文档视界 最新最全的文档下载
当前位置:文档视界 › 基线向量结果分析及影响

基线向量结果分析及影响

基线向量结果分析及影响
基线向量结果分析及影响

一、基线结果分析

基线解算后,可以通过基线残差、RATIO、RDOP、RMS和数据删除率这几个质量指标来衡量基线解算的质量。

通常认为,若RMS 偏大,则说明观测值质量较差。若RDOP 值较大则说明观测条件较差。需要说明的是,它们只具有某种相对意义,即它们数值的高低不能绝对的说明基线质量的高低。

1、基线残差

理论上,载波相位观测精度为1%周,即对L1载波信号观测的误差只有2mm。

2、RMS

RMS 即均方根误差(Root Mean Square),即:

其中:

V为观测值的残差;P为观测值的权;n-f为观测值的总数减去未知数个数。

RMS表明了观测值的质量。RMS越小,观测值质量越好;反之,表明观测值质量越差。它不受观测条件(如卫星分布好坏)的影响。依照数理统计的理论,观测值误差落在1.96 倍RMS 的范围内的概率是95%。

3、 RATIO

RATIO即整周模糊度分解后,次最小RMS与最小RMS的比值。即:

RATIO 反映了所确定出的整周未知数参数的可靠性,这一指标取决于多种因素,既与观测值的质量有关,也与观测条件的好坏有关。

RATIO是反映基线质量好坏的最关键值,通常情况下,要求RATIO

大于3。

4、数据删除率

在基线解算时,如果观测值的改正数大于某一个阈值时,则认为该观测值含有粗差,则需要将其删除。被删除观测值的数量与观测值的总数的比值就是所谓的数据删除率。

数据删除率从某一方面反映出了GPS 原始观测值的质量。数据删除率越高,说明观测值的质量越差。

5、RDOP

RDOP 值指的是在基线解算时,待定参数的协因数阵的迹的平方根,即:

RDOP 值的大小与基线位置、卫星在空间中的几何分布及运行轨迹(即观测条件)有关。当基线位置确定后,RDOP 值就只与观测条件

有关了。而观测条件又是时间的函数,因此实际上对与某条基线向量来讲,其RDOP 值的大小与观测时间段有关。RDOP 表明了GPS 卫星的状态对相对定位的影响,即取决于观测条件的好坏,它不受观测值质量好坏的影响。

二、影响GPS 基线解算结果因素的判别

对于影响GPS 基线解算结果的因素,有些是较容易判别的,如卫星观测时间太短、周跳太多、多路径效应严重、对流层或电离层折射影响过大等,但对于另外一些因素却不好判断了,如起点坐标不准确等。

1、基线起点坐标不准确的判别

对于由起点坐标不准确对基线解算质量造成的影响,目前还没有较容易的方法来加以判别。因此在实际工作中只有尽量提高起点坐标的准确度,以避免这种情况的发生。

2、卫星观测时间短的判别

关于卫星观测时间太短这类问题的判断比较简单,只要查看观测数据的记录文件中有关对与每个卫星的观测数据的数量就可以了。有些GPS后处理软件还输出了卫星的可见性图,这就更直观了。

3、周跳太多的判别

对于卫星观测值中周跳太多的情况,可以从基线解算后所获得的观测值残差上来分析。目前大部分的基线处理软件一般采用的是双差观测值,当在某测站对某颗卫星的观测值中含有未修复的周跳时的,所有与此相关的双差观测值的残差都会出现显著的整数倍的增大。

4、多路径效应严重、对流层或电离层折射影响过大的判别

对于多路径效应、对流层或电离层折射影响的判别,我们也是通过观测值残差来进行的。不过与整周跳变不同的是,当多路径效应严重、对流层或电离层折射影响过大时,观测值残差不是象周跳未修复那样出现整数倍的增大,而只是出现非整数倍的增大。一般不超过1 周,但却又明显地大于正常观测值的残差。

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

GPS基线向量解算及平差处理技巧

基线向量解算及平差软件 特点与问题 一、基本方法: 1、基线清理 数据量大的时候,基线解算比较耗时。GPS观测接收机数量较多时,会因为自然同步产生许多长基线,即许多相距较远的点连接而成的基线。这些长基线往往同步观测时间不长,属于不必要的基线,对于控制网质量也无多大益处,所以为了节省计算时间,应在基线解算前将其清理删除。删除时可在图上选择,也可以在基线表中根据距离选择删除。 2、处理超限闭合环 基线解算完成后,首先要检查环闭合差(同步或异步环),对于闭合差大的环,应该进行处理。一般按相对精度≤1/20000估算,相对闭合差应小于50ppm。所以大于50ppm的环应进行处理。闭合环超限处理是一项繁琐、耗时的工作,也是GPS控制网数据处理的主要内容,主要的技巧和方法可以归纳为:(1)、超限基线处理过程中一些基线要重新解算,解算后会影响到相关环闭合差,所以处理需要反复进行。作为一般的原则,首先处理相对闭合差较大的环,然后处理环闭合差较小的环。 (2)、整理归纳超限闭合环,分析是否涉及到一条共同基线,例如几组超限闭合环(J012,J015,J016)、(J013,J015,J102)、…,(J012,J020,J015)就涉及到共同基线J012→J015,这条基线有问题的可能性就较大。 (3)、处理时首先分析可能有问题的基线是否必要,如果是连接两个不相邻的点,并且涉及到环甚多,则可以直接将其删除。井研算例网形复杂回路众多,一般可直接删除不合格基线。 (4)、如果一个闭合差超限的环,相关基线均不能简单删除(删除后影响图形结构,减少了重要环路),应该改变基线解算参数,重新计算相关基线。方法是在网图上选中重解基线,重新设置高度角,历元间隔、参考星等设置,点击“基线解算”→“解算选择基线”。 (5)、基线解算的精度指标rms和ratio是基线解算质量的参考指标,前者是中误差,后者是方差比(ratio=rms max/rms min),rms越小,表明基线解算质量越高,ratio越大,表明整周未知数解算越可靠,所以重解基线,要关注这两项指标,但是这两项指标只作参考,最重要的指标还是闭合差。 (6)、如果反复修改设置重解基线后,仍不能减小环闭合差,则可将闭合差超限环中的基线,分别与周边的基线组成闭合环,检查其闭合差。如果仅涉及到其中一条基线的环闭合差超限,则可以将这条基线删除。 (7)、检查环闭合差时,可能会出现两个相同顶点的环,闭合差一个超限,一个不超限。这是因为某一条基线存在重复基线。这时可以删除超限环中的重复基线。 3、三维基线自由网平差 (1)、三维基线自由网平差目的是检查观测值质量,及获取高程拟合所需大地高平差值。GPS坐标是WGS84系统,GPS工程控制网需要转换到当地坐标系统,所以都是在高斯平面上进行平差。平差中未知参数除了坐标改正数外,还设

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析 为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 正常运行情况下,各相对地有相同的电容 C(用集中参数表示), 在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。 发生单相(例如A相)金属性接地时,若忽略较小的电容电流

产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时 中性点对地电压上升为相电压(-a E ), 非故障相的对地电压变为线间电压(升高3倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U =0,B U =BA U =A B E E = 3A E 0150j e ,C U =CA U =C E -A E =3A E 0150j e ,由于相电压和电容电流的对称性已破坏,因而出现了零序电压和零序电流,因为A U =0,所以零序电压03U =B U +C U =-3A E ,即等于故障相正常电势的三倍,则 相位与之相反。在B U 和C U 的作用下, 在两非故障相及其对地电容中出现超前电压90°的电流,B I = C B jX U - =B U 0jW C ,C I =C C jX U - =C U 0jWC ,其有效值为B I +C I =3X U 0WC ,X U 为相电压的有效值,从故障点流回的电流即零序电流为:03I =-(B I +C I )=-(B U +C U )0jWC 。式中负号表示零序电流与通常规定的电流方向相反,因 为B U +C U =-3A E ,所以故障点的零序电流有效值为03I =3X U 0WC ,

GPS基线解算的优化及平差的方法技巧

GPS数据处理 GPS基线解算的优化及平差的方法技巧 摘要:对影响GPS基线解算质量的主要因素进行分析和研究,结合实例阐明基于南方GPS后处理软件的GPS基线解算的优化技术和方法。以及对GPS 解算数据平差处理的方法与技巧。 关键词:GPS基线解算;固定解;浮动解;残差曲线;优化,数据传输、数据分流、观测数据的平滑、滤波、平差计算、同步环、异步环、重复基线。GPS接收机采集记录的是GPS接收机天线至卫星的伪距、载波相位和卫星星历等数据。GPS数据处理就是从原始观测值出发得到最终的测量定位成果,其数据处理过程大致可划分为数据传输、格式转换(可选)、基线解算和网平差以及GPS网与地面网联合平差等四个阶段。 181

GPS测量数据处理的流程如图所示。 GPS测量数据处理流程 一、引言 根据GPS外业观测和基线数据处理的实际情况,即使通过选取恰当的点位来保证良好的观测条件,进行星历预报来保证观测到的卫星数目及星座的图形强度,但在实际的基线解算过程中,时常会遇到基线只有浮动解而无固定解。在此情况下,对基线解算进行优化处理后通常能够得到固定解,从而提高基线质量,避免或减少返工重测现象。 二、影响GPS基线解算结果的几个因素及其对策 182

影响GPS基线解算质量的因素较多也较为复杂,如卫星的周跳、星历误差、对流层及电离层影响、多路径误差、无线电干扰、不明因素影响及起算点误差过大等都会影响基线解算。 应对措施 1基线起点坐标不准确的应对方法 要解决基线起点坐标不准确的问题,可以在进行基线解算时,使用坐标准确度较高的点作为基线解算的起点,较为准确的起点坐标可以通过进行较长时间的单点定位或通过与WGS-84坐标较准确的点联测得到;也可以采用在进行整网的基线解算时,所有基线起点的坐标均由一个点坐标衍生而来,使得基线结果均具有某一系统偏差,然后,再在GPS网平差处理时,引入系统参数的方法加以解决。 2卫星观测时间短的应对方法 卫星整周模糊度难以确定的影响。由于个别或少数卫星观测时间太短,而导致这些卫星的整周模糊度难以准确确定。对于参与解算的卫星,其整周模糊度不能确定,必将对这一组同步观测的基线解算带来影响。 对于卫星观测时间过短,是非常容易识别的,因观测时间短,则观测记录的数据量就会小。解算基线时观察卫星相位跟踪图,能直观地看到观测到的各颗卫星的出、没时间。当基线无固定解时,在基线报告中可以看到各颗卫星的整周模糊度及其误差。若某颗卫星的观测时间太短,则可以删除该卫星的观测数据,不让它们参加基线解算,这样可以保证基线解算结果的质量。 183

第六章GPS基线解算

第六章 GPS 基线解算 第1节 G PS 基线解算的基本原理 GPS 基线向量表示了各测站间的一种位置关系,即测站与测站间的坐标增量。GPS 基 线向量与常规测量中的基线是有区别的,常规测量中的基线只有长度属性,而GPS 基线向量则具有长度、水平方位和垂直方位等三项属性。GPS 基线向量是GPS 同步观测的直接结果,也是进行GPS 网平差,获取最终点位的观测值。 一、 观测值 基线解算一般采用差分观测值,较为常用的差分观测值为双差观测值,即由两个测站的原始观测值分别在测站和卫星间求差后所得到的观测值。双差观测值可以表示为下面的形式: n m f f trop ion f f N dd dd dd v dd ,)()()()(?+++=+λρρρφ 其中: (...)dd 为双差分算子(在测站i ,j 和卫星m ,n 间求差); )(f dd φ为频率f 的双差载波相位观测值; f v 为频率f 的双差载波相位观测值的残差(改正数); ρ为观测历元t 时的站星距离; ion ρ为电离层延迟; trop ρ为对流层延迟; f λ为频率f 的载波相位的波长; n m f N ,为整周未知数。 若在某一历元中,对k 颗卫星数进行了同步观测,则可以得到k -1个双差观测值;若在整个同步观测时段内同步观测卫星的总数为l 则整周未知数的数量为l -1。 在进行基线解算时,ion ρ和trop ρ一般并不作为未知参数,而是通过某些方法将它们消除1。因此,基线解算时一般只有两类参数,一类是测站的坐标参数1 ,3C X ,数量为32;另一 1 如用模型改正或双频改正。 2 在基线解算时将基线的一个端点的坐标作为已知值固定,解求另一个点。固定的点称为起点,待求的点

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

静态基线解算

GPS静态基线解算原理

2011年5月

目录 1 RINEX文件命名与类型............................... - 1 - 1.1 观测文件格式.................................... - 1 - 1.2 导航电文文件格式................................ - 4 - 2 GPS卫星位置的计算................................. - 7 - 2.1 计算归化时间tk.................................. - 7 - 2.2 对平均运动角速度进行改正........................ - 8 - 2. 3 观测时刻卫星平近点角Mk的计算................... - 8 - 2. 4 计算偏近点角Ek.................................. - 8 - 2. 5 真近点角Vk的计算............................... - 8 - 2. 6 升交距角Φk的计算.............................. - 8 - 2. 7 摄动改正项δu,δr,δi的计算.................. - 8 - 2.8 计算经过摄动改正的升交距角uk、卫星矢径rk和轨道倾角ik ..................................................... - 9 - 2.9 计算卫星在轨道平面坐标系的坐标.................. - 9 - 2.10 观测时刻升交点经度Ωk的计算.................... - 9 - 2.11 计算卫星在地心固定坐标系中的直角坐标............ - 9 - 3 GPS静态基线解算 .................................. - 9 - 3.1 载波相位测量原理................................ - 9 - 3.2 载波相位测量的观测方程......................... - 10 - 3.3 观测值的组合................................... - 11 - 3. 4 在接收机和卫星间二次差......................... - 11 - 3. 5 观测方程的线性化............................... - 12 -

基线解算

GPS 基线解算阶段的关键问题
黄 勇
【摘要】:本文简述了在 GPS 静态定位测量中基线解算的质量控 制指标,详细分析了影响 GPS 基线解算结果的主要因素,给出了 判别这些因素方法, 并对如何消除这些因素的影响提出了相应的 处理措施。

GPS 基线解算阶段的关键问题
GPS 基线解算阶段的关键问题
黄 勇
【摘要】:本文简述了在 GPS 静态定位测量中基线解算的质量控制指标,详细分 析了影响 GPS 基线解算结果的主要因素,给出了判别这些因素方法,并对如何消 除这些因素的影响提出了相应的处理措施。 【关键词】:GPS 基线解算 质量控制 因素 措施
GPS 静 态 定 位 在 测 量 中 主 要 用 于 测 定 各 种 用 途 的 控 制 点 。 其 中 较 为 常 见 的 方 面 是 利 用 GPS 建 立 各 种 类 型 和 等 级 的 控 制 网 ,在 这 些 方 面 GPS 技 术 已 基 本 上 取 代 了 常 规 的 测 量 方 法 ,成 为 了 主 要 手 段 。 较 之 于 常 规 方 法 , GPS 在 布 设 控 制 网 方 面 具 有 测量精度高;选点灵活、不需要造标、费用低;全天侯作业; 观测时间短;操作简便等优点。 基 线 解 算 是 GPS 网 观 测 数 据 处 理 过 程 的 重 要 环 节 ,基 线 解 算 质 量 的 好 坏 直 接 关 系 到 各 条 基 线 的 观 测 精 度 ,从 而 影 响 整 个 控 制 网 的 精 度 。因 此 基 线 解 算 质 量 控 制 以 及 基 线 解 算 过 程 中 数 据 的 处 理 方 法 是 整 个 控 制 网 数 据 处 理 的 关 键 点 。结 合 GPS 定 位 原 理 和 实 际 经 验 对 于 GPS 基 线 解 算 阶 段 需 要 解 决 的 一 些 关 键 问 题作以下论述。
1

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

两相相间短路故障仿真分析(AC)

目录 第一章引言 (1) 1.1 课程设计的目的及意义 (1) 1.2Matlab软件简介 (1) 1.3 电力系统发展前景 (2) 第二章简单不对称故障相间短路的分析计算 (4) 2.1 概述 (4) 2.2 两相相间短路分析计算(AC相) (4) 第三章两相相间短路故障的仿真波形分析 (7) 3.1故障点电流波形图分析 (7) 3.2故障点电压波形图分析 (10) 3.3故障点A相电流序分量波形图分析 (12) 3.4故障点A相电压序分量波形图分析 (15) 结束语 (19) 参考文献 (20)

第一章引言 1.1课程设计的目的及意义 通过运用MATLAB软件进行的仿真,了解在输电线路上发生各种故障时的系统变化情况。有针对性的改善输电线路所装设的保护装置,使其能够在线路出现故障时迅速做出反应,保证线路安全运行,同时运行人员也可以根据保护装置动作情况很快地判断出故障点所处位置,为线路检修争取宝贵时间并减少因故障而带来的巨大损失。 安置在输电线路上的保护装置,当被保护的元件发生故障时,能自动、迅速、有选择的将故障从电力系统中切除,以保证其余部分恢复正常运行,并使故障元件免于继续受伤害。当被保护元件发生异常运行状态时,经一定延时动作于信号,以使值班人员采取措施。 1.2 Matlab软件简介 MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

电力系统各种短路向量分析

电力系统各种短路向量分析

一、单相(A 相)接地短路 故障点边界条件 . . . 0;0;0kB kC kA U I I === 即 .... 1200kA kA kA kA U U U U =++= 又 . (2) 111()33kA kA kB kC kA I I a I a I I =++= . (2) 2 11()33 kA kA kB kC kA I I a I a I I =++= . .... 11()33 k kA kB kC kA I I I I I =++= 所以 ... 120kA kA k I I I == 以上就是以对称分量形式表示的故障点电压和电流的边界条件。

向量图如下: 由向量图可知A相电流增大,B、C相电流为零,A相电压为零,B、C相电压增大。

二、B 、C 相接地短路。 故障点边界条件为 ... 0;0;0kA kB kC I U U === 同上用对称分量表示,则 . . . 1200kA kA k I I I ++= . . . 120 13 kA kA k kA U U U U === 相量图如下:

有向量图可知,A 相电流为零,B 、C 相电流增大;A 相电压增大,B 、C 相电压为零。 三、两相短路 故障点的边界条件为 ..... 0;;kA kB kC kB kC I I I U U ==-= 以对称分量形式表示故障点电压、电流边界条件: . . . . . 12120;;kA kA kA kA kA I I I U U ==-=

向量图如下:

基线解算报告

1.参考站信息 点名:SD0 点号: 1 WGS84 X(m): -2541233.8339 WGS84 Y(m): 4868927.9810 WGS84 Z(m): 3232056.9475 WGS84 纬度030:38:40.12781N WGS84 经度117:33:40.87376E WGS84 椭球高(m): 22.8458 接收机类型:GeoMax Zenith 接收机型号: 1.0 接收机编号:GMZ203710032 天线类型:GMXZENITH NONE 天线型号: 天线高(m) 1.5890 量测至:天线座底部 2.移动站 点名:SH0 点号: 1 WGS84 X(m): -2541304.5512 WGS84 Y(m): 4869037.3641 WGS84 Z(m): 3231841.0571 WGS84 纬度030:38:31.94983N WGS84 经度117:33:41.32744E WGS84 椭球高(m): 24.3883 接收机类型:GeoMax Zenith 接收机型号: 1.0 接收机编号:GMZ203710033 天线类型:GMXZENITH NONE 天线型号: 天线高(m) 1.7420 量测至:天线座底部 3.解算控制参数 开始时间:2015/7/12 14:50:26 结束时间:2015/7/12 15:50:22 间隔:20 解算模式:Auto

Lc 解算距离[m]: 10000 粗差容忍系数: 3.5 Ratio 值限制: 1.8 高度截止角:15 对流层模型:Hopfield 轨道类型:广播星历单频基线解算长度限制[m]: 30000 4.卫星跟踪 5.基线解算结果 观测值DX(m) DY(m) DZ(m) 中误差 _DX(mm) 中误差 _DY(mm) 中误差_DZ(mm) RMS(mm) 三差_L1 -70.8158 109.3681 -215.8567 79.5 48.4 29.5 4.0 浮动_L1 -70.7138 109.3869 -215.8990 2.9 1.5 1.1 4.3 固定_L1 -70.7173 109.3831 -215.8904 0.3 0.4 0.2 4.4 6.整周模糊度 浮动解情况(L1) 系统卫星号Week Seconds 间隔浮动解标准差使用星数弃用历元RMS GPS 7 1853 24626 3120 16.0718 0.0117 152 4 0.0054 GPS 30 1853 24626 3420 8.0561 0.0145 166 6 0.0056 GPS 4 1853 24626 3580 3.9839 0.0046 178 2 0.0042 GPS 11 1853 24626 3580 0.9930 0.0030 180 0 0.0029 GPS 32 1853 24626 3580 -4.9976 0.0086 179 1 0.0047 GPS 28 1853 24666 3540 -1.9863 0.0091 178 0 0.0028 GPS 3 1853 24686 3520 -9.9593 0.0069 177 0 0.0041 GPS 17 1853 24686 3520 -12.9609 0.0185 177 0 0.0041 固定解情况(L1) 系统卫星号Week Seconds 间隔固定解Ratio 使用星数弃用历元RMS GPS 7 1853 24626 3120 16 99.0 153 3 0.0059 GPS 30 1853 24626 3420 8 99.0 161 11 0.0050 GPS 4 1853 24626 3580 4 99.0 177 3 0.0043 GPS 11 1853 24626 3580 1 99.0 180 0 0.0030 GPS 32 1853 24626 3580 -5 99.0 180 0 0.0048 GPS 28 1853 24666 3540 -2 99.0 178 0 0.0030

平面向量典型例题

平面向量经典例题: 1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于( ) A.-2 B.-1 3 C.-1 D.-2 3 [答案] C [解析] λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1、 2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=( ) A.-1 B.- 3 C.-3 D.1 [答案] C [解析] a+2b=(3,1)+(0,2)=(3,3), ∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3、 (理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为( ) A.-6 11 B.- 11 6 C、6 11 D、 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11、 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,∴

〈a ,b 〉=120°,故选B 、 (理)向量a ,b 满足|a |=1,|a -b |=32 ,a 与b 的夹角为60°,则|b |=( ) A 、1 2 B 、1 3 C 、14 D 、15 [答案] A [解析] ∵|a -b |= 32 ,∴|a |2+|b |2-2a ·b = 34 ,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1 2、 4. 若AB →·BC →+AB →2 =0,则△ABC 必定就是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A.-a +3b B.a -3b C.3a -b D.-3a +b [答案] B [解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴?? ? λ+μ=-2λ-μ=4 ,∴?? ? λ=1μ=-3 ,∴c =a -3b ,故选B 、 在平行四边形ABCD 中,AC 与BD 交于O ,E 就是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC → = a ,BD →= b ,则AF → 等于( ) A 、1 4a +1 2b B 、2 3a +1 3b C 、12a +14 b D 、13a +23 b

中低压配电系统单相接地故障及其保护分析

中低压配电系统单相接地故障及其保护分析 中低压配电系统单相接地故障及其庇护分析 1 概述 中低压配电系统故障分为相间短路和单相接地,相间短路又分为三相短路和两相短路。相间短路称为金属短路或永久性短路,短路电流比较大,危害也大,继电庇护必需可靠、迅速而有选择性将故障切除。单相接地故障的故障电流随配电系统中性点接地方式不同有很大差别。电源中性点不接地以及经大电阻或消弧线圈接地的配电系统,发生单相接地故障后,由于没有形成回路,接地故障电流为对地电容电流一般比较小,可继续运行必定时间,但应有报警,以便及时查找故障。电源中性点直接接地的配电系统发生单相接地故障后,接地相经过大地与电源中性点形成回路,故障电流为短路电流就比较大,继电庇护应可靠、迅速而有选择性将故障切除。 电源中性点不接地以及经大电阻或消弧线圈接地的配电系统,接地故障[Earth fault]是指相线和电气装置的外露导电部分,以及大地间的短路,它属于单相对地故障,它和相线与中性线的单相短路无论在危害后果与庇护办法上都十分不同。绝缘损坏或损伤是较常见的接地故障,此时为非金属性短路,短路电流随绝缘损坏程度不同差别比较大,故障电流相差也比较大。这就给继电庇护选择与整定造成较大困难。绝缘损坏往往会带来人身电击损害和火灾,因此必需采取必定办法限制故障电压升高和其作用时间,防范人体与危险电压的接触,并且要求电器装置的接地要合理可靠,并应有接地故障庇护。 2 电源中性点不直接接地配电系统的单相接地故障与庇护 2.1电源中性点不直接接地配电系统单相接地故障分析 我国日前6~10kV与35kV配电系统为小电流接地系统,其电源中性点有不接地、经大电阻或消弧线圈接地三种方式。正常运行时三相对地电容电流大小相等,相位各落后于相电压90度,电容电流分布与相量图。见图1。 图1中性点不接地系统单相接地电容电流分布与相量图 当发生单相接地故障时,电源中性点对地电位升高为相电压,故障相电位接近或等于地电位,其它两相对地为升高为线电压,其值为相电压的√3 倍。各相之间的电压大小和相位均无变化,仍然对称,这是电源中性点不接地配电系统发生单相接地之后仍可运行一段时间的主要原因,一般规定为1到2小时。 由图1可知发生单相接地后三相电压计算公式为: Ua =Ea-Ea =0 Ub =Eb-Ea =√3× Ea ×e-j150° Uc =Ec-Ea =√3× Ea ×e+j150° 电容电流分布见图2,向量图见图3。 图2单相接地时接地电容电流分布与单相接地庇护原理分析示意图

GPS静态基线解算质量控制指标解析(doc 7页)

GPS静态基线解算质量控制指标解析(doc 7页)

GPS静态基线解算质量控制指标分析 建筑工程学院测绘工程2004级学生:卢国鹏指导老师:肖东升 摘要:GPS基线解算是进行网平差的基础。基线解算质量的好坏将直接影响到GPS 网的定位精度和工作效率。本论文研究的内容如下: 讨论了GPS基线解算的质量控制指标、GPS网几何关系对基线解算质量的影响,并就各指标对基线解算的影响做了分析,提出了提高基线解算精度的方法。 关键词:静态基线解算质量控制指标分析 Analysis on the Quality Control Index of the GPS Static Baseline Computation Abstract:Baseline computation is the basis of network adjustment. The quality of baseline computation is good or bad directly influences the positioning accuracy of GPS network and work efficiency. The main contents of this paper are as follows: Discuss quality control index of GPS baseline computation and the influence of GPS network geometric relation on the quality of baseline computation, and then made an analysis on the influences of all indexes on baseline computation. The methods to improve the accuracy of baseline computation were proposed. Key words: static baseline; computation; quality control index; analysis 一、GPS基线解算的基本模型 基线解算一般采用差分观测值,较为常用的差分观测值为双差观测值,即由两个测站的原始观测值分别在测站和卫星间求差后所得到的观测值:

相关文档
相关文档 最新文档