文档视界 最新最全的文档下载
当前位置:文档视界 › 激光表面改性对金属材料表面耐蚀性能的影响

激光表面改性对金属材料表面耐蚀性能的影响

激光表面改性对金属材料表面耐蚀性能的影响
激光表面改性对金属材料表面耐蚀性能的影响

金属材料表面改性涂层的新进展(专业课)试题及答案

1、工艺参数对合金元素吸收率的影响重要程度由大到小排列正确的是()。 A、工件电压>气压>源极电压>极间距 B、工件电压>极间距>源极电压>气压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 2、激光熔覆陶瓷涂层不包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 3、在1995年,()生产的Hastelloy C-2000镍基耐蚀合金为苑极,进行Ni-Cr-Mo-Cu多元共渗工艺研究。 A、美国 B、日本 C、中国 D、英国 4、下列对良好熔覆层的客观要求描述不正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹 5、下列哪项不是熔覆技术的应用()。 A、耐磨涂层 B、抗老化涂层 C、抗氧化涂层 D、耐蚀涂层 6、下列是结合力的定量测试方法的是 A、喷砂法 B、弯折法 C、锉刀法 D、张力法 7、工艺参数对合金元素的影响重要程度由小到大排列正确的是()。 A、工件电压>气压>源极电压>极间距

B、工件电压>气压>极间距>源极电压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 1、激光熔覆尚待研究和解决的问题是()。 A、大功率激光器及适于自动化工业生产的光路转换系统 B、快速凝固理论的建立与复合涂层界面精细结构的深入研究 C、工艺过程的稳定性与反馈控制 D、涂层质量的监测与缺陷控制 2、下列哪项是熔覆技术的应用()。 A、耐磨涂层 B、耐蚀涂层 C、抗氧化涂层 D、抗老化涂层 3、下列对冲刷腐蚀描述正确的是()。 A、简称冲蚀,是材料在应力和化学介质协同作用下材料的过早失效现象 B、在石油、化工。水电等过程中广泛存在 C、暴露在运动流体中的多有类型的设备如料浆泵的过流部件、弯头、三通和换热器管,都会遭受到冲蚀的破坏 D、在含固相颗粒的双相流中,破坏更为严重,它大大缩短设备的寿命 4、激光熔覆陶瓷涂层包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 5、下列为结合力的测试方法的是()。 A、喷砂法 B、弯折法 C、锉刀法 D、划格法 6、下列对良好熔覆层的客观要求描述正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹

耐蚀金属材料课程练习题答案(江苏科技大学)

练习题 一、选择题 1、为了提高合金的耐蚀性,向材料中加入强的阴极性元素金属,属于以下哪种 方法A。 A)降低阳极相活性B)降低阴极相活性C)增加系统阻力 2、同样加入强阴极性元素,有的合金耐腐蚀,有的却不耐蚀。其原因是A。 A)前者处于可钝化的,后者不是B)前者腐蚀体系处于常温,后者不是 C)前者腐蚀体系存有活化离子(如Cl-),后者不是D)以上都不是 3、为提高铁金属材料耐蚀性,铬是一种常添加的元素,主要起以下作用B。 A)使腐蚀电位正移,增加材料的热力学稳定性B)合金易进入钝态区 C)致钝电位向正向移动D)以上都对 4、加入Cu、P、Cr元素的耐候钢具有较好的耐大气腐蚀性,机理是D。 A)有序固溶理论B)电子机构理论 C)表面富集理论D)形成致密腐蚀产物膜理论 5、金属产生晶间腐蚀应满足的条件是C A)在高压的环境中,只要其电极电位低且强度不够; B)在高温的环境中,只要其产生的氧化膜不够致密; C)在腐蚀的环境中,只要其晶粒与晶界物-化状态和电化学性能不同; D)在高压、高温、腐蚀的环境中,只要其晶粒与晶界成分不符合塔曼定律; 6、奥氏体不锈钢中添加Nb元素的主要作用是C A)增加膜的致密性B)提高材料的抗点蚀能力 C)作为稳定化元素抑制碳化铬的生成D)增加热力学稳定性 7、黄铜脱锌属于以下哪种腐蚀类型E。 A)点蚀B)缝隙腐蚀C)晶间腐蚀D)电偶腐蚀E)选择性腐蚀 8、下列哪种热处理工艺对1Cr18Ni9Ti的抗晶间腐蚀是必须的B A)固溶处理B)稳定化处理 C)去应力退火处理D)敏化处理 9、加入了稳定化元素Ti、Nb的奥氏体不锈钢,却没有达到耐腐蚀的目的。这可能是该钢种在使用前没能进行过D处理。 A)固溶处理B)敏化处理C)退火处理D)稳定化处理 10、海水腐蚀环境中,以下哪个区域腐蚀最严重A。 A)飞溅带B)潮差带C)全浸带D)海泥带 11.以下关于可逆氢脆说法错误的是C A)氢脆在室温附近最敏感;B)材料强度越高,氢脆越敏感;

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。 (2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC )或经口、经皮半数致死量(LD50) 50 或LD50最低值作为急性毒性指标。 的资料为准,选择其中LC 50 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。(2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC50)或经口、经皮半数致死量(LD50)的资料为准,选择其中LC50或LD50最低值作为急性毒性指标。 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。 《职业性接触毒物危害程度分级》GB5044分哪几级? 答:按《职业性接触毒物危害程度分级》规定,接触性毒物危害程度共分为四级

激光束表面改性技术

激光束表面改性技术 摘要:激光束表面改性技术在改善材料表面性能,提高材料使用寿命方面具有突出的优越性。它作用于材料表面使得材料的表面性能得到了明显的提高,随着研究的深入和技术的逐渐成熟,表面改性技术在工业领域中的应用越来广泛,目前进行材料表面改性的工艺有激光相变硬化、激光熔覆、激光合金化、激光非晶化、激光冲击硬化,本文就其工艺方法进行了综述。 一、引言 激光表面处理技术的研究始于20世纪60年代,但是直到20世纪70年代初研制出大功率激光器之后,激光表面处理技术才获得实际的应用。它是将现代物理学、化学、计算机、材料科学、先进制造技术等多方面的成果和知识结合起来的高新技术,用激光的高辐射亮度,高方向性,高单色性特点,以非接触性的方式加热材料表面,借助于材料表面本身传导冷却, 使金属材料表面在瞬间被加热或熔化后高速冷却,来实现其表面改性的工艺方法。 二、激光相变硬化 激光表面相变硬化又称激光淬火,它是以104~105W/cm2高能功率密度的激光束作用在工件表面,以105~106℃/s的加热速度,使受激光束作用的工件表面部位温度迅速上升到相变点以上,形成奥氏体,并通过仍处于冷却态的基体与加热区之间形成的极高的温度梯度的热传导,一旦激光停止照射,则以105℃/s的速度冷却,实现自冷淬火,形成表面相变硬化层。 三、激光熔覆 激光熔覆是采用激光束加热熔覆材料和基材表面,使所需的特殊材料熔焊于工件表面的一种新型表面改性技术。这项技术始于1974年, Gnanamuthu申请了激光熔覆一层金属于金属基体的熔覆方法专利[3]。经过二十几年的发展, 激光熔覆已成为材料表面工程领域的前沿和热门课题。影响激光熔覆的因素主要有熔覆材料的原始成分、基体材料成分、熔覆的工艺参数。激光熔覆技术示意图见图1 1.短型光束或高斯型光束 2.气动送粉 3.测量孔 4.振动器 5.粉末漏斗箱 6.二氧化碳气体激光束高频振动7样品运动 8.样品9.熔覆厚度10.熔覆层 图1激光熔覆技术示意图

QPQ金属材料表面改性处理技术简介

QPQ金属材料表面改性处理技术简介 QPQ处理技术是一种可以同时大幅度提高金属表面的耐磨性、抗蚀性,而工件几乎不变形的新的金属表面强化改性技术。该技术由德国迪高沙公司开发。由于该工艺可以使金属表面的耐磨、耐蚀性及耐疲劳性能大幅度提高,已被广泛用于汽车、摩托车、机车、工程、纺织、轻工机械、仪表,工模具、办公设备等各种行业。该技术具有以下优点: 一、性能优良 1.良好的耐磨性、耐疲劳性能: 经QPQ处理的45钢,40Cr钢(退火状态)的耐磨性达到淬火及高频淬火的16倍以上,达到20钢渗碳淬火的9倍以上,为镀硬铬和离子氧化的2倍多(见附表一)。在大量生产条件下提高工模具寿命1-4倍。 2.极好的抗蚀性: 普通炭钢经QPQ处理后具有极高的抗蚀性,例如45钢经QPQ处理后在大气中和盐雾中的抗蚀性比1Cr18Ni 9Ti不锈钢高5倍;比镀硬铬高70倍以上;比发黑高280倍以上(见附表二)。 3.极小的变形: QPQ处理可以认为是变形最小的硬化方法,处理后工件的尺寸和形状变化极小,可以用来解决很多常规处理方法无法解决的热处理变形问题。 4.可以替代多道工序: 该工艺一次处理可以替代淬火——回火——发黑三道工序或渗碳——淬火——回火——镀硬铬四道工序,可以大大降低生产成本,并且大幅度节能。 二、应用范围广: 1.使用材料: 适用于各种工具钢、冷热模具钢、结构钢、不锈耐热钢、纯铁、铸铁及粉末冶金件。 2.可替代工艺: 可以大量替代渗碳淬火、高频淬火、易变形的淬火;替代离子氮化;替代发黑、磷化、硫化、镀硬铬、镀装饰铬。普通结构钢经QPQ处理,在很多情况下可以大量替代不锈钢。 3.已经成熟应用的产品: 工具:高速钢钻头、铣刀、铰刀、丝锥、滚刀、插齿刀、拉刀等,加工不锈钢、耐热钢效果尤为显著。 模具:各种冷拉模、挤压模、冲模、压铸模。对大量通用的橡胶模、塑料模、玻璃模等各种模具,由于模具承受压力不大,可以选用退火态调质的中炭钢作QPQ处理替代T12或9SiCr类钢制淬火模具。 机床件:机床摩擦片、导轨、电器铁芯等。 汽车摩托车件:曲轴、凸轮轴、气门、气簧、扭转盘、刹车控制系统、座位滑动器、保险杠、齿轮、连杆、链轮、缸套、门锁、挡风玻璃摇臂风扇电机、离和器摩擦片等…… 纺织机:络筒机件、弹力丝机热轨、罗拉、钢令圈等。 齿轮:多种大小规格齿轮。 办公设备及家用电器件:各种耐磨性、轴类件。 电力设施件:露天放置的电力设施中的耐磨蚀件。 中山市小榄镇生产力促进中心为了提高小榄镇五金产业的生产技术水平,现定于在本月23日与中山成工材料科技有限公司联合举行一次QPQ金属材料表面改性处理技术展示会,届时欢迎各五金企业参加,详情请与本中心联系。 表一:滑动磨损试验

金属材料耐腐蚀的选材顺序

金属材料耐腐蚀的选材顺序(由低到高) 一、不锈钢材料耐点腐蚀、晶间腐蚀和应力腐蚀能力的顺序 1、奥氏体不锈钢: 1Cr18Ni9Ti→0Cr18Ni9(304)→0Cr18Ni11Ti(321)→00Cr19Ni10(304L)0Cr17Ni12Mo2Ti (316)→00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→00Cr20Ni25Mo4.5Cu (904L)→00Cr27Ni31Mo4Cu 2、铁素体不锈钢: 0Cr13(410S)→0Cr13Al(405)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2→00Cr26Mo1→00Cr30Mo2 3、双相不锈钢: 00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507) 二、耐高温腐蚀用材的顺序 20#→12Cr1MoV→12Cr2Mo1(2Cr-1Mo)→1Cr5Mo→1Cr9Mo→P91(10Cr9Mo1VNb)→0Cr25Ni20(310S) 三、耐应力腐蚀用材 16MnR→20R→12Cr1MoV 00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→00Cr20Ni25Mo4.5Cu(904L)00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507)0Cr13(410S)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2→00Cr26M o1 注:铁素体不锈钢和双相不锈钢不得在大于350℃的环境中使用。 材料的耐腐蚀性能 钽:钽金属材料的耐腐蚀性能可同玻璃相比美,在环境温度下,除了氢氟酸外,对所有的酸都具有良好的耐腐蚀性,钽金属在高温下易被强碱腐蚀。钽金属对除了SO3-2及氟的酸性盐溶液以外的所有氢化性及非氢化性盐溶液具有较强的耐腐蚀性。在高温下在硫酸及碳酸溶液中易受腐蚀,非凡是氟离子存在时腐蚀会严重。 l蒙耐尔合金:蒙耐尔合金在有色金属与合金中,最耐氢氟酸(或氟化氢)腐蚀,在介质相当宽的浓度和强度范围内有很好的稳定性,也可用于氯化物,海水,碱等介质中作防腐材料。蒙耐尔合金不适用于强氧酸,如硝酸及亚硝酸,也不适用酸性铁盐,锡盐等溶液中。

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

医用金属材料表面处理

医用钛合金材料表面改性 摘要:金属材料是生物医学材料中应用最早的。由金属具有较高的强度和韧性,适用于修复或换人体的硬组织,早在一百多年前人们就已用贵金属镶牙。随着抗腐蚀性强的不锈钢、弹性模量与骨组织接近铜铁合金,以及记忆合金材料、复合材料等新型生物医学金属材料的不断出现,其应用范围也在扩大。 关键词:钛合金材料,表面涂层处理,表面改性 (一)医用金属与合金表面涂层处理 金属及其合金在生物体内的生物活性、磨损、腐蚀问题尚未解决,需对其表面进行改性。表面改性不仅要抑制有害金属离子的溶出,而且要促进组织的再生和加强材料与组织结合。 生物钛合金材料的表面改性技术主要可以分为: (1)物理化学方法(2)形态学方法(3)生物化学方法。 1 物理化学方法——改善金属生物材料表面性能的主要方法 (1)热喷涂 热喷涂是利用一种热源的火焰将粉末状的金属或非金属喷涂材料加热熔融并软化,并用热源自身的动力或外加高速气流雾化,使喷涂材料的液滴以一定的速度喷向经过预处理干净的基体表面,依靠喷涂材料的物理变化和化学反应,与基体形成结合层的工艺方法。可分为电弧喷涂、等离子喷涂、火焰喷涂、爆炸喷涂等。 (2)脉冲激光融敷 是在低输出功率、高扫描速速的脉冲激光照射下,将涂敷材料融敷在基体表面的方法。 (3)离子溅射 离子溅射以高速离子轰击靶材,使涂敷材料粉粒溅射并沉积在金属基体 (4)喷砂法 用喷砂机将涂敷材料粉末直接高速喷出镶入基体表面。 (5)电化学法 电化学法是用电化学的方法,通过调节电解液的浓度、PH值、反应温度,电场强度,电流等来控制反应的制备方法。 (6)离子注入法 离子注入改性是将所需的元素在离子气化室中进行气化,通过高频放

表面改性技术综述

表面改性技术综述 表面改性是指采用某种工艺和手段使材料获得与其基体材料的组织结构性能不同的一种技术。材料经过改性处理之后,既能发挥材料基体的力学性能,又能使材料表面获得各种特殊性能,如耐磨,耐腐蚀,耐高温,合适的射线吸收等。 金属表面改性技术在冶金、机械、电子、建筑、轻工、仪表等各个工业部门乃至农业和人们日常生活中都有着广泛的用途, 其种类繁多。除常用的喷丸强化、表面热处理等传统技术外, 近些年还快速发展了激光、电子和离子等高能束表面处理技术。今后, 随着物理学、材料学等相关学科的迅速发展, 还将不断涌现出新的表面改性技术。尤其是复合表面技术的发展, 有可能获得意想不到的效果。金属表面改性技术的飞速发展和不断创新, 将进一步推动其在工农业生产中的应用, 带来显著的经济效益。 传统的表面改性技术有:表面形变强化、表面热处理、表面化学热处理、离子束表面扩渗处理、高能束表面处理、离子注入表面改性等。 1、喷丸强化 喷丸处理是在受喷材料再结晶温度以下进行的一种冷加工方法, 是将弹丸在很高速度下撞击受喷工件表面而完成的。喷丸可应用于表面清理、光整加工、喷丸成型、喷丸校正、喷丸强化等方面。喷丸强化又称受控喷丸, 不同于一般的喷丸工艺, 要求喷丸过程中严格控制工艺参数, 使工件在受喷后具有预期的表面形貌、表层组织结构和残余应力场, 从而大幅度提高疲劳强度和抗应力腐蚀能力。实施喷丸时, 弹丸由专用的喷丸机籍助压缩空气、高压水流或叶轮, 高速射向零件受喷部位。常用弹丸有球形铸铁丸、铸钢丸和其它非金属材料制成的弹丸。喷丸强化的效果用喷丸强度来表示, 与弹丸种类和形状、碰撞速度和密度、喷射方位和距离、喷丸时间等因素有关。表面喷丸提高金属材料疲劳强度的机理比较复杂, 涉及到塑性变形层(通常为011~018mm 厚) 的组织结构变化(如位错密度、亚晶粒尺寸) 和残余应力的变化。因此, 只有合理控制表面变形层内的变化, 才可能获得预期的喷丸强化效果。 早在20 世纪20 年代, 喷丸强化就应用于汽车工业。目前已成为机械制造等工业部门的一种重要的表面技术, 应用广泛。涉及的材料除普通钢外,还有高强度钢和各种有色金属; 涉及的零件类型有弹簧、轴、齿轮、连杆、叶片、涡轮盘和飞机起落架组成件等。 2、传统表面热处理改性 传统的表面热处理技术可分为表面淬火和化学热处理两大类。它主要用来提高钢件的强度、硬度、耐磨性和疲劳极限。在机械设备中, 许多零件(如齿轮轴、活塞销、曲轴等) 是在冲击载荷及表面磨损条件下工作的。这类零件表面应具有高的硬度和耐磨性, 而心部应具有足够的塑性和韧性。因此, 为满足其使用性能要求, 应进行表面热处理。 ○1表面淬火 表面淬火是把零件的表层迅速加热到淬火温度后快冷, 使零件表面层获得淬火马氏体而心部仍保持未淬火状态的一种淬火方法。表面淬火的目的是使零件获得高硬度的表层, 以提高工件的耐磨性和疲劳性能, 而心部仍具有较好的韧性。其设备简单、方法简便, 广泛用于钢铁零件。根据加热方法的不同, 可分之为火焰加热表面淬火和感应加热表面淬火。火焰加热表面淬火的淬透层一般为2 -6mm。其特点是设备简单, 但加热温度高及淬硬层不易控制, 淬火质量不稳定, 使用上有局限性。感应加热表面淬火的特点是: 加热速度快, 零件变形小, 生产效率高, 淬火后表面能获得优良的机械性能; 淬透层易控制, 淬火操作易实现机械化。但设备较贵, 形状复杂零件的感应器不易制造, 不宜单件生产。 ○2化学热处理 化学热处理是将金属零件放在某种介质中加热、保温、冷却, 使介质中的某些元素渗入

合金改性

激光表面改性工艺及性能研究 摘要:钛及钛合金密度小,比强度高,具有良好的耐蚀性、疲劳抗力,广泛应用于航天、航空、国防、汽车、医疗等领域。然而,钛合金摩擦系数高、对粘着磨损和微动磨损非常敏感、耐磨性差及高温抗氧化性差等缺点,制约了它的应用。在保持钛合金固有性能优点的条件下,激光表面改性是从根本上解决钛合金表面性能较差这一缺陷的有效、经济、灵活且具有较强可设计性的方法之一。 本文运用CO2激光,在Ti6A14V钛合金表面进行激光表面改性,直接在Ti6A14V钛合金表面制得了具有优异耐磨性能和抗高温氧化性能,并与Ti6A14V钛合金基体之间呈现牢固冶金结合的复合材料涂层。 首先,为确保激光表面改性的顺利进行,研制了激光表面改性专用的同轴保护送粉装置,并探索了适合该同轴保护送粉装置的工艺参数,获得较高的粉末利用率和较好的保护效果。 其次,设计了激光表面改性材料体系。根据Ti6A14 V钛合金和激光表面改性的特点,设计出激光熔覆Ni-Ni基合金梯度涂层、激光熔覆Mo-Ni基合金梯度涂层、激光表面原位生成TiC涂层和激光表面原位生成TiC+TiB:涂层四类材料体系。 再次,研制了激光表面改性工艺。分别研制出各种材料体系对应的激光工艺参数,制得激光表面改性层,着重研究了不同工艺参数对激光熔覆Ni-Ni基合金梯度涂层的影响,探索最佳工艺参数。对激光表面改性涂层进行了微观分析,从表面至基体测试了显微硬度,发现涂层组织呈快速凝固特征,硬度梯度明显,有效地改善了涂层的应力分布状况。 最后,研究了激光表面改性涂层的摩擦学性能和抗高温氧化性能。研究发现,激光表面改性能够大大地提高了Ti6A14V钛合金的耐磨性能和抗高温氧化性能。 关键词:Ti6A14V钛合金,激光表面改性,微观组织,硬度梯度,耐磨性,抗高温氧化性 Abstract Titanium alloys are used widely in aviation, national defence, automobile, medicine and other fields because of their advantages in lower density, excellent corrosion resistance, and good fatigue resistance etc. However, their high friction coefficient, high sensitivity to adhesive wear and fretting wear, as well as their weak resistance to wear and bad resistance to high temperature oxidation restricts the application of titanium alloys. Laser surface modification technique can change these surface defects of titanium alloys under the condition of keeping the virtues of titanium alloy substrate. For the reason, laser surface modification is one of effective, economic, appropriate and designable methods. In this paper, surfaces of Ti6A14V alloy were modified by CO2 laser. Special composite metallurgy coatings, which have excellent wear resistance and high temperature oxidation resistance, were obtained directly on the surfaces of Ti6A14V alloy. Furthermore, the coatings showed good metallic combination with the substrate of titanium alloy. In order to carry out the laser surface modification process successfully, a coaxial powder feed nozzle with gas protection was designed at first. Through investigations of suitable technical parameters of the coaxial powder feed nozzle with gas protection, a higher duty factor of powder and better protection effect was obtained.

课程作业激光表面改性

激光束表面改性 摘要:利用激光束进行表面热改性处理是材料表面处理中的一种重要的技术。本文对激光束表面改性技术原理、特点与分类进行了介绍,并以高速钢轧辊材料的激光束表面改性为例说明。 关键词:激光束;表面改性;高速钢 Laser Surface Modification Abstract:Laser surface modification is employed in surface modification of materials as an important method. This paper describes mechanism, Characteristics and Categories of surface modification by laser beam. The surface modification of high speed steel with laser beam processing was illustrated hereunder. Keywords:laser Beam,Surface Modification,high speed steel 材料表面处理有许多种方法, 应用激光对材料表面实施处理则是一门新技术。激光表面处理技术的研究始于20 世纪60 年代, 但是直到20 世纪70 年代初研制出大功率激光器之后, 激光表面处理技术才获得实际的应用, 并在近十年内得到迅速的发展[1]。激光表面处理技术, 是在材料表面形成一定厚度的处理层, 可以改善材料表面的力学性能、冶金性能、物理性能, 从而提高零件、工件的耐磨、耐蚀、耐疲劳等一系列性能,以满足各种不同的使用要求。实践证明, 激光表面处理已因其本身固有的优点而成为发展迅速、有前途的表面处理方法。 1、激光束表面改性的主要原理 激光是一种相位一致、波长一定、方向性极强的电磁波,激光束由一系列反射镜和透镜来控制,可以聚焦成直径很小的光( 直径只有0. 1 mm),从而可以获得极高的功率密度( 104~ 109 W/ cm2)。激光与金属之间的互相作用按激光强度和辐射时间分为几个阶段: 吸收光束、能量传递、金属组织的改变、激光作用的冷却等。它对材料表面可产生加热、熔化和冲击作用。随着大功率激光器出现,以及激光束调制、瞄准等技术的发展,激光技术进入金属材料表面热处理和表面合金化技术领域,并在近年得到迅速发展。激光表面处理采用大功率密度的激光束、以非接触性的方式加热材料表面,借助于材料表面本身传导冷却,来实现其表面改性的工艺方法[2]。 2、激光束表面改性的特点 2.1激光束表面改性处理的优点[3] 通过激光表面改性处理,可以使材料表面性质改变,满足结构特殊用途的需要,达到提高金属材料零件表面的硬度、耐磨性、耐腐蚀性以及强度和高温性能的目的,较其它表面处理工艺具有以下显著优点: (1)激光束具有很高的功率密度,材料被加热和自冷却速度很快,激光硬化

(完整版)材料表面改性习题整理答案

第六章热喷涂、喷焊与堆焊技术 1.什么是热喷涂?根据所使用的热源不同,可以将热喷涂工艺分为哪两大类?热喷涂:采用各种热源将涂层材料加热熔化或半熔化,高速气体将其雾化,并在高速气流的带动下雾化粒子撞击基材表面,冷凝后形成具有某种功能的涂层。喷焊是用热源将涂层材料重熔,涂层内颗粒之间、涂层与基体之间形成无孔隙的冶金结合。 堆焊技术是将具有一定使用性能的材料(线材或焊条)借助一定的热源手段熔覆在基材表面,使基体表面具有耐磨、耐蚀、耐热等特殊性能或使零件恢复原有形状尺寸的工艺方法。 2.热喷涂技术的特点是什么?局限性是什么? 热喷涂的技术特点:可在各种基材上制备各种涂层;基材温度低(30~200℃),热影响区浅,变形小;涂层厚度范围宽(0.5~5mm);喷涂效率高,成本低; 操作灵活,可在不同尺寸和形状的工件上喷涂; 局限性:加热效率低,喷涂材料利用率低,涂层与基体结合强度低。 3.热喷涂涂层的结构是什么?如何改善涂层结构? 涂层是由无数变形粒子相互交错呈波浪式一层一层堆叠而成的层状结构。涂层中伴有氧化物等夹杂、未熔化的球形颗粒,并存在部分孔隙,孔隙率0.025%-50%。 改善涂层结构的方法(1)选用高温热源(如激光热源、等离子弧)、超音速喷涂、以及保护气氛或低压下喷涂,都可以减少涂层中的氧化物夹杂和气孔,改善涂层的结构和性能。(2)喷涂层的结构还可以通过重熔处理来改善,涂层中的氧化物夹杂和孔隙会在重熔中消除,涂层的层状结构会变成均质结构,与基体的结合强度也会提高。 4.对热喷涂材料有什么要求? (1)热稳定性好,在高温焰流中不升华,不分解。 (2)较宽的液相区,使熔滴在较长时间内保持液相。 (3)与基材有相近的热膨胀系数,以防止因膨胀系数相差过大产生较大的热应力。 (4)喷涂材料在熔融状态下应和基材有较好的润湿性,以保证涂层与基材之间有良好的结合性能。 (5)粉末固态流动性好,保证送粉的均匀性。 5.热喷涂涂层与基体的结合机理是什么? 一般认为在涂层与基体之间机械结合起主要作用,即熔融态的粒子撞击到基材表面凹凸不平处,铺展成扁平状的液态薄层,这些覆盖并紧贴基体表面的液态薄片,在冷却凝固时收缩咬住凸出点而形成机械结合。同时,其它几种结合机理(扩散、冶金、物理结合)也在不同程度地起作用,其程度受粉末的成分、表面状态、温度、热物理性能等因素的影响。 6.热喷涂的工艺流程。

Al_SiC复合材料的准分子激光表面改性

A l Si C复合材料的准分子激光表面改性 梅胜敏1 余大民2  1(南京航空航天大学机电工程学院,南京,210016)  2(香港理工大学制造工程系,香港九龙) SURFACE MOD IF I CAT I ON OF A l Si C M ETAL M ATR IX COM POSITE B Y EX C I M ER LASER M ei Shengm in1,Yu D am in2  1(In stitu te of M echan ical Engineering,N an jing U n iversity of A eronau tics and A stronau tics,N an jing,210016) 2(D epartm en t of M anufactu ring Engineering,Hong Kong Po lytechn ic U n iversity,Hong Kong,Kow loon) 摘 要 利用K rF准分子激光对Si C晶须增强铝基复合材料进行表面改性。借助于显微镜及X射线衍射技术,对激光处理前后试件表层的显微组织及化学结构进行了分析。结果表明,准分子激光处理后,试件表面形成了一个几微米厚的铝层。该薄层中基本上不含金属间化合物,Si C增强相的数量也显著减少。腐蚀测试结果表明,准分子激光表面处理后,材料的抗腐蚀性能得到了显著提高。 关键词 表面改性 金属基复合材料 准分子激光 中图分类号 V257 Abstract T he su rfaces of2009A l Si C w m etal m atrix compo site speci m en s w ere irradiated w ith a pow erfu l K rF exci m er laser.A fter laser treatm en t,the mo rpho logy and the structu re w ere exam ined w ith the aid of m icro scope and X ray diffracti on techn iques.It w as found that an alum in ium layer a few m icron s th ick w as fo rm ed on the su rface of A lMM C.L ittle Si C reinfo rcem en t and larger in term etallics can be found in th is lay2 er.Co rro si on m easu rem en ts show ed that the laser modified A lMM C exh ib ited a h igher co rro si on resistance. Key words su rface modificati on,m etal m atrix compo site(MM C),exci m er laser Si C增强铝基复合材料具有比强度高、比刚度高、耐磨性好等突出优点,被看作为在航空航天及汽车工业等领域中最有前途的新型结构材料之一。但由于Si C增强相的加入,降低了铝合金材料组织的均一性,因而无论Si C是以颗粒形式存在还是以晶须形式存在,几乎所有的Si C增强铝基复合材料都存在着抗腐蚀性相对较低的固有缺点[1~3]。而对许多重要的飞机结构部件,抗腐蚀性的高低是决定其使用性能和寿命的关键因素之一。采用先进的表面改性技术对Si C增强铝基复合材料进行表面处理是提高其抗腐蚀能力的有效手段。国内外近年来采用表面阳极化、表面镀镍、激光表面涂覆、离子束沉积等表面技术,但这些技术不同程度地存在着涂层与基体结合强度低,涂层易于剥落等缺点[4,5]。因此,有必要寻求提高Si C增强铝基复合材料抗腐蚀性的表面改性新技术。本文利用K rF高脉冲功率准分子激光,对一种Si C晶须增强铝基复合材料表面进行一次性快速重熔处理,试图改变材料表面层的显微组织和化学结构,从而提高材料的抗腐蚀性能。 1 材料与实验方法 实验用材料为2.5mm厚的Si C晶须增强铝基复合材料。该材料用粉末冶金方法制成,经轧制后以板材形式提供。Si C晶须含量为15%(体积比),基体材料为2009铝合金。晶须直径在0.5~1.0Λm之间,长度5~20Λm不等。材料表面的微观组织如图1所示。 由于材料的表面状态关系到 图1 2009A l Si C w金属基复合材料的微观组织 激光的反射和吸收,所有试件在使用前均经1Λm 的金刚石研磨膏最终抛光,并经蒸馏水和酒精清 第20卷 第2期1999年 3月 航 空 学 报 A CTA A ERONAU T I CA ET A STRONAU T I CA S I N I CA V o l.20N o.2 M ar.1999 1998205220收到,1998208231收到修改稿

激光表面改性的影响因素以及熔池温度的检测与进展

激光表面改性的影响因素以及熔池温度的检测与进展 摘要:本文论述了激光表面改性的发展现状及趋势,激光表面改性的主要影响因素,以及国内外熔池温度的检测与控制的进展等问题。 1、激光表面改性简介 激光表面改性是采用大功率密度的激光束,以非接触性的方式加热材料表面,借助于材料表面本身传导冷却,来实现其表面改性的工艺方法。虽然激光加工技术始于20世纪60年代,但激光表面处理在大功率激光器的研制之后才获得了实际应用,并在近几年得到了迅速发展。激光表面改性[1]是当前材料工程学科的重要方向之一,同时被誉为光加工时代的一个标志性技术,各国(尤其是发达国家)均予以重点发展。其高效率、高效益、高增长及低消耗、无污染的特点,符合材料加工的发展需要。经过多年研究和实际应用表明,和其它传统表面处理技术相比,激光表面工程技术具有以下一些优点: (1)可在零件表面形成细小均匀、层深可控、含有多种介于稳相和金属间化合物的高质量表面强化层。可大幅度提高材料的表面硬度、耐磨性和耐腐蚀。 (2)强化层与零件本体形成最佳的冶金结合,解决许多传统表面强化技术难以解决的技术关键。 (3)激光束能量密度高,对非激光照射部位几乎没有影响,即热影响区小,工件热变形可由加工工艺控制到较小的程度,后续加工余量小。有些加工件经激光处理后,甚至可直接投入使用。 (4)易于实现信息化、智能化, 可以引入近代计算机、机器人等高技术装备, 使激光束的产生及操纵信息化、智能化。 根据采用的不同的激光能量密度和不同的处理方式,激光表面改性技术中比较典型的方法有几种: 激光相变硬化、激光熔覆、激光表面熔凝、激光冲击强化、激光表面合金化等。 2、激光相变硬化工艺及其影响因素 激光相变硬化(又称激光淬火)是激光热处理的一种,它是以激光为热源,通过高能量的激光束扫描工件,使工件表面极薄一层的小区域内快速吸收热量而温度急剧上升,工件材料表面内的温度在材料的熔点和奥氏体转变临界温度之问的部分发生固态相变,随后发生自淬火,得到马氏体组织,实现工件表面相变硬化。激光相变硬化后,工件表面硬度显著提高,淬硬层深达0.1-2.Omm,疲劳强度增大,且加工后变形小,因此得到广泛应用[2]. 由于激光相变硬化过程错综复杂,需要考虑影响硬化层的主要参数及其相互关系。激光硬化层的尺寸参数(硬化层宽度,硬化层深度,表面粗糙度,显微硬度,耐磨性,组织变化)

第五章不锈钢抗腐蚀性能

第五章不锈钢抗腐蚀性能 不锈钢的一般特性 表面美观,可使用性能多样性; 耐腐蚀性能好,可用于弱腐蚀及各种介质环境较强腐蚀; 强度硬度广泛,使用各种性能要求; 耐高温、低温性能好,使用温度适用范围大; 加工性能好; 可焊性好。 但从不锈钢定义可以看出,不锈钢与其他钢的区别就是不锈性,耐腐蚀性,所以我们研究一下它为什么不锈。 金属的腐蚀类型 金属的腐蚀,是金属与周围介质发生化学或电化学反应而发生破坏的现象。金属的抗腐蚀或耐腐蚀性是指金属抵抗腐蚀作用的能力。 化学腐蚀 化学腐蚀是指金属与周围介质直接发生化学反应而产生的腐蚀,例如钢在高温下氧化,就是一种典型的化学腐蚀,其产物沉积在金属表面上,也有人把这种腐蚀叫干腐蚀。 如果金属表面形成的腐蚀产物非常致密,则金属与腐蚀介质就会隔离,腐蚀就会阻滞,例如钢铁零件的蒸汽处理,法兰(黑)处理,就是使零件表面生成一层致密的Fe3O4薄膜,零件不再与周围介质发生接触,防止其化学反应的进行,零件便被保护起来了。 电化学腐蚀

电化学腐蚀是金属与周围介质接触,由于电化学作用而引起表面腐蚀的现象。例如钢在室温下的生锈主要是电化学腐蚀,在电化学腐蚀过程中有电流产生,电化学腐蚀是由于不同的金属之间或同种金属的各相之间存在不同的电极电位,且相互碰撞,并存在于同一种电解溶液中构成分数电池而引起的。如图5-1。 碳素钢在退火或正火状态下的组织是由铁素体和渗碳体组成的,并相互接触。渗碳体的电极电位一般比铁素体高,两相之间存在着电位差,当钢表面有水膜时,加上空气中O2等气体的溶解,在铁素体和渗碳体之间构成一微电池,电极电位低的铁素体称为阳极而被腐蚀引起钢的破坏。如果将钢件放在酸、碱、盐等水溶液中,电化学腐蚀作用更快。钢中的碳化物、夹杂物等,各部分组织和成分不均,内部应力不均,都促使各部分在电解质中促使相互间形成电极位差。这种电极位差愈大,微阳极与微阴极间的电流强度愈大,钢的腐蚀速度也愈大。 有人把电化学腐蚀称为湿 腐蚀,电化学腐蚀能否进行, 取决于金属能否被离子化, 金属离子化的趋势,可以用 金属的标准电极电位(εσ) 来说明。定性的说,金属标 准电极电位越负,则越容易图5-1 碳素钢在潮湿空 离子化。气中产生电化学腐蚀示意图

金属材料耐腐蚀的选材顺序(由低到高)

金属材料耐腐蚀的选材顺序 (由低到高) 一、不锈钢材料耐点腐蚀、晶间腐蚀和应力腐蚀能力的顺序 1、奥氏体不锈钢: 1Cr18Ni9Ti →0Cr18Ni9(304)→0Cr18Ni11Ti(321)→00Cr19Ni10(304L)0Cr17Ni12Mo2Ti(316)→00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→00Cr20Ni25Mo4.5Cu(904L)→00Cr27Ni31Mo4Cu 2、铁素体不锈钢: 0Cr13(410S)→0Cr13Al(405)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2 →00Cr26Mo1 →00Cr30Mo2 3、双相不锈钢: 00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507) 二、耐高温腐蚀用材的顺序 20#→12Cr1MoV→12Cr2Mo1(2 Cr-1Mo)→1Cr5Mo→1Cr9Mo→P91(10Cr9Mo1VNb)→0Cr25Ni20(310S) 三、耐应力腐蚀用材 16MnR→20R→12Cr1MoV 00Cr17Ni14Mo2(316L)→00Cr19Ni13Mo3(317L)→00Cr20Ni25Mo4.5Cu (904L) 00Cr18Ni5Mo3Si2(3RE60)→00Cr22Ni5Mo3N(SAF2205)→00Cr25Ni7Mo4N(SAF2507) 0Cr13(410S)→00Cr12Ti(409L)→00Cr17(430LX)→00Cr18Mo2 →00Cr26Mo1 注:铁素体不锈钢和双相不锈钢不得在大于350℃的环境中使用。

相关文档