文档视界 最新最全的文档下载
当前位置:文档视界 › 动态规划经典问题

动态规划经典问题

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

动态规划练习试题和解答

动态规划练习题 [题1] 多米诺骨牌(DOMINO) 问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。顶行和底行的差值是2。这个差值是两行点数之和的差的绝对值。每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。 现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。 输入格式: 文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。 输出格式: 只有一个整数在文件的第一行。这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。 [题2] Perform巡回演出 题目描述: Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出). 由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表. 输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去. 每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束. 输出: 对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0. 样例输入: 样例输出:

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

动态规划习题答案

2.某公司有资金4百万元向A,B和C3个项目追加投资,各个项目可以有不同的投资额(百万元计),相应的效益如表所示。问怎样分配 资金,使总效益值最大?## 表8-47 解:设S-A,B,C项目的总投资额,S-B、C项目的总投资额21S-C 项目的投资额;3X-k项目的投资额;k(X-A项目的投资额,X -B项目的投资额,X-C项目的投资额)312W(S,X)-对K项目投资X后的收益:W(S,X)=W (X) kkkkkkkkk T (S,X)-S=S-X k k+1kkkk f (S)-当K至第3项目允许的投资额为S时所能获得的最大收益。kkk为获得最大利润,必须将4百万全部投资,假设有4阶段存在,有S=0,建立递归方程4f(S)=0 k4

f (S)=max{ W (X)+f(S)} k=3,2,1 k+1kk +1kkk X∈D(S) kkk第一步,K=3 f(S)=0 44 f (S)=max{W (X)+f (S)} 434333X∈D(S) 333S=S-X3 34 第二步:)} f (S (X (S)=max{W)+f K=2 322322) X ∈D(S 222-X =S S232 W (X)+f (S-X) 22322

第三步:)} (S (X) =max f (S {W)+ f K=1 211121) D X∈(S111- X S= S 1 21 ) (X- X)+ f (SW1 12 11 S=4 →S=1 →S=1 312↓↓ ↓ X*=3 X*=0 X*=1 312百万。1投资C 不投资B 百万,3投资A. 总收益164百万元。 3.(最优分配问题)有一个仪表公司打算向它的3个营业区设立6家销售店。每个营业区至少设一家,所获利润如表。问设立的6家销售店数应如何分配,可使总利润最大?

动态规划习题

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

动态规划试题

动态规划 装箱问题(01背包): 有一个箱子容量为VV(正整数,0≤V≤20000),同时有n个物品(0

完全背包的模板题面是这样的:设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品可以无限选取),使其重量的和小于等于M,而价值的和为最大。 完全背包 [无限量]的采摘药输入: 70 3 71 100 69 1 1 2 输出:140 每个数组在满足条件,可以遍历多次 01背包 实现代码:采药-传送门 输入:

70 3 71 100 69 1 1 2 输出:3 每个数组遍历一遍 题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1-5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。 设第jj件物品的价格为v_[j],重要度为w_[j],共选中了k件物品,编号依次为j_1,j_2,…,j_k,则所求的总和为: w_[j_k]v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。

动态规划典型例题

1、单调递增最长子序列 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0

2、最长公共子序列 描述 如题,需要写一个程序,得出最长公共子序列。 tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。 输入 第一行给出一个整数N(0

3、括号匹配 时间限制:1000 ms | 内存限制:65535 KB 描述 给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。 如: []是匹配的 ([])[]是匹配的 ((]是不匹配的 ([)]是不匹配的 输入 第一行输入一个正整数N,表示测试数据组数(N<=10) 每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符, S的长度不超过100 输出 对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。每组 测试输出占一行 样例输入 4 [] ([])[] ((] ([)] 样例输出 3 2

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p Λ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

动态规划习题完整版

动态规划习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

动态规划专题分类视图数轴动规题: 题1.2001年普及组第4题--装箱问题 【问题描述】有一个箱子容量为V(正整数,0≤V≤20000),同时有n个物品(0

对于100%的数据,砝码的种类n满足:1≤n≤100; 对于30%的数据,砝码的总数量C满足:1≤C≤20; 对于100%的数据,砝码的总数量C满足:1≤C≤100; 对于所有的数据,砝码的总重量W满足:1≤W≤400000; 题3.石子归并-szgb.pas 【问题描述】有一堆石头质量分别为W1,W2,…,Wn.(Wi≤10000),将石头合并为两堆,使两堆质量的差最小。 【输入】输入文件szgb.in的第一行只有一个整数n(1≤n≤50),表示有n堆石子。接下去的n行,为每堆石子质量。 【输出】输出文件szgb.out的只有一行,该行只有一个整数,表示最小的质量差. 【样例输入】 5 5 8 13 27 14 【样例输出】 3 题4.补圣衣 【问题描述】有四个人,每人身上的衣服分别有s1,s2,s3和s4处破损,而且每处破损程度不同,破损程度用需修好它用的时间表示 (A1...As1,B1...Bs2,C1...Cs3,D1...Ds4)。不过你可以同时修补2处破损。但是这2处破损,只能是同一件衣服上的。就是说你只能同时修补一件衣服,修好了,才能修补下一件。 【输入】本题包含5行数据:第1行,为s1,s2,s3,s4(1≤s1,s2,s3,s4≤20) 第2行,为A1...As1共s1个数,表示第一件衣服上每个破损修好它所需的时间 第3行,为B1...Bs2共s2个数,表示第二件衣服上每个破损修好它所需的时间 第4行,为C1...Cs3共s3个数,表示第三件衣服上每个破损修好它所需的时间 第5行,为D1...Ds4共s4个数,表示第四件衣服上每个破损修好它所需的时间 (1≤A1...As1,B1...Bs2,C1...Cs3,D1...Ds4≤60) 【输出】输出一行,为修好四件衣服所要的最短时间。 【样例输入】 1213 5 43 6 243 【样例输出】 20 题5.光光的作业homework.pas/homework.exe 【问题描述】光光上了高中,科目增多了。在长假里,光光的老师们都非常严厉,都给他布置了一定量的作业。假期里,光光一共有的时间是k小时。在长假前,老师们一共给光光布置了n份作业,第i份作业需要的时间是ti小时。但是由于老师们互相不

动态规划经典案例详解(背包问题)

动态规划经典案例详解之背包问题 【摘要】本文主要从动态规划经典案例——背包问题的动态规划设计思路出发,结合具体实例,对动态规划在程序设计中的典型应用以及衍生拓展进行详细分析。 【关键字】动态规划信息学奥赛0/1背包问题 动态规划并非一个算法,而是一种解题的思路,其核心思想是通过使用大量的存储空间把中间结果记录下来,大大减少重复计算的时间,从而提高的程序的执行效率,因为信息学奥林匹克复赛题目的解决程序一般是有时间限制的,对于某些用搜索必然耗费大量时间的题目,动态规划几乎是唯一的选择。但是动态规划并没有一个简单的模型可以套用,对于每个不同的题目都有对应的不同规划思路,我们只能通过对一些动态规划经典案例的学习来训练自己的动态规划思维能力,从而以不变应万变,应付各种复杂的程序设计,本文通过对动态规划经典案例之一的背包问题进行详细阐述,旨在让学生了解动态规划和搜索的不同设计思路以及动态规划的优越性。 【原型例题】 从n个物品中选取装入背包的物品,每件物品i的重量为wi,价值为pi。求使物品价值最高的选取方法。 【输入文件】 第一行一个数c,为背包容量。 第二行一个数n,为物品数量 第三行n个数,以空格间隔,为n个物品的重量 第四行n个数,以空格间隔,为n个物品的价值 【输出文件】 能取得的最大价值。 【分析】 初看这类问题,第一个想到的会是贪心,但是贪心法却无法保证一定能得到最优解,看以下实例: 贪心准则1:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2,w=[100,10,10],p=[20,15,15],c=105。当利用价值贪婪准则时,获得的解为x=[1,0,0],这种方案的总价值为20。而最优解为[0,1,1],其总价值为30。 贪心准则2:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n=2,w=[10,20], p=[5,100],c=25。当利用重量贪婪策略时,获得的解为x=[1,0],比最优解[0,1]要差。

动态规划matlab仿真实例

动态规划在火力分配中的应用。 1.问题描述 设有m个目标,目标价值(重要性和危害性)各不相同,用数值A K(K=1,2,..m)表示,计划用n枚导弹突袭,导弹击毁目标的概率P K=,其中是常数,取决于导弹的特性与目标的性质;为向目标发射的导弹数,问题:做出方案使预期的突击效果最大。 2.问题建模 上述问题可以表述为 约束条件为 (为非负整数) 3.算法描述 下面通过一个实例说明:设目标数目为4(m=4),导弹为5(n=5),和a K取值情况如下表所示: 表1:A k 取值情况 目标K 1 2 3 4 8 7 6 3 0.2 0.3 0.5 0.9 将火力分配可分为4个阶段,每个阶段指标函数为:

可能取值为0,1,2,3,4,5,将函数值带人如下表: 表2 函数值 u 0 0 0 0 0 1 1.45 1.81 2.36 1.79 2 2.64 3.16 3.79 2.51 3 3.61 4.15 4.66 2.81 4 4.41 4.89 5.19 2.93 5 5.0 6 5.44 5.51 2.97 动态规划问题基本方程为: c =0 逐次向前推一级 K=4 K=3 K=2 K=1 () 只需要求解的最大值然后反推回去就可以获得最优的分配方案

4.Matlab仿真求解 因为与取值为整数,可以采用动态规划的方法,获得的最大值,对应的

最优方案 function[p_opt,fval]=dynprog(x,DecisFun,SubObjFun,TransFun,ObjFun) %求解动态规划问题最小值函数 k=length(x(1,:)) %判断决策级数 x_isnan=~isnan(x); % 非空状态矩阵 t_vubm=inf*ones(size(x)); % 性能指标中间矩阵 f_opt=nan*ones(size(x)); % 总性能指标矩阵 d_opt=f_opt; %每步决策矩阵 tmp1=find(x_isnan(:,k)); % 最后一步状态向量 tmp2=length(tmp1); % 最后一步状态个数 for i=1:tmp2 u=feval(DecisFun,k,x(tmp1(i),k)); tmp3=length(u);%决策变量 for j=1:tmp3 % 求出当前状态下所有决策的最小性能指标 tmp=feval(SubObjFun,k,x(tmp1(i),k),u(j)); if tmp <= t_vubm(i,k) %t_vub f_opt(i,k)=tmp; d_opt(i,k)=u(j); t_vubm(i,k)=tmp; end; end; end for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii)); tmp20=length(tmp10); for i=1:tmp20 %求出当前状态下所有可能的决策 u=feval(DecisFun,ii,x(tmp10(i),ii)); tmp30=length(u) ; for j=1:tmp30 % 求出当前状态下所有决策的最小性能指标 tmp00=feval(SubObjFun,ii,x(tmp10(i),ii),u(j)); % 单步性能指标 tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j)); % 下一状态 tmp50=x(:,ii+1)-tmp40; % 找出下一状态在 x 矩阵的位置 tmp60=find(tmp50==0) ; if~isempty(tmp60) if nargin<6 %矩阵不同需要修改nargin的值,很重要 tmp00=tmp00+f_opt(tmp60(1),ii+1); % set the default object value else tmp00=feval(ObjFun,tmp00,f_opt(tmp60(1),ii+1)); end %当前状态的性能指标 if tmp00<=t_vubm(i,ii) f_opt(i,ii)=tmp00; d_opt(i,ii)=u(j);

动态规划入门(论文)

动态规划思想入门 作者:陈喻(2008年10月7日)关键字:动态规划,最优子结构,记忆化搜索 引言 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decisionprocess)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划的基本思想 动态规划是:将待求的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它直接求解,并把答案保存起来,让以后再次遇到是直接引用答案,不必从新求解,其实质是分治思想和解决冗余。

例1:求A—>B的最短路径 图1 这是一个利用动态规划思想的经典问题,通过直接观察图1我们可以枚举出20多条路径,并可以计算出其中最短的路径长度为16

经典的动态规划入门练习题

动态规划入门练习题 1.石子合并 在一个圆形操场的四周摆放着N堆石子(N<= 100),现要将石子有次序地合并成一堆.规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.编一程序,由文件读入堆栈数N及每堆栈的石子数(<=20). (1)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最小; (2)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最大; 输入数据: 第一行为石子堆数N; 第二行为每堆的石子数,每两个数之间用一个空格分隔. 输出数据: 从第一至第N行为得分最小的合并方案.第N+1行是空行.从第N+2行到第2N+1行是得分最大合并方案.每种合并方案用N行表示,其中第i行(1<=i<=N)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可).要求将待合并的两堆石子数以相应的负数表示. 输入输出范例: 输入: 4 4 5 9 4 输出: -459-4 -8-59 -13-9 224-5-94 4-14-4 -4-18 22 最小代价子母树设有一排数,共n个,例如:22 14 7 13 26 15 11.任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的和称为总代价,给出一种归并算法,使总代价为最小. 输入、输出数据格式与“石子合并”相同。 输入样例: 4 12 5 16 4 输出样例: -12-5164 17-16-4 -17-20 37

2.背包问题 设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为XK,今从n种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于XK,而价值的和为最大。 输入数据: 第一行两个数:物品总数N,背包载重量XK;两个数用空格分隔; 第二行N个数,为N种物品重量;两个数用空格分隔; 第三行N个数,为N种物品价值; 两个数用空格分隔; 输出数据: 第一行总价值; 以下N行,每行两个数,分别为选取物品的编号及数量; 输入样例: 4 10 2 3 4 7 1 3 5 9 输出样例: 12 2 1 4 1 3.商店购物 某商店中每种商品都有一个价格。例如,一朵花的价格是2 ICU(ICU 是信息学竞赛的货币的单位);一个花瓶的价格是5 ICU。为了吸引更多的顾客,商店提供了特殊优惠价。特殊优惠商品是把一种或几种商品分成一组。并降价销售。例如:3朵花的价格不是6而是5 ICU ;2个花瓶加1朵花是10 ICU不是12 ICU。 编一个程序,计算某个顾客所购商品应付的费用。要充分利用优惠价以使顾客付款最小。请注意,你不能变更顾客所购商品的种类及数量,即使增加某些商品会使付款总数减小也不允许你作出任何变更。假定各种商品价格用优惠价如上所述,并且某顾客购买物品为:3朵花和2个花瓶。那么顾客应付款为14 ICU 因为: 1朵花加2个花瓶: 优惠价:10 ICU 2朵花正常价: 4 ICU 输入数据 用两个文件表示输入数据。第一个文件INPUT.TXT描述顾客所购物品(放在购物筐中);第二个文件描述商店提供的优惠商品及价格(文件名为OFF ER.TXT)。两个文件中都只用整数。 第一个文件INPUT.TXT的格式为:第一行是一个数字B(0≤B≤5),表示所购商品种类数。下面共B行,每行中含3个数C,K,P。 C 代表商品的编码(每种商品有一个唯一的编码),1≤C≤999。K代表该种商品购买总数,1≤K≤5。P 是该种商品的正常单价(每件商品的价格),1≤P≤999。请注意,购物筐中最多可放5*5=25件商品。 第二个文件OFFER.TXT的格式为:第一行是一个数字S(0≤S≤9 9),表示共有S 种优惠。下面共S行,每一行描述一种优惠商品的组合中商品的种类。下面接着是几个数字对(C,K),其中C代表商品编码,1≤C≤9 99。K代表该种商品在此组合中的数量,1≤K≤5。本行最后一个数字P(1≤ P≤9999)代表此商品组合的优惠价。当然,优惠价要低于该组合中商品正常价之总和。 输出数据 在输出文件OUTPUT.TXT中写一个数字(占一行),该数字表示顾客所购商品(输入文件指明所购商品)

相关文档
相关文档 最新文档