文档视界 最新最全的文档下载
当前位置:文档视界 › 基于神经网络的智能控制系统概述

基于神经网络的智能控制系统概述

基于神经网络的智能控制系统概述
基于神经网络的智能控制系统概述

神经网络的智能控制系统

摘要:介绍了神经网络的基本概念,论述了人工神经网络的产生与发展,以及人工神经网络在控制系统中的应用现状,分析了人工神经网络的特点和监视控制系统的原理,并阐述了几种基于神经网络的控制系统, 最后展望了基于神经网络控制的发展方向。

关键词:人工神经网络;控制系统;监视控制系统;智能控制;

1引言

基于神经网络的控制(NCC).神经网络控制是一门崭新的智能信息处理学科,研究非程序的、适应性的、大脑风格的信息处理的本质和能力。它的发展对人工智能、计算机科学、信息科学、非线性科学、认识科学、自动控制、微电子、模式识别、脑神经科学等产生了重要影响。

人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。

神经网络控制是一种基本上不依赖于模型的控制方法,它适合于具有不确定性或高度非线性的控制对象,并具有较强的自适应和自学习功能,因此是智能控制的一个重要分支领域。人工神经网络利用物理器件来模拟生物神经网络的某些结构和功能,具有并行和分布式的信息处理网络结构,该结构一般由几个神经元组成,每一个神经元有一个单一的输出,但可通过连接的很多其它神经元,获得有多个连接通道的输入,每个连接通道对应一个连接权系数。

2人工神经网络的产生与发展

早在1943年,美国神经生物学家W.S.McCul-loch就与数学家W.Pitts合作,采用数理模型的方法研究脑细胞的动作和结构,以及生物神经元的一些基本生理特征,提出第一个神经计算模型,即神经元的阈值元件模型(MP模型),并指出:即使是最简单的神经网络,从原则上讲也可以进行任意算术或逻辑函数的计算。1949年,D.O.Hebb提出了改变神经元连接强度的Hebb规则,其正确性30年后才得到证实,至今仍在各种神经网络模型中起着重要的作用。

1957年F.Rosenblatt提出并设计制作了著名的感知器(Perceptron),从而掀起第一次研究神经网络的热潮。1960年B.Windrow和M.E.Hoff提出自适应线性单元(Adaline)网络,这与当时占主导地位的以顺序离散符号推理为基本特征的AI途径完全不同,因而引起人们的兴趣,同时也引起符号主义与连接主义的争论。1969年M.Minsky和S.Papert编写了影响很大的《Perceptron》一书。

在肯定感知器的研究价值的同时,指出感知器的局限性,在数学上证明了感知器不能解决XOR等线性不可分问题。

20世纪80年代以来,人工神经网络进入一个高速发展的阶段,Prigogine 因提出非平衡系统的自组织理论(耗散结构理论)而获得诺贝尔奖;近年来广泛研究的浑沌动力学和奇异吸引子理论,则揭示了系统的复杂行为。1982年美国加州工学院物理学家J.J.Hopfield提出著名的Hopfield模型,有力地推动了神经网络的研究。Hopfield通过引入“计算能量函数”的概念,给出网络稳定性判据。1984年Hopfield提出网络模型实现的电子电路,为神经网络的工程实现指明了方向。1985年Hinton和Sejnowski将模拟退火算法引入到神经网络中,提出Boltzmann机模型,为神经网络优化计算提供了一个有效方法。D.E.Rumelhart 和J.L.McClelland等人提出的PDP(并行分布处理理论),致力于认知微观结构的探索;1986年提出了多层网络的反向传播学习算法(BP算法),把学习结果反馈到中间层次的隐单元,改变它们的联系矩阵,从而达到预期的学习目的,迄今为止仍是应用最广泛的神经网络。

进入20世纪90年代以来,神经网络的研究已进入相对平稳的发展时期,许多理论得到了进一步的证实、补充与发展。同时神经网络的应用研究得以广泛开展,应用的领域也不断扩大。神经网络理论的应用已经渗透到各个领域,并在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、传感技术与机器人、生物医学工程等方面,都取得很大的进展。

3 人工神经网络的基本概念和基本原理

人工神经网络(ArtificialNeuralNetworks,简写为 ANNs)也简称神经网络(NNs)或称作连接模型(ConnectionistModel),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程称为“训练” 。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1” 和“0”的概率各为 50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提

高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

“人脑是如何工作的?”

“人类能否制作模拟人脑的人工神经元?”

多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决目前不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。人工神经元的研究起源于脑神经元学说。19 世纪末,在生物、生理学领域, Waldeger 等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有 100 亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10 米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达 10 个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。下面通过人工神经网络与通用的计算机工作特点来对比一下:

若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。

普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

4人工神经网络的特点

人工神经网络是生物神经网络的一种模拟和近似,主要从两个方面进行模拟:一个是结构和实现机理方面,它涉及到生物学、生理学、心理学、物理及化学等许多基础学科。由于生物神经网络的结构和机理非常复杂,现在从这方面模拟还仅在尝试[1];另一个是功能方面,即尽量使人工神经网络具有生物神经网络的某些功能特性,如学习、识别、控制等。目前应用的神经网络均是对功能方面的模拟。神经网络有以下一些特点。

(1)具有自适应功能:

主要是根据所提供的数据,通过学习和训练,找出和输出之间的内在联系,从而求得问题的解答,而不是依靠对问题的经验知识和规则,因而具有良好的自适应性。

(2)具有泛化功能:

能够处理那些不经训练过的数据,而获得相应于这些数据的合适的解答;也能处理那些有噪声或不完全的数据,从而显示了很好的容错能力。

(3)非线性映射功能:

现实的问题非常复杂,各因素间互相影响,呈现出复杂的非线性关系,神经元网络为处理这些问题提供了有用的工具。

(4)高度并行处理信息:

此特点使用硬件实现的神经网络的处理速度远远高于普通计算机。

4.1高度的并行性

人工神经网络是由许多相同的简单处理单元并联组合而成,大量简单处理单元的并行活动,使其处理信息的能力大大提高。

4.2高度的非线性全局作用

人工神经网络的每个神经元接受大量其他神经元的输入,并通过并行网络产生输出,影响其他神经元。网络之间的这种相互制约和影响,实现了从输入状态到输出状态空间的非线性映射。从全局的观点来看,网络整体性能不是网络局部性能的简单叠加,而是表现出某种集体性行为。

4.3良好的容错性和联想记忆功能

人工神经网络通过自身的网络结构能够实现对信息的记忆,所记忆的信息以分布式存储在神经元之间的权值中,使得网络具有良好的容错性,并能进行聚类分析、特征提取、模式复原等模式信息处理工作,又宜于做模式分类、模式联想等模式识别工作。人工神经网络可以通过训练和学习来获得网络的权值和结构,呈现出很强的自学能力和对环境的自适应能力,便于现有计算机技术虚拟实现。

5人工神经网络在控制系统中的应用

神经网络控制的研究始于20世纪60年代。1960年,Widrow和Hoff首先将神经网络运用于控制系统。Kilmer和McCulloch提出了KMB神经网络模型,并在“阿波罗”登月计划中的应用取得良好的效果。1964年,widrow等用神经网络对小车倒立摆系统控制取得成功。

神经网络控制可以分为监视控制、逆控制、神经适应控制、实用反向传播控制和适应评价控制等。在智能控制系统中,最重要的是和知识基有关的推理机型,以及随环境变化的适应能力。一般而言,推理是以符号为元素执行的,而客观世界中的信号是数值,为了理解过程的状态,需要实施数值数据到符号数据的映射,这就要把数值数据进行分类。另外,对过程的控制需要自适应控制器。神经网络的分类功能和学习能力可以使其有效地用于智能控制系统,神经网络用于控制系统是“物尽其用”的必然结果。

IEEE神经网络协会出版刊物主席ToshioFukuda教授和《神经计算应用手册》的作者P.J.Werbos把神经网络控制系统分为5大类:一是监视控制;二是逆控制;三是神经适应控制;四是实用反问传播控制;五是适应评价控制。根据划分情况,神经网络控制系统有5类不同的结构,而且神经网络在控制系统中的位置和功能有所不同,学习方法也不尽相同。

神经网络的应用已经涉及到各个领域,且取得了很大的进展。

自动控制领域:主要有系统建模和辨识,参数整定,极点配置,内模控制,优化设计,预测控制,最优控制,滤波与预测容错控制等。

处理组合优化问题:成功解决了旅行商问题,另外还有最大匹配问题,装箱问题和作业调度问题。

模式识别:手写字符,汽车牌照,指纹和声音识别,还可用于目标的自动识别,目标跟踪,机器人传感器图像识别及地震信号的鉴别。

图像处理:对图像进行边缘监测,图像分割,图像压缩和图像恢复。

机器人控制:对机器人轨道控制,操作机器人眼手系统,用于机械手的故障诊断及排除,智能自适应移动机器人的导航,视觉系统。

医疗:在乳房癌细胞分析,移植次数优化,医院费用节流,医院质量改进等方面均有应用。

6基于神经网络的几种控制系统

有关神经网络控制方法与结构的文献很多,分类方法也很多,但典型的控制结构应包括:神经网络监督控制(或称神经网络学习控制);神经网络自适应控制(自校正、模型参考控制,含直接与间接自适应控制);神经网络内模控制;神经网络自适应评判控制(或称神经网络再励控制)等。神经网络控制结构方案的研究,构成了神经网络控制方法的设计基础。具有代表性的神经网络控制系统有:全局逼近、局部逼近和模糊神经网络控制系统。

6.1基于全局逼近神经网络的控制

全局逼近网络是在整个权空间上对误差超曲面的逼近,故对输入空间中的任意一点,任意一个或多个连接权的变化都会影响到整个网络的输出,其泛化能力遍及全空间,如BP网络等。由于在全局逼近网络中,每一个训练样本都会使所有连接权发生变化,这就使响应的收敛速度极其缓慢。当网络规模较大时,这一特点使其实际上难以在线应用。利用全局逼近神经网络的异步自学习控制系统如图1所示。

图1基于全局逼近式神经网络异步自学习控制系统

由于神经网络控制器实际上是一个非线性控制器,因此一般难以对其进行稳定性分析。全局逼近网络在控制系统中的作用,主要体现在两个方面:提供一个类似于传统控制器的神经网络控制器;为神经网络控制器进行在线学习,提供性能指标关于控制误差梯度的反向传播通道,如建立被控对象的正向网络模型等。

此外,结合稳定性分析,对神经网络的控制结构方案进行特别设计,还可以为分析复杂问题提供一个有效的解决途径。

6.2基于局部逼近神经网络的控制

局部逼近网络只是对输入空间一个局部邻域中的点,才有少数相关连接权发生变化,如CMAC、RBF和FLN网络等。由于在每次训练中只是修正少量连接权,而且可修正的连接权是线性的,因此其学习速度极快,并且可保证全空间上误差全平面的全局收敛特性可以实时应用。其不足之处是采用间断超平面对非线性超曲面的逼近,可能精度不够,同时也得不到相应的导数估计;采用高阶B样条的BMAC控制,则部分弥补了CMAC的不足,但计算量略有增加;基于高斯径向函数(RBF)的直接自适应控制,是有关非线性动态系统的神经网络控制方法中,较为系统且逼近精度最高的一种方法,但它需要的固定或可调连接权太多,且RBF 的计算也太多,利用目前的串行计算机仿真实现时,计算量与内存过大,很难实时实现。

6.3模糊神经网络控制

模糊神经网络控制系统的基本思路是:利用模糊box分割问题空间,使每个模糊box不仅具有CEN给出的评分,含有作为控制作用的输出语言变量,而且整个模糊box还隐含定义了模糊规则库。模糊神经网络主要有三种结构:输入信号为普通变量,连接权为模糊变量;输入信号为模糊变量,连接权为普通变量;!输入信号与连接权均为模糊变量。它们还可根据网型及学习算法中的点积运算是使用模糊逻辑运算,还是使用模糊算术运算,分成常规和混合型模糊神经网络。

7人工神经网络的发展方向

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。

人工神经网络控制的研究,无论从理论上还是从应用上目前都取得了很大进展,但是,离模拟真实的生物神经系统还相距甚远,所使用的形式神经网络模型无论从结构还是网络规模上,都是真实神经网络的极简单模拟,因此神经网络控制的研究还非常原始,结果也大都停留在仿真或实验室研究阶段,完整、系统的理论体系,大量艰难而富有挑战性的理论问题尚未解决。

从总体上来看,今后的研究应致力于以下几方面:基础理论研究,包括神经网络的统一模型与通用学习算法,网络的层数、单元数、激发函数的类型、逼近精度与拟逼近非线性映射之间的关系,持续激励与收敛,神经网络控制系统的稳定性、能控性、能观性及鲁棒性等;研究专门适合于控制问题的动态神经网络模型,解决相应产生的对动态网络的逼近能力与学习算法问题;神经网络控制算法

的研究,特别是适合于神经网络分布式并行计算特点的快速学习算法;对成熟的网络模型与学习算法,研究相应的神经网络控制专用芯片。

参考文献

[1] 李祖枢,涂亚庆.仿人智能控制.北京:国防工业出版社,2003

[2] 王耀南.智能信息处理技术.北京:高等教育出版社,2003.8

[3] 李士勇.模糊控制.神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998.9

[4] 李人厚,秦世引.智能控制理论和方法.西安:西安交通大学出版社,1994

[5] 康南生,方廷健.人工智能行为方法研究.模式识别与人工智能,1992.8

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

智能照明控制系统说明

深圳市南山智园智能化系统工程项目 智能照明控制系统 2014年6月12日 深圳市合广测控技术有限公司

1、系统概述 1.1、智能照明系统建设的目的和意义 (1)良好的节能效果带来可观的经济效益 采用智能照明控制系统的主要目的是节约能源,智能照明控制系统借助各种不同的预设置控制方式和控制元件,对不同时间不同环境的光照度进行精确设置和合理管理,实现节能。此外,智能照明控制系统中对荧光灯等进行调光控制,由于荧光灯采用了有源滤波技术的可调光电子镇流器,降低了谐波的含量,提高了功率因数,降低了低压无功损耗。 (2)通过软启技术延长灯具寿命 无论是热辐射光源,还是气体放电光源,电网电压的波动是光源损坏的一个主要原因。因此,有效地抑制电网电压的波动可以延长光源的寿命。智能照明控制系统能成功地抑制电网的浪涌电压,同时还具备了电压限定和轭流滤波等功能,避免过电压和欠电压对光源的损害。采用软启动和软关断技术,避免了冲击电流对光源的损害。通过上述方法,光源的寿命通常可延长2~3倍。 (3)改善工作、生活环境,提高工作效率、提升生活档次 良好的工作环境是提高工作效率的一个必要条件。良好的设计,合理地选用光源、灯具及优良的照明控制系统,都能提高照明质量。 智能照控制系统以调光模块控制面板代替传统的平开关控制灯具,可以有效地控制各房间内整体的照度值,从而提高照度均匀性。同时,这种控制方式内所采用的电气元件也解决了频闪效应,不会使人产生不舒适、头昏脑胀、眼睛疲劳的感觉。 (4)实现多种照明效果 多种照明控制方式,可以使同一建筑物具备多种艺术效果,为建筑增色不少。现代建筑物中,照明不单纯地为满足人们视觉上的明暗效果,更应具备多种的控制方案,使建筑物更加生动,艺术性更强,给人丰富的视觉效果和美感。以某工程为例,建筑物内的展厅、报告厅、会议室等,如果配以智能照明控制系统,按其不同时间、不同用途、不同的效果,采用相应的预设置场景进行控制,可以达到丰富的艺术效果。 (5)提高管理效率减少维护成本

智能家居控制系统终极版

课程论文 智能家居控制系统 摘要 智能家居也称智能住宅聪明家。智能家居是以住宅为平台,它将建筑结构与网络通信、信息家电、设备自动化控制进行综合的系统集成。它利用先进的计算机技术、网络通讯技术、综合布线技术、将与家居生活有关的各种子系统,有机地结合在一起,通过统筹管理,让家居生活更加舒适、安全、有效。与普通家居相比,智能家居不仅具有传统的居住功能,而且提供舒适安全、高品位且宜人的家庭生活空间,还可将原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家庭与外部保持信息交流畅通,优化人们的生活方式,帮助人们有效安排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。关键词:智能家居计算机技术自动化控制网络通信

目录 1.智能家居控制系统的控制原理 (3) 1.1物联网应用于智能家居 (3) 1.2智能家居控制系统结构 (3) 1.3智能家居主要控制模块的设计方法 (4) 1.3.1无线通讯遥控器模块 (5) 1.3.2可视门禁控制模块 (5) 1.3.3窗帘控制模块 (6) 1.3.4防盗报警模块 (6) 2.使用智能家居控制系统的特点 (7) 2.1家居电器远程控制 (7) 2.2定时控制 (7) 2.3智能照明 (7) 2.4万能遥控集中控制 (8) 2.5网络控制 (8) 2.6家电控制 (8) 3.结束语 (8)

1.智能家居控制系统的控制原理 1.1物联网应用于智能家居 ?物联网就是“物物相连的互联网”。这有两层意思:第一,物联的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。它通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网应用图见下图1 图1 物联网应用 ?物联网已成为当前世界新一轮经济和科技发展的战略制高点之一,发展物联网对于促进经济发展和社会进步具有重要的现实意义,2011年物联网已经纳入国家《十二五》发展规划中,将来物联网在智能家居方面发展也是一个主流方向。 1.2智能家居控制系统结构 家居系统主要由智能灯光控制、智能家电控制、智能安防报警、智能娱乐系统、可视对讲系统、远程监控系统、远程医疗监护系统等组成,框图如图2和图3所示。

人工智能与神经网络课程论文

1. 引言 (2) 2. 在农业生产管理与决策中的应用 (2) 2.1. 在农业机械化中的应用 (2) 2.2. 在智能农业专家系统中的应用 (3) 3. 在预测和估产中的应用 (3) 3.1. 在农作物虫情预测中的应用 (3) 3.2. 在作物水分和营养胁迫诊断及产量估测中的应用 (4) 4. 在分类鉴别与图像处理中的应用 (5) 5. 结束语 (5)

BP 神经网络的研究与应用 摘要: 本文概述了BP 神经网络在农机总动力预测、农业专家系统信息决策、虫情测报、农作物水分和养分胁迫、土壤墒情、变量施肥、分类鉴别和图像处理等领域的应用情况,总结了人工神经网络模型的优点,指出其在精准农业和智能农业中的重要理论技术支撑作用。 关键词: BP神经网络; 农业工程; 农业专家系统; 变量施肥; 土壤墒情 Research and Application of BP Neural Network Abstract: Application of BP neural network in prediction of total power in agriculture machinery,information decision-making by agricultural experts system,pest forecast,crops to water stress and nutrient stress,soil moisture condition,variable rate fertilization,identification and image processing were overviewed.Characteristics of artificial neural network model were summed.Supporting role for important theory and technology in precision agriculture and intelligent agriculture were pointed. Key words: BP neural network,Agricultural engineering,Agricultural experts system,Variable rate fertilization,Soil moisture condition

神经网络控制大作业_南航_智能控制

南京航空航天大学研究生实验报告 实验名称:神经网络控制器设计 姓名: 学号: 专业: 201 年月日

一、题目要求 考虑如下某水下航行器的水下直航运动非线性模型: ()||a m m v k v v u y v ++== 其中v R ∈为水下航行器的前进速度, u R ∈为水下航行器的推进器推力,y R ∈为水下航行器的输出,航行器本体质量、附加质量以及非线性运动阻尼系数分别为 100,15,10a m m k ===。 作业具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 二、神经网络控制器的设计 1.构建系统的PID 控制模型 在Simulink 环境下搭建水下航行器的PID 仿真模型,如下图1所示: 图1 水下航行器的PID 控制系统 其中,PID 控制器的参数设置为:K p =800,K i =100,K d =10。 需要注意的一点是,经过signal to workspace 模块提取出的数据的Save format 为Array 格式。

2.BP神经网络控制器的训练 首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。经过signal to workspace模块提取出的数据为一个训练数据个数乘以输入(或输出)个数的矩阵,因此分别将x、u转置后就得到标准训练数据x’,u’。 然后,新建m文件,编写神经网络控制器设计程序: %---------------------------------------------------------------- p=x'; %input t=u'; %input net=newff(p,t,3,{'tansig','purelin'},'trainlm'); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,x',u'); %train network gensim(net,-1); %generate simulink block %---------------------------------------------------------------- 上述m文件建立了如下图所示的神经网络,包含输入层、1个隐含层和输出层,各层神经元节点分别为1、 3 和1。 图2 神经网络控制器结构及训练方法

医院智能照明控制系统方案

医院 智能照明控制系统建议方案

1、系统概述 “节能、智能科技与美学,21世纪建筑业的主题。” 现代建筑中照明系统对于能源的消耗已经高达35%,建筑界已经引入“绿色”照明的概念,其中心思想是最大限度采用自然光源、设置时钟自动控制、采用照度感应和动静传感器等新技术。 随着人们财富的积累,生活水平的不断提高,对健康越来越重视。人们在生病时不但要求有好的医生和好的治疗,也要求有好的治疗环境。国家投入巨资进行医院的建设与改造。伴随医疗改革的推进,医院面临激烈的竞争。医院除了提高诊治水平和医德医风外,还需提高病人一个温馨的医疗环境,良好的医疗服务。 2、系统功能和优点 智能照明控制系统在医院中应用的功能和优点: 1、实现照明控制智能化 采用智能照明控制系统后,可使照明系统工作在全自动状态,系统将按预先设置切换若干基本工作状态,根据预先设定的时间自动地在各种工作状态之间转换。当夜幕降临时,系统将自动进入“傍晚”工作状态,自动地极其缓慢地调亮各区域的灯光。 此外,还可用手动可编程控制面板,根据一天中的不同时间,不同用途精心地进行灯光的场景预设置,使用时只需调用预先设置好的最佳灯光场景,随意改变各区域的光照度。 2、节约能源,降低医院运营费用 约能源和降低运行费用是当今社会的主题。随着社会经济的快速发展,人民生活水平和医疗水平的不断提高,人们对医院的现代化水平和环境要求越来越高,医院的电能消耗也越来越大,节能已成为各医院关注的一个问题。由于智能照明控制系统能够通过合理的管理,根据不同日期、不同时间按照各个功能区域的运行情况预先进行光照度的设置,不需要照明的时候,保证将灯关掉;在大多数情况下很多区域其实不需要把灯全部打开或开到最亮,智能照明控制系统能用最经济的能耗提供最舒适的照明;系统能保证只有当必需的时候才把灯点亮,或达到所要求的亮度,从而大大降低了医院的能耗。

智能家居家电控制系统系统设计说明

xx家电控制系统设计说明 一、定义 智能家居又称智能住宅,在国外常用Smart Home表示。与智能家居含义近似的有家庭自动化(HomeAutomation)、电子家庭(ElecctronicHome、E-home)、数字家园(DigitalFamily)、家庭网络(Home Net/Networks for ome)、网络家居(Network Home)、智能家庭/建筑 (IntelligentHome/Building),在我国香港和台湾等地区,还有数码家庭、数码家居等称法。 智能家居是以住宅为平台,利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。 智能家居是一个居住环境,是以住宅为平台安装有智能家居系统的居住环境,实施智能家居系统的过程就称为智能家居集成。 智能家居集成是利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成。由于智能家居采用的技术标准与协议的不同,大多数智能家居系统都采用综合布线方式,但少数系统可能并不采用综合布线技术,如电力载波,不论哪一种情况,都一定有对应的网络通信技术来完成所需的信号传输任务,因此网络通信技术是智能家居集成中关键的技术之一。安全防范技术是智能家居系统中必不可少的技术,在小区及户内可视对讲、家庭监控、家庭防盗报警、与家庭有关的小区一卡通等领域都有广泛应用。自动控制技术是智能家居系统中必不可少的技术,广泛应用在智能家居控制中心、家居设备自动控制模块中,对于家庭能源的科学管理、家庭设备的日程管理都有十分重要的作用。音视频技术是实现家庭环境舒适性、艺术性的重要技术,体现在音视频集中分配、背景音乐、家庭影院等方面。 二、表述 智能家居其实有两种表述的语意,定义中描述的,以及我们通常所指的都是智能家居这一住宅环境,既包括单个住宅中的智能家居,也包括在房地产小

智能控制大作业-神经网络

智能控制与应用实验报告神经网络控制器设计

一、 实验内容 考虑一个单连杆机器人控制系统,其可以描述为: 0.5sin()Mq mgl q y q τ+== 其中20.5M kgm =为杆的转动惯量,1m kg =为杆的质量,1l m =为杆长, 29.8/g m s =,q 为杆的角位置,q 为杆的角速度,q 为杆的角加速度, τ为系统的控制输入。具体要求: 1、设计神经网络控制器,对期望角度进行跟踪。 2、分析神经网络层数和神经元个数对控制性能的影响。 3、分析系统在神经网络控制和PID 控制作用下的抗干扰能力(加噪声干扰、加参数不确定)、抗非线性能力(加死区和饱和特性)、抗时滞的能力(对时滞大小加以改变)。 4、为系统设计神经网络PID 控制器(选作)。 二、 对象模型建立 根据公式(1),令状态量121=,x q x x = 得到系统状态方程为: 12121 0.5**sin() x x mgl x x M y x τ=-= = (1) 由此建立单连杆机器人的模型如图1所示。

图1 单连杆机器人模型 三、系统结构搭建及神经网络训练 1.系统PID结构如图2所示: 图2 系统PID结构图 PID参数设置为Kp=16,Ki=10,Kd=8得到响应曲线如图3所示:

01234 5678910 0.2 0.4 0.6 0.8 1 1.2 1.4 t/s a n g l e /r a d 图3 PID 控制响应曲线 采样PID 控制器的输入和输出进行神经网络训练 p=[a1';a2';a3']; t=b'; net=newff([-1 1;-1 1;-1 1],[3 8 16 8 1],{'tansig' 'tansig' 'tansig' 'logsig' 'purelin'}); net.trainparam.epochs=2500; net.trainparam.goal=0.00001; net=train(net,p,t); gensim(net,-1) 产生的神经网络控制器如图4所示:

自动控制系统原理 课后习题问题详解

第1章控制系统概述 【课后自测】 1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。 解:开环控制——半自动、全自动洗衣机的洗衣过程。 工作原理:被控制量为衣服的干净度。洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。 闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。 工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。 开环控制和闭环控制的优缺点如下表 1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么? 解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。各个基本单元的功能如下: (1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。 (2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。 (3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。 (4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。常用的比较元件有差动放大器、机械差动装置和电桥等。 (5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。 (6)执行元件—用于驱动被控对象,达到改变被控量的目的。用来作为执行元件的有阀、电动机、液压马达等。 (7)校正元件:又称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,以改善控制系统的动态性能和稳态性能。

智能照明系统设计方案

智能照明系统 1、概述 办公环境不仅要有足够的工作照明,更应营造一个舒适的视觉环境,减少光污染。现代办公楼的照明已经成为直接影响办公效率的主要因素之一,因此,越来越引起人们的高度重视。做好照明设计,加强照明控制设计,已成为现代智能办公大楼的一个重要内容。据国内外有关资料介绍,办公照明用电量占整幢大楼能耗的约1/3,办公照明的设备费用(包括照明器件和配布线工程费)约占电气工程费用的10%以上,因此选择合理的照明方案,配置先进的控制系统,不仅能大大简化穿管布线的工作量,而且能有效地节约能源,降低用户运行费用,提高大楼管理水准,具有极大的经济意义和社会效益。在一些欧美发达国家,照明系统的智能化控制已成为智能化大楼不可分割的组成部分,而且应用范围越来越广。 智能照明控制系统的技术,随着现代建筑技术的发展而不断更新以适应各种建筑结构布局,不同灯具的选配,实现多样化的控制模式。由于这是一个开放式的系统,采用标准接口可以方便地与其它系统诸如BA、安保、消防等相互连接完成系统集成功能;同时利用系统配备的监控软件,大楼管理工作人员借助“友好”的用户界面,能极其方便地遥控、监控大楼所有控制设备的工作状态。 2、智能照明系统 长期以来智能照明在国内一直受到忽视,绝大多数建筑物仍然沿用传统照明控制方式。部分智能区域照明和定时开关功能,很难实现调光、场景控制等负责多变的功能,澳洲奇胜的C-BUS正是为了满足这些更高的照明需求而开发出来的新一代智能照明控制系统。就照明管理系统而言,它不仅要控制照明光源的发光时间、亮度来配合不同应用场合做出相应的灯光处理,而且还要考虑到管理智能化和操作简单化以及灵活适应未来照明布局和控制方式变更等要求。一个优秀的智能照明系统可以提升照明环境的品质,确保在建筑物里工作和生活群体的舒适和健康。

智能家居控制系统

智能家居控制系统 This manuscript was revised by JIEK MA on December 15th, 2012.

智能家居控制系统 智能家居(Smart Home)是以住宅为平台,利用综合布线技术、网络通信技术、智能家居-系统设计方案安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术性,并实现环保节能的居住环境。它将让用户有更方便的手段来管理家庭设备,比如,通过家、无线遥控器、电话、互联网或者语音识别控制家用设备,更可以执行场景操作,使多个设备形成联动;另一方面,智能家居内的各种设备相互间可以通讯,不需要用户指挥也能根据不同的状态互动运行,从而给用户带来最大程度的高效、便利、舒适与安全。与普通家居相比,智能家居不仅具有传统的居住功能,提供舒适安全、高品位且宜人的家庭生活空间,还将原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家庭与外部保持信息交换畅通,优化人们的生活方式,帮助人们有效安排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。系统的网络化功能可以提供遥控、家电(空调,热水器等)控制、照明控制、室内外遥控、窗帘自控、防盗报警、可编程定时控制及计算机远程控制等多种功能和手段。使生活更加舒适、便利和安全。因智能家居控制系统布线简单、功能灵活,扩展容易而被人们广泛接受和应用。 智能家居控制部分要求 一、智能家居控制主要分为灯光、家电(其中包含空调、电视、热水器等等);电动窗帘的控制这三大区域 A、灯光控制部分: 1.在灯光控制部分除了普通的对某一路灯进行开关控制之外;必须具有对白炽灯进行亮度的随意调节及软启动的功能。软启动及开启或关闭灯光的

智能控制(神经网络)作业

智能控制作业 学生姓名: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2 )1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6

智能照明控制系统方案

灯光控制系统方案

一、系统概述 系统原理概述 系统所有的单元器件(除电源外)均内置微处理器和存储单元,由一对信号线(UTP5)连接成网络。每个单元均设置唯一的单元地址并用软件设定其功能,通过输出单元控制各回路负载。输入单元通过群组地址和输出组件建立对应联系。当有输入时,输入单元将其转变为数字信号在系统总线上广播,所有的输出单元接收并做出判断,控制相应回路输出。 系统通过两根总线连接成网络。总线上不仅为每个组件提供24伏直流电源,还加载了控制信号。通过系统编程使控制开关与输出回路建立逻辑对应关系。 系统元件采用 模块化结构、并已 经有系统化产品、 系统扩展方便。同 时,通过专用接口 元件及软件,可能 直截接入电脑进行 实时监控,或接入 以太网进行远程实时监控。因此在设计时更加简单、灵活。 系统为分布式控制,模块化结构,可靠性高。任何控制模块均内置CPU,每个输入模块(场景开关、多键开关、红外传感器等)都可直接与输出模块(调光器、输出继电器)通讯(发送指令→接受指令→执行指令),避免了集中式结构中央CPU一旦出现故障造成整个系统瘫痪的弱点。 与BA系统的集成 诺雅照明控制系统是一个开放的系统,通过专用接口软件,可方便地与其他系统连接,如楼宇自控系统、门禁系统、保安监控系统、消防系统等。

Network 系统结构图

二、系统功能和优点 智能照明控制系统在学校应用的功能和优点: 1、实现照明控制智能化 可用手动控制面板,根据一天中的不同时间,不同用途精心地进行灯光的场景预设置,使用时只需调用预先设置好的最佳灯光场景,使人产生新颖的视觉效果。随意改变各区域的光照度。 2、美化环境以达到吸引学生的注意力 好的灯光设计,能营造出一种温馨、舒适的环境,增添其艺术的魅力。良好的环境可以培养学生对其产生更大的兴趣,从而得到更好的学习效果。 利用灯光的颜色、投射方式和不同明暗亮度可创造出立体感、层次感,不同色彩的环境气氛,不仅使学生有个很好的学习环境,而且还可以产生一种艺术欣赏感,对课程产生强烈的研究精神。 3、可观的节能效果 由于智能照明控制系统能够通过合理的管理,根据不同日期、不同时间按照各个功能区域的运行情况预先进行光照度的设置,不需要照明的时候,保证将灯关掉;在大多数情况下很多区域其实不需要把灯全部打开或开到最亮,智能照明控制系统能用最经济的能耗提供最舒适的照明;系统能保证只有当必需的时候才把灯点亮,或达到所要求的亮度,从而大大降低了学校的能耗。 4、延长灯具寿命 灯具损坏的致命原因是电压过高。灯具的工作电压越高,其寿命则成倍降低。反之,灯具工作电压降低则寿命成倍增长。因此,适当降低灯具工作电压是延长灯具寿命的有效途径。智能照明控制系统能成功地抑制电网的冲击电压和浪涌电压,使灯具不会因上述原因而过早损坏。还可通过系统人为地确定电压限制,提高灯具寿命。智能照明控制系统采用了软启动和软关断技术,避免了灯丝的热冲击,使灯具寿命进一步得到延长。 智能照明控制系统能成功地延长灯具寿命2-4倍。不仅节省大量灯具,而且大大减少更换灯具的工作量,有效地降低了照明系统的运行费用,对于难安装区域的灯具及昂贵灯具更具有特殊意义。

智能家居控制系统

题目:智能家居管理系统 摘要(中英文) 基于物联网的思想,系统由三部分组成,终端部分、传输部分和服务器部分,终端部分和传输部分分别由一片MSP430F2616单片机控制,终端部分采集、控制,传输部分由一片单片机与W5100连接用于连接互联网,在PC机上面建有服务器,能在其它客户端访问网页并通过网页控制。 Based on the content of “The Internet of things”, this system consists of parts, terminal part, transmission parts and server part, terminal part and transmission part are both controlled by MCU MSP430F2616.And the terminal part in charge of collecting information and controlling "things", while the transmission part consists of a MCU and part SW5100 part. There is a server in a PC, we can scan the webpage as a client and control your device via this webpage. 1.引言 系统的设计基于物联网的思想,物联网是新一代信息技术的重要组成部分,其英文名称是“The Internet of things”。其基本思想是以互联网为媒介,实现远程监督、控制。它在各个领域有着非常广泛的应用。本系统基于这种思想,提供了一种具体的实现方案,以四个LED为例,四个LED由控制终端控制,通过传输部分传输到PC机服务器端,通过其它互联网端能登陆网页,并能操作控制端,以实现远程监控。本系统除了能控制4个LED,还能够采集温度,并在网页上实时更新,以该系统为模板,可以扩展出更多的功能,实现更为复杂的功能。 2.系统方案 控制部分和传输部分均用TI公司MSP430F2616主控芯片控制,传输部分由该单片机与W5100以太网模块完成网络连接。用户可通过电脑、手机等客户端上网,完成远程监控。 系统设计方案用框图如下所示:

智能灯光控制系统概述

智能灯光控制系统概述 一、概述随着时代的发展,城市现代化建设步伐不断加快,对城市道路照明及城市亮化工程需求也更大, 而能源的供需矛盾也越来越突出,节电节能、绿色照明的要求越来越迫切,越来越高。现在再采用那些传统 的手控、钟控城市照明系统的方法已不能满足要求。如何充分利用高科技手段解决上述矛盾也就成为当前照 明控制领域一个新的和紧要的课题。城市道路照明自动化控制和智能化管理作为城市现代化的标志之一,它 所带来的经济和社会效益是十分显著的,它的推广和实施也将是市政工程建设中的一项重要内容。照明自 动监控与管理系统能够灵活开/ 关灯,随时了解运行参数,及时发现故障,将传统的人工“巡灯”制度改为“值班”制度,极大地提高照明系统的管理效率。系统能将采集到的数据自动进行存储、统计,并能随时进行查 询和打印,极大地提高管理水平,同时还能通过全夜灯、半夜灯和智能调压等手段,降低能耗,提高设备使 用寿命,获得良好的经济效益。GPRS/CDMA无线透明传输终端(DTU)与路灯智能监控器和管理系统,采用先进 的计算机通信技术和数字信号处理(DSP) 技术,通过交流采样的方法,完成现场的电流、电压以及功率、功

率因素等参数的采样、运算、存储、显示,并根据预置参数或调度端的命令自行完成数据的传送,并实现 对路灯、景观灯的远程监控,从而实时掌握照明系统运行状况,快速发现路灯故障、盗窃等并能主动报警, 确保照明系统的可靠运行,提高路灯运行质量。 二、系统框图三、终端设备---采用ARM9高性能工业级嵌入式处理器,以实时操作系统为软件支撑平台,超大内存 , 内嵌自主知识产权的TCP/IP协议栈。为用户提供高速,稳定可靠,数据终端永远在线,多种协议 转换的虚拟专用网络。针对网络流量控制的用户,产品支持语音,短信,数据触发上线以及超时自动断线 的功能。同时也支持双数据中心备份,以及多数据中心同步接收数据等功能。公司产品已广泛应用于金融, 水利,环保,电力,邮政,气象等行业。 三、硬件系统 1、 CPU:工业级高性能 ARM9嵌入式处理器,带内存管理 MMU,200MPS, 16KB Dcache,16KB Icache 2、 FLASH:8MB,可扩充到 32MB 3、 SDRAM:64MB,可扩充到 256MB

神经网络在人工智能中的应用

神经网络在人工智能中的应用 摘要:人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关键词:人工智能,神经网络 一、人工智能 “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。 二、神经网络

神经网络是:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。 人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。 与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。三.神经网络在人工智能中的应用专家系统

2019人工智能与健康试题及答案

2019人工智能与健康试题及答案 一、单项选择题 1.()是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。 D.工业机器人 2.()是利用计算机将一种自然语言(源语言)转换为另一种自然语言(目标语言)的过程。 B.机器翻译 3.()是人工智能的核心,是使计算机具有智能的主要方法,其应用遍及人工智能的各个领域。 B.机器学习 4.()是人以自然语言同计算机进行交互的综合性技术,结合了语言学、心理学、工程、计算机技术等领域的知识。 A.语音交互 5.()是通过建立人工神经网络,用层次化机制来表示客观世界,并解释所获取的知识,例如图像、声音和文本。 A.深度学习 6.()是研究用计算机系统解释图,像实现类似人类视觉系统理解外部世界的一种技术,所讨论的问题是为了完成某一任务需要从图像中获取哪些信息,以及如何利用这些信息获得必要的解释。 B.图像理解 7.()是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。 A.专家系统 8.()是一种处理时序数据的神经网络,常用于语音识别、机器翻译等领域。 C.循环神经网络 9.()是一种基于树结构进行决策的算法。 B.决策树 10.()是用电脑对文本集按照一定的标准进行自动分类标记。

C.文本分类 11.()是指能够按照人的要求,在某一个领域完成一项工作或者一类工作的人工智能。 C.弱人工智能 12.()是指能够自己找出问题、思考问题、解决问题的人工智能。 B.强人工智能 13.()是指在各个领域都比人类要强的人工智能。 A.超人工智能 14.()是指直接通过肢体动作与周边数字设备和环境进行交互。 A.体感交互 15.()是自然语言处理的重要应用,也可以说是最基础的应用。 C.文本分类 16.()宣布启动了“先进制造伙伴计划”“人类连接组计划”“创新神经技术脑研究计划”。 C.美国 17.()中共中央政治局就人工智能发展现状和趋势举行第九次集体学习。 B.2018年10月31日 18.《“健康中国2030”规划纲要》中提到,健康是经济社会发展的() B.基础条件 19.《“健康中国2030”规划纲要》中提到,全民健康是建设健康中国的() D.根本目的 20.1997年,Hochreiter&Schmidhuber提出()。 D.长短期记忆模型 21.2005年,美国一份癌症统计报告表明:在所有死亡原因中,癌症占() A.1/4 22.2012年,Hinton教授小组在ImageNet竞赛中夺冠,降低了几乎()的错误率。 B.50% 23.2017年,卡内基梅隆大学开发的一个人工智能程序在()大赛上战胜了四位人类玩家,这在人工智能发展史上具有里程碑式的意义。 C.德州扑克 24.50年前,人工智能之父们说服了每一个人:“()是智能的钥匙。” B.逻辑 25.癌症的治疗分为手术、放疗、化疗。据WTO统计,有()的肿瘤患者需要接受放疗。

智能家居控制系统

智能家居控制系统智能家居(Smart Home)是以住宅为平台,利用综合布线技术、 网络通信技术、智能家居-系统设计方案安全防范技术、自动控制技 术、音视频技术将家居生活有关的设施集成,构建高效的住宅设施与 家庭日程事务的管理系统,提升家居安全性、便利性、舒适性、艺术 性,并实现环保节能的居住环境。它将让用户有更方便的手段来管理 家庭设备,比如,通过家、无线遥控器、电话、互联网或者语音识别 控制家用设备,更可以执行场景操作,使多个设备形成联动;另一方 面,智能家居内的各种设备相互间可以通讯,不需要用户指挥也能根 据不同的状态互动运行,从而给用户带来最大程度的高效、便利、舒 适与安全。与普通家居相比,智能家居不仅具有传统的居住功能,提 供舒适安全、高品位且宜人的家庭生活空间,还将原来的被动静止结 构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家 庭与外部保持信息交换畅通,优化人们的生活方式,帮助人们有效安 排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。系 统的网络化功能可以提供遥控、家电(空调,热水器等)控制、照明 控制、室内外遥控、窗帘自控、防盗报警、可编程定时控制及计算机 远程控制等多种功能和手段。使生活更加舒适、便利和安全。因智能 家居控制系统布线简单、功能灵活,扩展容易而被人们广泛接受和应 用。 智能家居控制部分要求 一、智能家居控制主要分为灯光、家电(其中包含空调、电视、热水器等等);电动窗帘的控制这三大区域 A、灯光控制部分:

1.在灯光控制部分除了普通的对某一路灯进行开关控制之外;必须具有对白炽灯进行亮度的随意调节及软启动的功能。软启动及开启或关闭灯光的时候有个渐变的过程,即当开启灯光时,灯光强度由暗渐渐变亮,或关闭灯光的时候,灯光强度由亮慢慢变暗,可以让住户眼睛有个适应的时间,而不会因为灯光突然亮起而让眼睛感觉不舒服。 2.除了这些常见的功能外,系统还必须对灯光控制进行多种动作定义。如可以有灯光亮度的定义,比如开灯时可以让灯光渐亮到30%或50%,等等。这个主要用于模拟客户夜间回家或起床,可以让灯光不要开的太亮,以免影响其他休息的人。 3.灯光的延时开启或关闭。可以让灯光经过您设定的时间后开启或关闭。当模拟当你出门的时候,先按下玄关灯的按键,等您穿鞋关门走出去后,灯光才会慢慢的关闭。 4.动作跳变:即把灯光开之后,然后经过设定的时间后,灯光自动关闭。常应用在洗手间,这样模拟在洗手完之后按下跳变的按键,过段时间后,灯光及排气扇即可自动关闭。 5.灯光组合控制。就是一个按键可以让接入系统中的各路灯光进行不同的动作。一个按键执行的动作可以抵得上几个动作方能完成的效果。 如说离家的常用模式,当外出的时候,只需要按一个按键,即可以把家里面的灯光全部关闭,这样可以避免了走到各个房间或漏关而浪费资源的现象。 会客模式:当有客人一进来,按一个按键,把灯光全部打开,立

相关文档