C , ∴?=∠901DM C ,11AC M A ⊥,∴11AB M A ⊥.

说明:证明两直线垂直,应用三垂线定理或逆定理是重要方法之一.证明过程中的有关计算要求快捷准确,不可忽视.本题证明两异面直线垂直,也可用异面直线所成的角,在侧面C C AA 11的一侧或上方一个与之全等的矩形,平移M A 1或1AB ,确定两异面直线所成的角,然后在有关三角形中通过计算可获得证明.

典型例题十

例10 长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长. 分析:要求长方体对角线长,只要求长方体的一个顶点上的三条棱的长即可.

解:设此长方体的长、宽、高分别为x 、y 、z ,对角线长为l ,则由题意得:

???=++=++②①24)(411)(2z y x zx yz xy

由②得:6=++z y x ,从而由长方体对角线性质得:

5116)(2)(22222=-=++-++=++=zx yz xy z y x z y x l .

∴长方体一条对角线长为5.

说明:(1)本题考查长方体的有关概念和计算,以及代数式的恒等变形能力.在求解过程中,并不需要把x 、y 、z 单个都求出来,而要由方程组的①②从整体上导出2

22z y x ++,这需要同学们掌握一些代数变形的技巧,需要有灵活性.

(2)本题采用了整体性思维的处理方法,所谓整体性思维就是在探究数学问题时,应研究问题的整体形式,整体结构或对问题的数的特征、形的特征、结构特征作出整体性处理.整体思维的含义很广,根据问题的具体要求,需对代数式作整体变换,或整体代入,也可以对

图形作出整体处理.

典型例题十一

例11 如图,长方体1111D C B A ABCD -中,a AB =,b BC =,c BB =1,并且0>>>c b a .求沿着长方体的表面自A 到1C 的最短线路的长.

分析:解本题可将长方体表面展开,可利用在平面内两点间的线段长是两点间的最短距离来解答.

解:将长方体相邻两个展开有下列三种可能,如图.

三个图形甲、乙、丙中1AC 的长分别为:

ab c b a c b a 2)(22222+++=++

bc c b a c b a 2)(22222+++=++

ac c b a b c a 2)(22222+++=++

∵0>>>c b a ,

∴0>>>bc ab ab . 故最短线路的长为bc c b a 2222+++.

说明:(1)防止只画出一个图形就下结论,或者以为长方体的对角线2221c b a AC ++=是最短线路.

(2)解答多面体表面上两点间,最短线路问题,一般地都是将多面体表面展开,转化为求平面内两点间线段长.

典型例题十二

例12 设直平行六面体的底面是菱形,经下底面的一边及与它相对的上义面的一边的截面与底面成?60的二面角,面积为Q ,求直平行六面体的全面积.

分析:如图,由于⊥'DD 面AC .作出截面与底面所成的二面角的平面角HD D '∠后,因DH D Rt '?中?=∠60'HD D ,可分别求出D D '、DH 和H D '的值.又上下底面的边长是相等的,便可进一步求出全面积.

解:设平行六面体为''''D C B A ABCD -,过D 作AB DH ⊥,H 为垂足,连结H D '. ∵⊥'DD 平面ABCD ,

∴AB H D ⊥',?=∠60'HD D , ∴H D D D ''23=,H D DH '2

1=. 又在菱形ABCD 中,有CD BC AB AD ===,

∴截面''D ABC 的面积为:Q AB H D S =?='

1. 侧面''DCC D 的面积为:Q AB H D AB D D DC D D S 2

323'''2=?=?=?= 底面ABCD 的面积为:Q AB H D AB DH S 2

121'3=?=

?=. 所以Q S S S )132(2432+=+=全. 典型例题十三

例13 设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.以上命题中,真命题的个数是( ).

A .0

B .1

C .2

D .3

解:甲命题是真命题,因为它就是平行六面体的定义;

乙命题不是真命题,因为平行六面体的侧棱不一定垂直于底面;

丙命题也不是真命题,因为四棱柱的底面不一定是平行四边形.

∴应选B .

说明:要认真搞清平行六面体、直平行六面体、长方体等特殊四棱柱的有关概念及性质.

典型例题十四

例14 如图,ABC C B A -111是直三棱柱,?=∠90BCA ,

点1D 、1F 分别是11B A 、11C A 的中点.若1CC CA BC ==,则1BD 与1AF 所成角的余弦值是( ).

A .1030

B .2

1 C .1530 D .1015

解:可将异面直线所成角转化为相交直线的角,取BC 的中点E ,并连结1EF 、EA . ∵11F

D BC 2

1BE =, ∴11//BD EF ,∴A EF 1∠是1BD 与1AF 所成角.

设a BC 2=,则a CC 21=,a CA 2=. ∴a AB 22=,a AF 51=,a AE 5=,

a D B B B BD EF 62112111=+=

=. ∴1030652)5()6()5(2cos 2221122

1211=??-+=??-+=∠a a a a a EF AF AE EF AF A EF ∴应选A .

说明:本题主要考查棱柱的性质,以及两条异面直线所成的角、勾股定理、余弦定理等内容:对运算能力和空间想象能力也有较高的要求.

典型例题十五

例15 如图,已知ABC C B A -111是正三棱柱,D 是AC 的中点.

(1)证明://1AB 平面1DBC ;

(2)假设11BC AB ⊥,求以1BC 为棱,1DBC 与1CBC 为面的二面角α的度数.

(1)证明:∵ABC C B A -111是正三棱柱,∴四边形11BCC B 是矩形.连结C B 1交1BC 于E ,则E 是C B 1的中点.连结DE .

∵D 、E 分别是AC 、C B 1的中点,

∴1//AB DE .又?1AB 平面1DBC ,?DE 平面1DBC ,.

∴//1AB 平面1DBC .

(2)解:作BC DF ⊥于F ,则⊥DF 平面C C BB 11,连结EF 则EF 是ED 在平面C C BB 11上的射影.

∵11BC AB ⊥又ED AB //1.

∴1BC ED ⊥.

根据三垂线定理的逆定理,得1BC EF ⊥.

从而DEF ∠是二面角C BC D --1的平面角,

即α=∠DEF ,

设1=AC ,则2

1=DC ∵ABC ?是正三角形,∴在DCF Rt ?中,有 4360sin =

?=DC DF ,4160cos =?=DC CF 取BC 的中点G ,

∵EC EB =,∴BC EG ⊥.

在BEF Rt ?中,FG BF EF ?=2 而43=-=FC BC BF ,4

1=GF ,

∴4

1432?=EF ,∴43=EF , ∴在DEF Rt ?中,14

3

43

tan ===∠EF DF DEF . ∴?=∠45DEF ,即?=45α.

从而所求二面角的大小为?45.

说明:(1)纵观近十年高考题,其中解答题大多都是以多面体进行专利权查,解答此类题,有些同学往往忽略或忘记了多面体的性质,从而解题时,思维受阻.今后要引以为戒.

(2)本题考查空间的线面关系,正棱柱的概念和性质,空间想象能力、逻辑思维能力和运算能力.本题涉及到的知识面宽,有一定的深度,但入手不难,逐渐加深;逻辑推理和几何计算交织为一体;正三棱柱放倒,与课本习题不同,加强了对空间想象能力的考查;在解答过程中,必须添加适当的辅助线,不仅考查了识图,而且考查了作图.本题是一道综合性试题,较深入和全面地考查了各种数学能力,正确解答本题,要求同学们有较高的数学素质.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

小升初数学训练典型例题分析-找规律篇

名校真题 测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高考数学典型例题---数学归纳法解题

数学归纳法 每临大事,必有静气;静则神明,疑难冰释; 积极准备,坦然面对;最佳发挥,舍我其谁? 结合起来看效果更好 体会绝妙解题思路 建立强大数学模型 感受数学思想魅力 品味学习数学快乐 数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法. ●难点磁场 (★★★★)是否存在a、b、c使得等式1·22+2·32+… +n(n+1)2= 12)1 ( n n (an2+bn+c). ●案例探究 [例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:a n+c n>2b n.

命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目. 错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(a k -c k )(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a . 证明:(1)设a 、b 、c 为等比数列,a =q b ,c =bq (q >0且q ≠1) ∴a n +c n =n n q b +b n q n =b n (n q 1+q n )>2b n (2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2 c a +)n (n ≥2且n ∈N *) 下面用数学归纳法证明: ①当n =2时,由2(a 2 +c 2 )>(a +c )2 ,∴222)2 (2c a c a +>+ ②设n =k 时成立,即,)2 (2k k k c a c a +>+ 则当n =k +1时, 4 1 211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=41 (a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2 c a +)k +1 [例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -2 1 成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和. 命题意图:本题考查了数列、数学归纳法、数列极限等基础知识. 知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =- 3 21 -k 应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{ n S 1}是以{11S }为首项,2 1 为公差的等差数列,

小升初数学测试题经典十套题及答案

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* (人教版)小升初入学考试数学试卷(一) 班级______姓名______得分______ 一、选择题:(每小题4分,共16分) 1、在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。 A、15点 B、17点 C、19点 D、21点 2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。 A、10 B、12 C、14 D、16 3、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。 A、提高了50% B、提高40% C、提高了30% D、与原来一样 4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。 A、18 B、19.2 C、20 D、32 二、填空题:(每小题4分,共32分) 1、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。 2、甲乙两桶油重量差为9千克,甲桶油重量的1/5等于乙桶油重量的1/2,则乙桶油重()千克。 3、两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是()。 4、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是()厘米。

5、如图,电车从A站经过B站到达C站,然后返回。去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时()千米。 6、扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作: 第一步,分发左中右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步,从左边一堆拿出两张,放入中间一堆; 第三步,从右边一堆拿出一张,放入中间一堆; 第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。 这时小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是()。 7、前30个数的和为()。 8、如图已知直角三角形的面积是12平方厘米,则阴影部分的面积是()。 三、计算:(每小题5分,共10分)

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式, 找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812 , ,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数 是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

小升初数学经典题型汇总

小升初数学:应用题综合训练1 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=份 所以,每亩原有草量60-30×=12份 第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份 新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛 所以,一共需要+=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=每亩原有草量为*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24**80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

高考数学 题型全归纳 如何由递推公式求通项公式典型例题

如何由递推公式求通项公式 高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。 下面就递推数列求通项的基本类型作一个归纳,以供参考。 类型一:1()n n a a f n +-= 或 1 () n n a g n a += 分析:利用迭加或迭乘方法。即:112211()()+()n n n n n a a a a a a a a ---=-+-+-+…… 或1 21 121n n n n n a a a a a a a a ---=…… 例1.(1) 已知数列{}n a 满足11211 ,2n n a a a n n +==++,求数列{}n a 的通项公式。 (2)已知数列{}n a 满足1(1)1,2n n n a a s += =,求数列{}n a 的通项公式。 解:(1)由题知:121 1 1 1 (1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++…… 1111111 ()()()121122 n n n n =-+-++-+---…… 312n = - (2)2(1)n n s n a =+Q 112(2)n n s na n --∴=≥ 两式相减得:12(1)(2)n n n a n a na n -=+-≥ 即:1(2) 1n n a n n a n -=≥- 12 1 121 n n n n n a a a a a a a a ---∴=??…… 121 121n n n n -=??--……

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

小升初数学典型题

升中典型题 1、一种商品按定价的75折出售,仍可获利20%,若按定价出售可获利()%。 2、圆柱体和圆锥体的底面半径的比是2:3,高的比是4:3,则圆柱与圆锥的体积比是(): ()。 3、有一个长方体,它的正面和上面的面积之和是209,如果它是长、宽、高都是质数,那么 这个长方体的体积是()。 4、小芳骑车从甲地到乙地每小时行30千米,然后按原路返回,若想往返的平均速度为40千 米,则返回时每小时应行()千米。 5、一个半圆形,半径是r,它的周长是()。 6﹑水结成冰后体积增了1 11 , 冰融化成水后,体积减少( ) 7.冰化成水后,体积比原来减少1 12,水结成冰后,体积比原来增加了(). 8、甲数为a,比乙数的3 4多b,表示乙数的式子是()。 9、一个圆柱和一个圆锥的体积相等。已知圆柱的高是圆锥高的 2 3,圆柱的底面积和圆锥底 面积的比是() .10、甲种商品降价20%后与乙商品涨价20%后的价格相等,甲乙两种商品的原价的比是()。 11.甲数比乙数少20%,乙数比甲数多()%。 12.甲乙两个数最大公因数是3,最小公倍数是45,若甲数是9,那么乙数是()。 13. 相同的小正方形拼成一个大正方形,至少要()个。相同的小正方体拼成一个大正方体,至少要()个。 二、解决问题。 1﹑用同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖(用比例解) 2﹑小明读一本书,第一天读了这本书的1 4 多6页,第二天读了这本书的 2 5 少2页,第三天读完剩 下的17页,这本书共有多少页 3、一筐梨,先拿走30kg,又拿出余下的70%,这时剩下的梨正好是原来的1 10。这筐梨原来 多少kg

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

高考数学典型题归纳

高考数学典型题归纳 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.满分150分,考试时间120分钟. 第Ⅰ卷(共60分) 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的.) 1.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合等于 A .{2,3} B .{2,3,5,6} C .{1,4} D .{1,4,5,6} 2.设复数满足,则z 的共轭复数z = A . B . C . D . 3. “x <0”是“ln(x +1)<0”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.抛物线()2 40y ax a = ≠的焦点坐标是 A. ()0,a B. (),0a C. 10,16a ? ? ??? D. 1,016 a ?? ??? 5. 设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n = A. 5 B. 6 C. 7 D. 8 6. 已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这个几何体的体积是 A. 4 3 3cm B. 833cm C.33cm D.4 3cm 7. 已知实数满足约束条件11y x x y y ≤?? +≤??≥-? ,则的 最大为 A . B. C. D. 8. 若执行如图所示的程序框图,则输出的值是 ,x y 2z x y =+3323 2 -3-k ()N M

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

高考数学典型例题详解

高考数学典型例题详解 奇偶性与单调性 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场 (★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. ●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目. 知识依托:主要依据函数的性质去解决问题. 错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域. 技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值. 解:由? ??<<-<

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2f (0)对所有θ∈[0, 2 π ]都成立? 若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由. 命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目. 知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题. 错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ), 即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t - 2 m )2 -4 2 m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正. ∴当 2 m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2 m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-221,即m >2时,g (1)=m -1>0?m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.

相关文档
相关文档 最新文档