文档视界 最新最全的文档下载
当前位置:文档视界 › 红外热像仪的原理及其在电气设备检测中的应用

红外热像仪的原理及其在电气设备检测中的应用

红外热像仪的原理及其在电气设备检测中的应用
红外热像仪的原理及其在电气设备检测中的应用

龙源期刊网 https://www.docsj.com/doc/ae11225562.html,

红外热像仪的原理及其在电气设备检测中的应用

作者:夏杰

来源:《硅谷》2008年第10期

[摘要]红外热像仪是利用现代高科技手段,对运行的电气设备进行无接触检测的一种仪器设备,详细介绍红外热像仪的工作原理、系统组成、分类、性能参数及其在电气设备检测中的应用。

[关键词]红外热像仪电气设备检测

中图分类号:O59 文献标识码:A 文章编号:1671-7597(2008)0520067-02

一、引言

红外热像仪是利用现代高科技手段,对运行电气设备进行无接触检测的一种仪器设备。使用红外热像仪可以得到电气控制设备、电动机、变压器、电缆接头、电气开关以及处于探测温度范围内的任何设备的热像图。红外热像仪是一种可以将热信息瞬间可视化,显示温度分布情况,显示热故障,并通过非接触温度测量加以量化,在专业的红外分析软件的帮助下,数秒内便可自动完成分析报告。使维修人员及时掌握设备的实际技术状态,以便对设备技术状态的劣化采取恢复措施。目前,红外热像仪在电力行业进行预防性维护检测中发挥了巨大作用。

二、红外热像仪的工作原理

红外是红外辐射、红外线或红外光的简称,它是太阳光谱红光外的不可见光,其波长范围相当宽,波长为0.75~1000μm之间。太阳光从紫光到红光的热效应逐步增大,而红外光具有最大的热效应。除了太阳能辐射红外光外,自然界中的任何物体,只要本身具有一定的温度,都能辐射红外光。

利用红外热像仪探测物体发出的红外辐射,并将物体辐射的功率信号转换成电信号,通过成像装置的输出就可以完全模拟被扫描物体表面温度的空间分布,得到与物体表面热分布相应

血凝仪原理

随着医学科学的发展,及时诊断出血、血栓性疾病,观察疗效,分析抗凝药物剂量等显得越来越迫切,而传统的手工方法和单一的凝固定性检查已经远远不能满足临床要求,全自动血凝仪的出现和应用,使得止血和血栓项目检查变得简便、准确、可靠、极大地满足了临床诊疗的需要。1.检测的基本方法 目前血凝仪大多采用生物学方法,可分成三类:电流法、粘度法、光学法。? 1.1电流法:该法是利用血浆标本纤维蛋白具有的导电性,将电极插入标本中,利用两电极之间的电流的通、断来判断纤维蛋白是否形成,依此确定凝固终点。? 1.2 粘度法:又称磁珠法,仪器的检测部分有独立的线圈产生所需的电磁场,检测时在待测标本中加入小磁珠,利用变化的磁场使小磁珠产生运动,随着血浆的凝固,血浆的粘稠度征集增加,小磁珠摆幅逐渐减少,仪器内的电磁传感器,测定小磁珠的不同震荡幅度,计算出血浆的凝固时间。? 1.3 光学法:该法是目前血凝仪使用最多的一种检测方法。当血浆在样品杯中逐渐凝固时,纤维蛋白原转变成纤维蛋白,其理学性状也随着变化;当一束光通过样品杯时,其透射光和散光的强度也会随之变化。? 2.检测的基本原理? 比浊法以血浆中的被检测物质作为抗原,抗原与试剂中的抗体混合时会发生特异性结合反应,产生复合物颗粒,依此来测定被检测物质含量。其原理是:抗原量同抗体特异性结合反应达到某一程度与所需的时间之间存在一定的数量关系,在检测过程中,随着待检物质与相应抗体结合,其复合物颗粒增多单色光通过时,透过的或反射的光强度就会发生一定的变化,仪器的电路部分自动算出单位时间内吸光度的变化量,再根据标准曲线推算出待检物质的含量。? 使用光学法检测时,一般是将预温好的血浆标本和试剂快速混合,在混合瞬间吸光度非常弱,随着样品和试剂混合物中的纤维蛋白凝块的形成,反应杯内标本吸光度逐渐增强,当标本凝固完全后,吸光度值就稳定下来;仪器在血浆和试剂混合的瞬间,也就是吸光度最弱时,设定吸光度值A=0%,在血浆和样品凝固完全后,吸光度最强时,设定吸光度值A=100%;在0%-100%吸光度变化之间,仪器检测通道单位时间内分别采集多个数据,这样吸光度的变化值可做出一条曲线,仪器根据实验项目需要自动选取曲线上的一个点所对应的时间为凝血时间;仪器内的计算电路对做出的曲线求二次微分,二次微分为零的点,就是凝固终点;因为凝血是一个酶促的加速过程,到凝固终点时,反应速度和加速度都达到最大,此时凝固曲线的二次微分为零。? 仪器在测定待测血浆样品前,必须首先定标,也是对已知浓度或活性的标准品的凝血时间来制定标准曲线;在检测待测样品时,计算电路首先检测出血浆的凝固时间,在根据凝固时间从标准曲线上求出浓度或活性。 3.仪器的检测项目和临床应用 仪器的检测项目一般都有十几种,用户可根据临床需要和试剂情况选择检测项目。? 其中:凝血实验主要是针对人体内抗酶系统和纤溶系统中的酶、酶原和一些因子的测定,常检项目有:(1)TT-凝血酶时间;(2)PT-凝血酶原时间;(3)APTT-部分凝血活酶时间;(4)FIB-纤维蛋白。除此,还可测定下列参数:(1)凝血因子分析胞浆素;(3)肝素抗-Xa;(4)蛋白C及活性蛋白C;(5)狼疮抗凝物;(6)蛋白C和S抗凝物等等。 当病人发生DIC、原发性纤溶症、维生素K缺乏症、肝脏疾病或血液循环中有抗凝物质时,凝血酶原时间(PT)都会延长;若PT缩短则常见于凝血因子V增多症、高凝状态和血栓性疾病等。当病人有肝脏疾病、阻塞性黄疸、新生儿出血症、肠道灭菌综合征、吸收不良综合征等某种疾病时,活化部分凝血酶时间(APTT)会延长;APTT参数是反映血浆中凝血因子VIII、LX、XI、XII 水平的实验,是外源性凝血系统的筛选实验;当血浆中这几种因子某种减少时,APTT参数也延长,可进一步检查凝血因子,若VIII因子缺乏可能是甲型血友病、LX因子缺乏一般是乙型血友病。而APTT减少,一般是血栓性病症,如心肌或肺梗死、脑血管病变等或是促凝物质进入血液

红外热成像摄像机原理分析以及应用

红外热成像摄像机原理分析以及应用 随着技术的进步,监控系统已经在各个领域得到了广泛的应用。目前的视频监控系统主要采用可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护,但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安防系统在夜间或恶劣天气条件下的防范能力大打折扣。 同时,由于现在的视频监控系统仍然依托于人工监视,安保人员需要对监控画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能,而更多的只是事发后取证的作用。从整体上来说,目前的视频监控系统还处于在半天时、半天候和半自动状态。 在伊拉克战争中,美军平均每个士兵拥有1.7台红外热像仪产品 一项统计数据表明,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。原因很简单,在夜幕的笼罩下,犯罪分子容易隐蔽,犯罪场面也不容易被看见——黑暗掩盖了犯罪行为。即使安装了一般的视频监控系统,也有可能让犯罪分子逃之夭夭。因此,如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,成为安防系统当成亟待解决的难题之一。 在这种情况下,红外热成像技术以其作用距离远、穿透能力强、能识别隐蔽目标等优势被引入安防领域,成为监控领域的一份子。 热成像摄像机的监控原理 在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。 热成像摄像机(又叫热像仪)就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号,经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为热成像摄像机。它通过探测微小的温度差别,将温度差异转换成实时的视频图像,显示在监视器上。与其他需要少量光线产生影像的夜视系统不同,其完全不需要任何光,这使它成为人们在全黑环境、黑暗的夜晚监控的完美工具。

血凝仪的检测项目及临床意义

HF6000-4血凝仪的检测项目及临床意义 血凝四项是血凝仪的检测项目,这些项目与人体血栓和止血有关,在手术以及相关疾病的检测中起到重要的作用,以事先有所准备,防止术中大出血而措手不及,血凝四项检测包括APTT、PT、FIB和TT。 海力孚血凝分析仪所采用的分析方法为光电磁珠法,能够真正消除黄疸、溶血、乳糜、浑浊,气泡等影响。具有以下的优势特点: 1. 检测结果较光学法准确度高,重复性好。 2. 纤维蛋白原检测范围大,可检测结果超高或低纤维蛋白原的各种异常血浆。 3. 育温计时系统,声光自动提示。 4. 同时具备联动和手动两种方式启动测量,避免人工误差。 5. 双通道一键双模式切换。(同人两项) 6. 人性化设计,可翻转显示屏,随意调节舒适视角。 7. 5.7英寸超量蓝色背光液晶显示,界面更清晰简洁。 8. 可打印实时报告和综合报告,结果可用多种单位表示(秒,比率,%,INR,g/l,mg/dl,u/l……) 9. 试剂用量少,试剂减半,节省试剂。 10. 试剂开放。 PT凝血酶原时间:正常参考值为12-16秒。临床应用:凝血酶原时间是检查外源性凝血因子的一种过筛试验,是用来证实先天性或获得性纤维蛋白原、凝血酶原、和凝血因子Ⅴ、Ⅶ、Ⅹ的缺陷或抑制物的存在,同时用于监测口服抗凝剂的用量,是监测口服抗凝剂的首选指标。据报道,在口服抗凝剂的过程中,维持PT在正常对照的1-2倍最为适宜。 APTT活化部分凝血活酶时间:正常参考值为24-36秒。临床应用:活化部分凝血活酶时间是检查内源性凝血因子的一种过筛试验,是用来证实先天性或获得性凝血因子Ⅷ、Ⅸ、Ⅺ的缺陷或是否存在它们相应的抑制物,同时,APTT 也可用来凝血因子Ⅻ、激肽释放酶原和高分子量激肽释放酶原是否缺乏,由于APTT的高度敏感性和肝素的作用途径主要是内源性凝血途径,所以APTT成为监测普通肝素首选指标。 FIB纤维蛋白原:正常参考值为2—4g/L。临床应用:纤维蛋白原即凝血因子Ⅰ,是凝血过程中的主要蛋白质,FIB 增高除了生理情况下的应激反应和妊娠晚期外,主要出现在急性感染、烧伤、动脉粥样硬化、急性心肌梗死、自身免疫性疾病、多发性骨髓瘤、糖尿病、妊高症及急性肾炎、尿毒症等,FIB减少主要见于DIC、原发性先溶亢进、重症肝炎、矸硬化和溶栓治疗时。凝血酶原时间、活化部分凝血活酶时间、纤维蛋白原三者同时检测已被临床用于筛查病人凝血机制是否正常,特别是心胸外科、骨科、妇产科等手术前检查病人的凝血功能尤为重要。

红外热像仪的原理

红外热像仪的原理 说起红外热像仪,人们的反应是在军事上的应用,尤其是在美国的战争大片中,红外线热像仪几乎成了必备的装备。 实际上,红外热像仪早也是应用于军事领域,在技术逐渐成熟以后才应用于民用工业,并且迅速扩展。 红外线热像仪属于测温仪的一种,由于带了热成像的功能,不仅仅显示某个点的温度示数,而是整个面的温度分布,所以比一般的测温仪更加直观,可以说为技术人员提供了一双能够直接观测温度的眼睛。 目前,在电力系统、土木工程、汽车、化石、冶金等诸多领域都广泛存在红外热像仪的应用,其发展前景十分广阔。 红外热像仪原理的核心是波尔兹曼定律,这位在热学领域贡献颇多的科学家将普朗克的理论进行了延伸,他发现红外线总能量与温度的四次方成正比。 这一关系建立后,通过光敏元件对不同波长红外线的反应值进行数字化处理,可以反演出温度值,就能够得到完整的热像图,图像中颜色的不同就代表了温度的不同。 红外热像仪经常用于工业设备的检测,比如锅炉、电机、变电站等等设备,如果有故障发生,其各部分的温度会出现异常,可以通过热像仪很明显地找到故障位置。 虽然热像仪可以通过遥感的方式很方便地对温度进行测量,但是毕竟属于间接测量方式,精度并没有一般温度仪那么高,当仪器量程比较大时,比如在冶金行业使用的红外热像仪,其量程达到几千度,其测温精度的差别会有±2℃。

但就使用的实际需要而言,这个误差完全在可以接受的范围内。如果将量程缩小,应用一般工业领域中,所测量的温度范围只有几百度左右,那么精度就会上升,测量的误差将减小。 红外热像仪属于便携式设备,单手操作即可,屏幕分辨率通常为240*320。然而不同的品牌在使用起来差别很大。 比如其使用的光敏元件不同,热灵敏度和分辨率也就不同。以Fluke的红外热像仪为例,其热灵敏度能达到0.045℃。再比如对焦是否快速准确,能否录制测量过程,人机界面是否友好等等。 标签: 红外热像仪

红外热成像仪的介绍及工作原理

1.红外热成像技术 红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。 2.什么是红外热像图 一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。 同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 3.红外热像仪的原理 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。

红外热像仪的原理 4.红外热成像的特点 自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。因此,这两个波段被称为红外线的“大气窗口”。我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。 5.在线式红外热像仪 采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。

血凝仪SOP文件CA1500..

全自动血凝分析系统标准操作规程SOP编码:页数:页 制定人签名:日期: 日期: 日期: 生效日期:颁发日期: 周期性审查:年一次 修订登记: 审查登记:

1.设备基本技术参数 1.1 原理——CA1500凝血仪仪器具有三种检测原理方法:凝固法、发色底物法、免疫法 1.1.1 凝固法:基本测试原理是光学法的散射光检测(用660nm光电二极管检测散射光强度 的变化),还并用了百分比方式的测定原理:当试剂加入标本后,凝血开始启动,随之光学出现变化,仪器把这种光学的变化描绘成凝固曲线:把开始出现凝集的起始点作为0%、把完全凝固的终点作为100%、把50%变化点处作为凝固时间(报告点),当测定含有干扰物(黄疸、溶血、高脂血症等)或低纤维蛋白原血症的特殊标本时,其作为起始点的0%的基线会随之上移或下移,相当于扣除本底干扰. 以上凝固法检测原理所测定的项目包括了最常用的如PT、APTT、FIB、TT、内源凝血因子(F VIII、XI、XI、XII),外源凝血因子(F II、V、VII、X)等 1.1. 2. 发色底物法的检测原理:是通过测定产色物质的吸光度变化,以推算待测物的含量,这种方法属生物化学法,其基本原理是:试剂中为人工合成的含某种酶裂解位点的短肽,与产色物质如对硝基苯胺(pNA)连接,待检物品中含有活性酶或无活性的酶原被加入的激活剂活化,在检测过程中产色物质被解离下来,使被检物品出现颜色变化,其与被检物含量呈一定的数量关系。此方法以酶学方法为基础,可检测项目包括如:AT-III、Plg、PC、PS、FM、PAI,Tpa,α2-AP等。 1.1.3. 免疫法:以被检物作为抗原,制备相应的多克隆抗体,利用抗原抗体的特异结合反应来对被检物进行定性和定量检测,在凝血仪上多采用免疫比浊法测定,其基本原理是当一定波长的光线通过反应混合液时,被其中抗原抗体反应形成的免疫复合物吸收而减弱,在一定范围内,其吸光度与复合物量呈正相关,因此当抗体量固定时,根据复合物的吸光度值,即可推算出待测抗原含量,可测定项目如D-二聚体、vWF因子、FDP等 1.2 检测环境要求: 1.2.1 温度: 10° - 30° C;湿度: 20 - 80% (无冷凝) 1.2.2 电源: 交流电100-240V,50/60Hz;功率:720VA 1.2.3 请勿将仪器直接置于水、直射阳光、冷凝或大风的环境中,这样会导致不正确的检测结 果并导致仪器工作不正常而损坏 1.2.4 仪器的背面和墙之间要始终保持20厘米以上的距离。否则,仪器会过热,连接导管和 连接负载过大而可能引发火灾。 1.3 主要项目检测指标: 1.3.1 检测范围: PT,TT——5~180sec(最宽可设置到600秒) APTT —— 5~300sec (最宽可设置到600秒) Fbg —— 0.25~10 g/L(<0.5g/L或>10g/L建议使用重稀释重检模式) D-Dimer Plus 50~16000 ug/L(>2000ug/L需使用重稀释重检模式) 1.3.2 重复性: PT, APTT ≤ CV 2 % Fbg ≤CV 4 % 因子≤CV 5 % TT CV ≤10 % AT-III CV ≤5 % D-Dimer Plus CV ≤10 %

红外热成像仪的原理介绍

红外热成像仪的原理介绍 红外热成像仪原理红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。 利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。 红外热成像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间; 有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感; 因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。 热像仪在军事和民用方面都有广泛的应用。 随着热成像技术的成熟以及各种低成本适于民用的热像仪的问世,它在国民经济

各部门发挥的作用也越来越大。 在工业生产中,许多设备常用于高温、高压和高速运转状态,应用红外热成像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患。 同时,利用热像仪还可以进行工业产品质量控制和管理。 此外,红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。如建筑物漏热查寻、森林探火、火源寻找、海上救护、矿石断裂判别、发动机检查、侦察以及各种材料及制品的无损检查等。 标签: 红外热成像仪

热成像技术原理及其应用

热成像技术原理及其应用(参考) 第一章导言 1 热成像系统技术基础 热成像系统能把物体发射的红外辐射(红外光)转变成可见光,从而将人类的视觉由可见光扩大到不可见红外光。人的眼睛不能响应0.4~0.7μm以外的光,要使人眼在夜间看东西象白天一样,使红外转换为可见景物的视觉判读成为可能,需目标相对背景有显著的发射率、温差和与大气窗口相一致的红外辐射传输通道;还需要一种光电器件能响应物体发射出的红外光子。 人眼是接受可见光辐射的最好敏感元件:眼睛的光谱响应范围0.4~0.7μm,正好符合太阳光源的输出峰值,这个波段集中了38%的太阳辐射能量,且地球上的物体具有良好的反射度;眼睛是一种理想的可见光波段量子噪声限探测器(量子能级的低噪声);人眼对非可见红外光有很好的滤波功能。 自然可见图像主要是由反射和反射度差产生。相反热像仪对红外光响应所形成的热图像主要是由发射率差产生。 目前热像仪工作的三个红外辐射传输的窗口是1μm~3μm,3μm~5μm,8μm~14μm。 2 热成像系统技术发展简述 最初的热成像系统是circa温度记录仪(1930);

1952年美国陆军制成第一台自动温度记录仪(采用双轴扫描和测辐射热探测器,照相胶卷记录图像),以后10年主要是民用; 1956年美国空军研制了第一台实时FLIR航扫仪(AN/A-AS-3),后发展改进研制了第一台二维图像的热像仪XA-1(单元扫描); 1960年Perkin-Elmer公司为陆军研制了地面FLIR(锑化铟、双折射棱镜扫描,5°视场、瞬时视场1mrad、帧频0.2); 1960~1974由空军和德克萨斯仪器公司及海军和休斯飞机公司分别制定扫描FLIR研制计划,研制完成60多种FLIR,产品几百件(试用于对北越轰炸); 到90年代初扫描型热像仪发展至顶盛,美国发展了采用64元、120元、180元制冷MTC探测器的热成像通用组件(以色列120元,英国32元和8条SPRITE探测器)同期世界上生产了约10万台热像仪(1代);80-90年代美国的标准组件计划是第一代红外热像仪(扫描型)发展的标志性事件。 九十年代末美国、法国(SOFRADIR)、英国、以色列相继研制并批量生产了非制冷焦平面探测器、制冷焦平面探测器,至此引发了一场热成像技术的革命,进入了2代热成像技术发展阶段。2000年,美国和法国的焦平面红外探测器产业化,这是第二代红外热像仪(凝视型)发展的标志性事件。2015年,低成本非制冷红外探测器产业化。 3 热成像系统工作原理 基本内容 辐射理论和目标识别 目标辐射的大气传输 热像仪指标体系 高效的红外光学系统 探测器及其工作条件(制冷、真空)

红外热成像仪基本原理介绍

红外热成像仪基本原理介绍 原理综述:红外热像仪是利用红外探测器、光学成像物镜及光机扫描系统(或者焦平面技术)接受被测目标的红外辐射能量分布图形反应到红外探测器的光敏元件上,在光学系统和红外探测器之间,有一个光机扫描机构对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理,转换成标准视频信号通过电视屏或监测器显示红外图像。 一、什么是红外 为了搞清楚红外热成像仪是如何成像的,我们有必要首先搞清楚什么是红外。那么什么是红外呢?物理学对红外线的解释是:红外或称红外辐射,由物理学家郝歇尔于1800年首先发现,其本质是波长为0.76um~1000um 的电磁波,波长介于可见光和微波之间,其中波长为0.76~3um 的红外称为近红外,波长为3~40um 称为中红外,波长40~1000微米的称为远红外。 二、为什么能用红外进行成像 在明白了什么是红外之后,我们也许会好奇另一个问题:既然红外是波长介于可见光和微波之间的电磁波,是一种无法用肉眼直视的电磁波,那么我们如何能利用它进行成像呢?这要归因于红外的一个重要的物理性质——热效应。事实上,红外频率比较低,能量不高,所以当红外照射物体时只能穿透原子分子的间隙,而不能穿透到原子、分子内部,由于红外只能穿透到原子、分子的间隙,会使原子、分子的振动加快、间距拉大,即增加热运动能量,从宏观上看,物质在融化,沸腾,气化,但物质的本质并没有发生改变,这就是红外的热效应。 三、如何利用红外热效应成像 既然我们可以利用红外的热效应进行成像,那么从技术上如何实现呢?这需要用到一种重要的红外传感器——热探测器。热探测器分为:温差电偶和温差电堆、测辐射热计、高莱管、热电探测器。这里主要介绍热电探测器。热电探测器是利用居里点以下的热电晶体的自发极化强度与温度有关的原理制成的器件。当热电晶体薄片吸收辐射产生温升时,在薄片极化方向产生电荷变换为:DeltaT 式中DeltaQ 为电荷变化量,pT 为温度T 时的热释电系数,A 为吸收辐射的表面的面积,DeltaT 为晶体的温升值,当用调制的辐射照射时晶体的温度不断变化,电荷也随之变化,从而产生电流,它的数值与调制的辐射量有关。在恒温下,晶体内部的电荷分布被自由电子和表面电荷中和,在两极间测不出电压。当温度迅速变化时,晶体内偶极矩会产生变化,产生瞬态电压,所以热(释)电探测器只能探测调制的辐射或辐射脉冲,它的响应时间快,可达纳(10-9)秒数量级,并能在常温下工作。此外它仅由晶体片镀以电极构成探测元,因此机械强度很高,克服了红外探测器容易损坏的缺点,响应的谱段从γ射线到亚毫米波,是目前发展最快的热探测器。热电探测器所用的材料主要有钛酸钡、硫酸三甘肽(TGS)、掺镧的锆钛酸铅(PLZT)、铌酸锂和铌酸锶钡。 四、如何根据热电信号最终成像 ,T pTA Q ?=?

热像仪原理及常见疑问解答

热像仪是什么? 术,通过对标的物的红外辐射探测,并加 以信号处理、光电转换等手段,将标的物 的温度分布的图像转换成可视图像的设 备。 红外热像仪工作原理? 通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。现代热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273℃)的物体都会发出红外辐射。热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热 像图与物体表面的热分布场相对应。

红外热像仪常见疑问解答 1、热像仪能透视吗? 试着测试墙壁、窗户玻璃、用桌上的材料蒙在热像仪镜头上,看看测试效果。 2、热像仪对人体有危害吗? 热像仪测试属于被动测试,非常安全。 3、热像仪能透过空气观测吗? 可以。 4、热像仪能测试打火机火焰温度吗? 长波热像仪不可以。 5、热像仪能测试烟头的温度吗? 可以。 6、长波热像仪能测试气体温度吗? 穿透空气,无法测量。 7、长波热像仪能测试气体泄漏吗? 穿透空气无法测试,必须用专业测试气体泄漏的热像仪才能测试。 长波红外热像仪的特点 长波红外可以透过空气观测,不能透过墙壁和玻璃观测。

长波红外热像仪具有全天候成像、非接触测温、透烟雾观测的特点。

关于FOTRIC FOTRIC致力于通过全球协作的创新技术研发,提高居民生活安全和工作效率,实现了将热像技术从工具型向智能型的发展,开启123456789人的热像世界,成为云热像领域中的全球前列厂家。FOTRIC已经拥有了从手持到在线的全热像产品线,覆盖生物、材料、电子、新能源、电力、设备、机械、铁路、汽车等应用领域。主要客户包括清华大学、北京大学、复旦大学、中国平安财险、国家电网、上汽集团等

血凝分析仪的作用及工作原理

血凝分析仪的作用及工作原理海力孚生产的HF-6000半自动血凝仪可分为I型和II型,其中I型是双通道、 二人同项,而II型是四通道、四人同项或同人四项,仪器属于临床测量人体血液中各种成分含量的工具,能够定量生物化学分析结果,为临床诊断患者的各种疾病提供了可靠的依据。 HF-6000是四通道血凝仪型号,该仪器采用光电磁珠法进行分析,能够真正的消除黄疸、溶血、乳糜、浑浊,气泡等的影响,与光学法相比,它的检测准确度高,重复性好,同时具备联动和手动两种方式启动测量,避免人工误差。 HF-6000是一款四通道的分析仪,可一键双模式切换,可检测四人的同一检测项目或者同一个人的四项检测项目,这四项检测项目包括:凝血酶原时间PT、活化部分凝血活酶时间APTT、纤维蛋白原FIB和凝血酶时间TT。该方法重复性好,监测范围大,从根本上解决了溶血、高脂血症或乳糜微粒、浑浊等干扰物对检测的影响。 血凝仪检测项目成为凝血四项,包括凝血酶原时间PT、凝血酶时间TT、血浆纤维蛋白原FIB、部分活化凝血活酶时间APTT。仪器内置热敏打印机,自动打印实时报告、综合报告及医学项目的参考值。这就给临床诊断带来很多便利。 HF-6000四通道血凝仪体现了人性化的设计,可翻转的显示屏,让检测者可以随意调节舒适视角,5.7英寸超量蓝色背光液晶显示,界面更清晰简洁。可打印实时报告和综合报告,结果可用多种单位表示(秒,比率,%,INR,g/l,mg/dl,u/l……)。 相对于其他厂家的血凝仪,海力孚的这款仪器检测结果准确,重复性好,抗干扰能力强,能够消除黄疸、溶血、乳糜、浑浊等的影响,纤维蛋白原检测线性宽,试剂减半,节约试剂。在当前基层医疗机构得到广泛使用。 最后,血凝仪的操作需要检验人员具备专业的操作技能能力,检测操作前认真阅读使用说明书,严格按照说明书或者我司工程师的培训来进行。

红外热像仪的测温原理

红外热像仪的测温原理 自然界中除了人眼看得见的光(通常称为可见光),还有紫外线、红外线等非可见光。而红外线是自然界中存在最广泛的电磁波,物体只要有温度,无论高低,都会发出红外线。随着科技的日新月异,人们悄然运用红外线这一特性,让一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学应运而生,那就是红外线热成像。而红外线热成像仪又是什么呢?简单的说,红外线热成像仪的操作就是以红外线热成像原理为基础的检测。那红外线热成像仪的检测手段是什么原理呢?红外热像仪的测温原理是什么呢? 简单来说,红外线热成像仪具有安全、直观、高效、防止漏检4大核心优势。 普通红外线测温仪仅有单点测量功能,而红外线热成像仪则可捕获被测目标的整体温度分布,快速发现高温、低温点,从而避免漏检。各位如果使用过红外线测温仪的工程师,应该深有体会,扫描一个高约1米的电气柜,需要反复来回扫描,生怕漏掉某个高温,造成安全隐患,几分钟是一定要的。而使用红外线热成像仪,几秒钟的时间就可完成,最关键的是一目了然,绝对无遗漏。

其次,普通红外测温仪虽有激光指示器,但仅起提示被测目标作用,并不等于被测温点,而是对应的目标区域内的平均温度,但是大部分的使用者都会误以为屏幕显示的温度值就是激光点的温度,大错特错!而红外线热成像仪则不存在这个问题,由于显示的是整体的温度分布,一目了然,而且市面上的多数红外线热成像仪带激光指示器,以及LED灯,便于现场快速定位识别。对于某些有安全距离限制的检测环境,普通红外测温仪无法满足需求,因为随测量距离增大,即扩大了准确检测的目标面积,自然得出的温度值会受到影响。但是,

红外热像仪原理、主要参数和应用

红外热像仪原理、主要参数和应用 红外热像仪原理、主要参数和应用 1. 红外线发现与分布 1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。 红外线的发现标志着人类对自然的又一个飞跃。随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。 红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。 2. 红外热像仪的原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。 简而言之,红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。 3. 红外热像仪的主要参数 (1) 工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。 (2) 探测器类型:探测器类型是指使用的一种红外器件。如采用单元或多元(元数8、10、16、23、48、55、60、120、180、等),采用硫化铝(PBS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(PbCdTe)、碲锡(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(SI:X)等。 (3) 扫描制式:一般为我国标准电视制式,PAL制式。

红外线热像仪原理和作用

红外线热像仪原理和作用 一、红外线热像仪原理 红外线热像仪在现代社会中有着非常充分的应用,其应用的场合非常的广泛,在消防事业。现场搜寻以及森林防火中有着非常独特的优势,可以实现高精度的探测。我们在使用红外线热像仪进行使用时,需要掌握设备的具体使用原理,以及设备的操作系统,以便更好的进行使用。我们可以利用红外线热像仪的红外成像原理,通过获得物体的本身热量,来制造出物体的红外成像图谱,帮助我们更好的实现检测和搜索。 红外线热像仪是通过热成像系统来进行目标物体捕捉和探测的,就是通过能够透过红外辐射的红外光学系统将景物的热量进行收集,最后再利用红外探测器进行最终的收集,红外探测器再将强弱不等的辐射信号转换成相应的电信号,经过特殊的图像处理,转变成人眼可以观看的图像。 下面是红外线热像仪的几个主要的探测系统组成介绍: 1、红外线热像仪成像系统 热像仪的成像系统是设备当中最重要的一个系统,多用于目标的追踪、监控,可以帮助我们实现高效的实时追踪,可以应用在国防军事领域,属于高精密检测的设备。该设备的成像系统对设备的功能要求是图像越清晰越好,发现目标的距离越远越好,这样才可以提高设备的成像能力。 2、红外线热像仪成像检测系统 红外线热像仪使用的比较广泛的用途就是工业检测,对设备进行预知性检测或研究,提高设备的使用价值,帮助设备更好的进行生产。通过成像检测系统观察热分布的图像,建立设备的资料库、方便我们更好的进行实验。设备的监测系统能够对设备的要求是图像尽量清晰,保持设备测量精度。 3、红外线热像仪的成像监控系统 该设备的监控系统可以用于安装于电气或机械设备内部,帮助监视设备的温度和目标物体的具体位置,提高了对于关键区域设备的安全监控。 二、红外线热像仪作用 热像仪的应用非常广泛,只要有温度差异的地方都有应用。比如:在建筑领域,检查空鼓、缺陷、瓷砖脱落、受潮、热桥等;在消防领域可以查找火源,判定事故的起因,查找烟雾中的受伤者;公安系统可以找夜间藏匿的人;汽车生产领域可以检测轮胎的行走性能、空调发热丝、发动机、排气喉等性能;医学可以检测针灸效果、早期发现鼻咽癌、乳腺癌等疾病;电力检查电线、连接处、快关闸、变电柜等。 在科研领域主要应用包括:汽车研究发展-射出成型、模温控制、剎车盘、引擎活塞、电子电路设计、烤漆;电机、电子业-印制电路板热分布设计、产品可靠性测试、电子零组件温度测试、笔记本电脑散热测试、微小零组件测试;引擎燃烧试验风洞实验;目标物特征分析;复合材料检测;建筑物隔热、受潮检测;热传导研究;动植物生态研究;模具铸造温度测量;金属熔焊研究;地表/海洋热分布研究等。 红外红外线热像仪已广泛应用于安全防范系统中,并成为安全监控系统中的明星。由于具有隐蔽探测功能,不需要可见光,可以使犯罪份子不知其工作地点和存在,进而产生错误

红外测温仪工作原理及应用(一)

红外测温仪工作原理及应用(一) 摘要:本文结合国内外红外技术的发展和应用,简绍了红外技术的基础理论,阐述了红外 热像仪的工作原理、发展和分类。 1.概述 红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及 节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等 优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算 机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红 外测温仪型号对用户来说是十分重要的。 红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发 出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红 外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这 种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应 用红外诊技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外 热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使 测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的 发热情况,可靠性高,对发现设备隐患非常有效。 红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的 预防性试验维修(预防试验是50年代引进前苏联的标准)提高到预知状态检修,这也是现代 电力企业发展的方向。特别是现在大机组、超高电压的发展,对电力系统的可靠运行,关 系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善, 利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种 故障的检测)。它备受国内外电力行业的重视(国外70年代后期普遍应用的一种先进状态检 修体制),并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提 高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的 一种很好手段,又能使维修水平和设备的健康水平上一个台阶。 采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测 量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定 量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。 利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无 损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不 同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线

什么是红外辐射红外热像仪及其工作原理

什么是红外辐射红外热像仪及其工作原理

————————————————————————————————作者:————————————————————————————————日期:

什么是红外辐射?红外热像仪及其工作原理 1800年,英国天文学家弗里德里希?威廉?赫歇尔第一次发现了红外辐射的存在。为了解不同颜色的光所产生的热量有何不同,他将太阳光用三棱镜分解成一个彩虹样的光谱,然后测量了每种颜色的温度。他发现,从光谱的紫罗兰色部分到红色部分,温度呈现逐渐升高的趋势。 在注意到这一现象之后,赫歇尔决定再在没有可见太阳光线的区域测量光谱中红色光之外的部分的温度。令他惊讶的是,这一区域的温度最高。 什么是红外辐射? 红外辐射介于电磁光谱的可见光辐射和微波辐射之间。红外辐射源主要为热量或热辐射。温度高于绝对零度(-273.15摄氏度或0开尔

文)的任何物体均会发出红外辐射。即使我们认为非常冷的物体(例如冰块)也存在红外辐射。 我们每天都会接触红外辐射,这包括我们从太阳光、火或散热器等处感觉到的热量。尽管肉眼看不到,但皮肤中的神经却可以感受到热量。物体越热,其红外辐射量越大。 红外热像仪及其工作原理 尽管肉眼无法观测红外辐射(IR),但是红外热像仪可将其转化为可见光图像,描绘被测物体或场景的温度变化。所有温度高于绝对零度的物体均可发射红外光,且物体温度越高,红外辐射量越大。 红外热像仪工作原理的简化图 某个物体发出的红外能量通过光学镜头聚焦在红外探测器上,探测器向传感器电子元件发送信息,进行图像处理,电子元件将探测器发来的数据转译成可在取景器或标准视频监视器或LCD显示屏上查看的图像。 红外热成像是一种可将红外图像转换为热辐射图像的技术,该技术可从图像中读取温度值。因此,热辐射图像中的各个像素实际上都是一个温度测量,可实现对物体表面温度的非接触式测量。

红外热成像仪的发展历程及工作原理

红外热成像仪的发展历程及工作原理 “红外线”一词源于“pastred”,是超出红色之外的意思,表示该波长在电磁辐射频谱中所处的位置。“thermography”一词是采用同根词生成的,意思是“温度图像”。热成像的起源归功于德国天文学家SirWilliamHerschel,他在1800年使用太阳光做了一些实验。Herschel让太阳光穿过一个棱镜并在各种颜色处放置温度计,利用灵敏的水银温度计测量每种颜色的温度,结果发现了红外辐射。Herschel发现,当越过红色光线进入他称为“暗红热”区域时,温度便会升高。“暗红热”即是现在人们所说的红外热能,处于被称为电磁辐射的电磁波频谱区域。 二十年后,德国物理学家ThomasSeebeck发现了温差电效应。在该发现的基础上,意大利物理学家LeopoldoNobili于1829年发明了热量倍增器(即早期版本的热电偶)。这种简单的接触式设备的工作原理是两个异种金属之间的电压差会随着温度的变化而变化。过了不久,Nobili的合作伙伴MacedonioMelloni把热量倍增器改进为热电堆(以串联方式安装热量倍增器)并将热辐射集于热电堆上,这样,他可以检测到9.1米(33英尺)远处的人类体热。 1880年,美国天文学家SamuelLangley使用辐射热检测仪探测到304米(1000英尺)以外的牛的体热。辐射热 检测仪测量的不是电压差异,而是与温度变化有关的电阻变化。SirWilliamHerschel的儿子SirJohnHerschel于1840年使用名为“蒸发成像仪”的设备制作出第一幅红外图像。热图像是薄油膜的蒸发量差异形成的,可以借助油膜上反射出的光线进行查看。 热像仪是一种无需与设备直接接触便可检测出红外波长频谱中的热图案的设备。早期型号的热像仪称为“光导探测器”。从1916年至1918年,美国发明家TheodoreCase利用光导探测器做实验,通过与光子(而不是热能)直接交互作用产生信号,最终发明了速度更快、更灵敏的光导探测器。20世纪四十年代和五十年代期间,为了满足日益增长的军事应用领域的需求,热成像技术不断演变,取得了长足的发展。德国科学家发现,通过冷却光导探测器可以提高整体性能。 直到20世纪六十年代,热成像技术才被用于非军事应用领域。虽然早期的

红外热像仪工作原理和使用方法

红外热像仪工作原理和使用方法 现如今在我们的生活和工作中,都离不开红外热像仪。红外热像仪在化石、电力系统、土木工程、冶金、汽车等诸多领域应用的都是非常广泛的。下面我们简单的介绍一下红外热像仪工作原理和使用方法,希望能够帮助我们很多不了解的朋友。 我们从本质上来讲,目前所有的红外热像仪型号都是在利用波尔兹曼定律,这也是在前人的基础上进行广泛的研究得出的结果,普朗克的理论也是波尔兹曼借鉴的基础。其中比较关键的一个规律就是:红外线总能量与温度的四次方成正比。因此我们借助红外线探测器,如果能够捕捉温度的变化,那么我们自然能够清楚的看到各种不同的图像分布等,两者也能够相互的做出一定的判断。 当然呈现的过程也是非常复杂的,要能够对于不同的波长红外线的反应值进行数字化处理,一般在获得信号之后能够能够转换成电信号,这些信号能够形成完整的热像图,图像中我们可以选择不同的颜色代表一定的温度,因此可以给很多观察温度的领域提供一定程度的参考,比如工业生产中的锅炉、电机、变电站等,同时在军事应用中的范围也是比较广泛的,并且效果比较好。 总之,红外热像仪工作原理关键的就是呈现的过程,如果不是初基本定律,到目前为止,红外热像仪就不会出现。当然我们在了解红外热像仪工作原理之后,

在购买或者选择的时候,对于探测器和测量的温度等两方面应该给与格外的注意,直接决定成像的质量。 我们再来说说红外热像仪正确的使用方法。 1、调整焦距 可以在红外图像存储后对图像曲线进行调整,但是无法在图像存储后改变焦距,也无法排除其他杂乱的热反射。保证操作正确性将避免现场的操作失误。仔细调整焦距! 2、选择正确的测温范围 为了获得正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将获得好的图像质量。这也将同时会影响到温度曲线的质量和测温精度。 3、了解大测量距离

相关文档
相关文档 最新文档