文档视界 最新最全的文档下载
当前位置:文档视界 › 活性污泥

活性污泥

活性污泥
活性污泥

1 污泥膨胀的概念及测定指标

1.1 污泥膨胀的概念

活性污泥是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些,体积膨胀,含水率上升,不利于污泥底物对污水中营养物质的吸收降解,并且影响后续工序的沉淀效果。

一般从以下三个方面定义污泥膨胀:沉降性能差,区域沉降速度小;污泥松散,不密实,污泥指数较大;由丝状菌引起的污泥膨胀中,丝状菌总长度大于

1×104 m/g。

1.2 污泥膨胀的理论

Chudoba在1973年提出了选择性理论,该理论以微生物生长动力学为基础,根据不同种类微生物的最大生长速率μmax及其饱和常数Ks值的不同,分析丝状菌与菌胶团细菌的竞争情况。该理论认为活性污泥中存在A、B两种类型微生物种群,丝状菌属于A型;具有低的Ks和μmax值,在低基质浓度时具有高的生长速率并占优势;而菌胶团细菌属于B 型,具有较高的Ks和μmax值,在高的基质浓度条件下生长速率大并占优势。1980年Plam又对理论加以扩展,认为该理论对溶解氧也成立,即DO与碳源基质一样,其浓度的高低影响着两种类型细菌的生长速率及其优势地位。

选择性理论能从微生物生长动力学基础上对污泥膨胀现象给予了合理的解释,已被人们广泛接受并成为污泥膨胀研究领域中主要理论。在该理论的指导下,已成功地开发出了选择性反应器工艺来控制污泥膨胀。

1.3 测定指标

污泥沉降比:取活性污泥反应器中的混合液静置30 min后所形成的沉淀污泥的容积占原混合液容积的百分比。正常的活性污泥静置沉淀30 min后,一般可接近其最大密度,反映出二沉池中活性污泥的浓缩情况。

污泥容积指数:曝气池出口处的混合液,在经过30 min静沉后,每克干污泥所形成的沉淀污泥所占有的容积。可表示活性污泥中菌胶团结合水率的高低。

污泥成层沉降速度:混合液静置一段时间后,形成清晰的泥水分界线,此后进入成层沉淀阶段,分界线匀速下降的速度即为污泥成层沉降速度。

丝状菌长度:活性污泥单位体积内丝状菌的长度,该指标用来表示丝状菌含量。

2 污泥膨胀的类型

污泥膨胀分丝状菌膨胀和非丝状菌膨胀两类。其中90%是由丝状菌引起的,只有10%左右是由非丝状菌引起的。活性污泥系统中的生物处于动态平衡之中,理想的絮凝体沉淀性能好,丝状菌和菌胶团细菌之间相互竞争,相互依存,絮体中存在的丝状菌有利于保护絮体已经形成的结构并能增加其强度。但是在污泥膨胀诱因的诱发下,丝状菌在和菌胶团的竞争中占优,大量的丝状菌伸出絮凝体,破坏其稳定性。

可辨识的污泥膨胀絮体有两种类型:第一类是长丝状菌从絮体中伸出,此类丝状菌将各个絮体连接,形成丝状菌和絮体网;第二类具有更开放的结构,细菌沿丝状菌凝聚,形成细长的絮体。

3 污泥膨胀的原因

3.1 丝状菌污泥膨胀的原因

3.1.1 进水水质

(1)原水中营养物质含量不足。活性污泥法处理污(废)水的过程,就是污泥中的微生物种群不断地吸收、利用水中污染物,在自身增殖的同时,将污染物加以降解的过程。随反应的进行需要多种营养物质保证其正常的新陈代谢活动,并维持生物的动态平衡和活动。若微生物的食物不足,会使低营养型微生物丝硫细菌、贝氏硫细菌过度繁殖,在与菌胶团细菌的竞争中占优。

(2)原水中碳水化合物和可溶性物质含量高。丝状菌与其它菌种相比有其自身的一些特点,它对高分子物质的水解能力弱,较难吸收不溶性物质。所以,当废水中含有较多量的可溶性有机物时,有利于底物中丝状菌的繁殖。此外,废水中含过多量的糖类碳水化合物时,诸如球衣菌属的丝状菌能直接将葡萄糖、乳糖等糖类物质作为能源加以吸收利用,同时分泌出高粘性物质覆盖在菌胶团细菌表面,从而大大提高了污泥的水结合率。

(3)硫化物含量高。正常的活性污泥中硫代谢丝状菌含量不多,若污水中硫化物含量偏高(这种情况多存在于工业废水中),容易引起诸如硫化菌、021N型菌、贝氏硫化菌等硫代谢丝状菌的过量增殖,致使引发污泥膨胀。

(4)进水波动。进水波动是指进入活性污泥反应器的原水在流量以及有机物浓度、种类方面的改变。如果曝气池中有机物浓度突然增加,就会因微生物呼吸迅速致使溶解氧含量降低,此时丝状菌在争夺氧中占优,大量繁殖,引起污泥膨胀。

3.1.2 反应器环境

(1)温度。反应器底物中每种细菌都有自己的最适宜生长温度,在最适宜生长温度下,其繁殖旺盛,竞争力强。如果温度较低,污水中微生物代谢速度较慢,会积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值增高,从而可能会引起污泥膨胀。温度对丝状菌的影响也是很普遍的,丝状菌膨胀对温度具有敏感性,在其它条件等同的情况下,10℃时产生严重的污泥膨胀现象;将反应器温度提高到22℃,不再产生污泥膨胀。这也是大多数活性污泥在冬季时会产生污泥膨胀或者污泥膨胀更加严重的原因之一。

(2)溶解氧。溶解氧作为构成活性污泥混合液三要素(气、水、泥)之一,是许多生物降解反应的必要条件。菌胶团细菌和浮游球衣菌等丝状菌对溶解氧需要量差别比较大,菌胶团细菌是好氧菌,而绝大多数丝状菌是适应性强的微好氧菌。因此,若溶解氧含量不足,菌胶团菌的生长受到抑制,而丝状菌仍能正常利用有机物,在竞争中占优。

(3)pH值。pH值较低,会导致丝状真菌的繁殖而引起污泥膨胀。活性污泥微生物最适宜的pH值范围是6.5~8.5;pH值低于6.5时利于真菌生长繁殖;pH 值低至4.5时,真菌将完全占优,活性污泥絮体遭到破坏,所处理的水质恶化[9]。(4)BOD-污泥负荷。BOD污泥负荷是设计活性污泥反应池和控制其运行的重要指标。

3.2 非丝状菌污泥膨胀的原因

对于非丝状菌膨胀的研究较少,一般认为非丝状菌膨胀是由于絮凝体生理活动的异常而发生的。

3.2.1 进水中含有毒物质

由于进水中含有较多的有毒物质,导致细菌中毒不能分泌出足够的粘性物质,难以形成絮体,或即使形成絮体,但结构松散,沉降性能不好。

3.2.2 营养物质缺乏或不平衡

进水中营养物质缺乏或不平衡,除引发丝状菌膨胀外,还会导致非丝状菌污泥膨胀。由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

好氧活性污泥性能指标

好氧活性污泥性能指标 1 掌握活性污泥性能指标得重要性 中原油田污水处理厂主要处理城市生活污水,采用合建式一体化氧化沟(Combined And Integrated Oxidation Ditch)工艺、相对传统活性污泥法工艺而言,氧化沟工艺流 程短,设备及构筑物利用率高,投资小,占地少,运行成本低;出水水质好,抗冲击负荷能力强,除磷脱氮效率高,污泥易稳定,便于自动化控制等。但就是,在实际运行过程中,仍存在一系列得问题。包括: (1)污泥膨胀问题: 当废水中得碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生 在废水水温较低而污泥负荷较高时。微生物得负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性得多糖类物质,使活性污泥得表面附着水大大增加,SVI值很高,形成污泥膨胀。?针对污泥膨胀得起因,可采取不同对策:由缺氧、水温高造成得,可加大曝气量或降低进水量以减轻负荷,或适当降低MLSS(控制污泥回流量), 使需氧量减少;如污泥负荷过高,可提高MLSS,以调整负荷,必要时可停止进水,闷曝一段时间;可通过投加氮、磷肥,调整营养物质平衡(BOD5:N:P=100:5:1);pH值过低,可投 加石灰调节;漂白粉与液氯(按干污泥得0。3%~0、6%投加),能抑制丝状菌繁殖,控制结 合水性污泥膨胀。 (2)泡沫问题: 由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫、用表面喷淋水或除沫剂去除泡沫,常用除沫剂有机油、煤油、硅油,投量为0、5~1、5mg/L。通过增加曝气池 污泥浓度或适当减小曝气量,也能有效控制泡沫产生、当废水中含表面活性物质较多时,易预先用泡沫分离法或其她方法去除。另外也可考虑增设一套除油装置、但最重要得就是要加强水源管理,减少含油过高废水及其它有毒废水得进入、 (3)污泥上浮问题: 当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在缺氧区易发生反硝化 作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮、发生污泥上浮后应暂停进水,打碎或清除污泥,判明原因,调整操作。污泥沉降性差,可投加混凝剂或惰性物质,改善沉淀性;如进水负荷大应减小进水量或加大回流量;如污泥颗 粒细小可降低曝气机转速;如发现污泥腐化,应加大曝气量,清除积泥,并设法改善池内水力条件。 (4)流速不均及污泥沉积问题: 在氧化沟中,为了获得其独特得混合与处理效果,混合液必须以一定得流速在沟内循环流动。一般认为,最低流速应为0。15m/s,不发生沉积得平均流速应达到0、3~

活性污泥指标及污泥膨胀处理

活性污泥法 处理的关键在于具有足够数量和性能良好的污泥。它是大量微生物聚集的地方,即微生物高度活动的中心,在处理废水过程中,活性污泥对废水中的有机物具有很强的吸附和氧化分解能力,故活性污泥中还含有分解的有机物和无机物等。污泥中的微生物,在废水中起主要作用的是细菌和原生动物。 微生物的指示作用 (1)着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2)小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3)如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4)大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5)如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6)根足虫的大量出现,往往是污泥中毒的表现。

(7)如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8)而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9)在石油废水处理中钟虫出现是理想的效果。 (10)过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 活性污泥中的微生物 活性污泥是微生物群体及它们所吸附的有机物质和无机物质的总称。微生物群体主要包括细菌、原生动物和藻类等。其中,细菌和原生动物是主要的两大类。 (一)细菌 细菌是单细胞生物,如球菌、杆菌和螺旋菌等。它们在活性污泥中种类多、数量大、体积微小,具有强的吸附和分解有机物的能力,在污水处理中起着关键作用。 在活性污泥培养的初期,细菌大量游离在污水中,但随着污泥的逐步形成,逐渐集合成较大的群体,如菌胶团、丝状菌等。 1.菌胶团 菌胶团是细菌及其分泌的胶质物质组成的细小颗粒,是活性污泥的主体,污泥的吸附性能、氧化分解能力及凝聚沉降等性能均与菌胶团有关。菌胶团有球形、分枝状、蘑菇形、垂丝形等

活性污泥中的微生物

活性污泥中主要微生物类群的特征及作用 活性污泥中的微生物,主要有细菌、原生动物和藻类三种,此外还有真菌、病菌等。微生物中细菌是分解有机物的主角,其次原生动物也有一定的作用。活性污泥中主要以菌胶团和丝状菌存在,游离的细菌较少。活性污泥中原生动物较多,经常出现的原生动物主要有钟虫类、盾纤虫、漫游虫、吸管虫、变形虫等。此外还有一些后生动物,如轮虫和线虫。因此,活性污泥是一个复杂的微生物世界。对工艺管理者来说,应会识别微生物,并了解它对污水处理过程的指示作用。 下面是几钟生物相对活性污泥的指示情况: 1、活性污泥良好时出现的微生物主要有:钟虫类、盾纤虫、盖纤虫、累枝虫、聚缩虫、内管虫、独缩虫等吸附性原生动物。如果此类微生物占总数的80%以上,个体在1000个/mL 以上的话,应该判断为具有高净化效率的活性污泥。 2、活性污泥处于恶劣状况时出现的微生物主要:波豆虫、豆型虫、草履虫、弹跳虫、屋滴虫(大多数为游泳型),可以判断为絮凝体细碎。严重恶化时原生动物和后生动物消失。 3、在活性污泥分散解体时出现微生物:辐射变形虫、多核变形虫、扇形变形虫等肉足类。可判断为絮体变小出水混浊,SS升高,而这类微生物急增时必须调整工艺状态,减少回流污泥量和通气量,则可以印制污泥解体。 4、在活性污泥出现恢复时出现的微生物主要有:漫游虫、徐叶虫、徐管虫、尖毛等(全毛类) 5、在活性污泥膨胀时出现的微生物主要有:浮游球衣藻和霉菌。丝壮菌是造成污泥膨胀的诱导生物,丝壮菌大量增殖是,则吸附型的原生动物急剧减少,污泥性能恶化,形成所谓的漂泥现象。一旦出现丝壮菌增殖的趋势,4-7天后SVI急剧上升甚至会超过200。 6、进水负荷低时出现的微生物主要有:游仆虫、狭甲虫等生物。判断为有机物较少,应增大曝气量。溶解氧不足时出现的微生物主要有;扭头虫、丝壮菌等,此时污泥发黑并放出腐臭味,应增大曝气量。曝气过量时出现的微生物主要有:肉足类及轮虫类,包括阿米巴虫,高负荷和毒物流入时出现的微生物主要有;盾纤虫和钟虫的锐减是负荷过高和毒物流入的征兆,大多数微生物灭绝时活性污泥已被破坏,必须进行恢复。

实验一 活性污泥性质的测定实验

实验一活性污泥性质的测定实验 实验项目性质:综合性 所属课程名称:水污染控制工程 实验计划学时:10 1 实验目的 (1) 加深对活性污泥性能,特别是污泥活性的理解。 (2) 掌握几项污泥性质的测定方法。 (3) 掌握水分快速测定仪的使用。 2 实验原理 活性污泥是人工培养的生物絮凝体,它是由好氧微生物及其吸附的有机物组成的。活性污泥具有吸附和分解废水中的有机物(也有些可利用无机物质)的能力,显示出生物化学活性。在生物处理废水的设备运转管理中,除用显微镜观察外,下面几项污泥性质是经常要测定的。这些指标反映了污泥的活性,它们与剩余污泥排放量及处理效果等都有密切关系。 3 实验设备与试剂 (1) 水分快速测定仪或烘箱1台 (2) 真空过滤装置1套。 (3) 布氏漏斗l个。 (4) 分析天平1台。 (5) 马弗炉1台。 (6) 坩埚3个。(钳子) (7) 定量滤纸数张。 (8) 100mL量筒4个。 (9) 500mL烧杯2个。 (10) 玻璃棒2根。 (11) 电炉1个 4 实验方法与操作步骤 (1) 污泥沉降比SV(%) 它是指曝气池中取混合均匀的泥水混合液100mL置于100mL量筒中,

静置30min 后,观察沉降的污泥占整个混合液的比例,记下结果(表1)。 (2) 污泥浓度MLSS 就是单位体积的曝气池混合液中所含污泥的干重,实际上是指混合液悬浮固体的数量,单位为g/L 。 ①测定方法 a .将滤纸放在105℃烘箱或水分快速测定仪中干燥至恒重,称量并记录(W 1)(表2) b .将该滤纸剪好平铺在布氏漏斗上(剪掉的部分滤纸不要丢掉)。 c .将测定过沉降比的100mL 量筒内的污泥全部倒入漏斗,过滤(用水冲净量筒,水也倒入漏斗)。 d .将载有污泥的滤纸移入烘箱(105℃)或快速水分测定仪中烘干恒重,称量并记录(W 2)。 ②计算 1 1000(g/L)w w MLSS v -?2= (1) (3)污泥指数SVI 污泥指数全称污泥容积指数,是指曝气池混合液经30min 静沉后,1g 干污泥所占的容积(单位为mL/g)。计算式如下 ) mL/g ()g/L (10 (%)MLSS SV SVI ?= (2) SVI 值能较好地反映出活性污泥的松散程度(活性)和凝聚、沉淀性能。一般在100左右有为宜。 (4)污泥灰分和挥发性污泥浓度MLVSS 挥发性污泥就是挥发性悬浮固体,它包括微生物和有机物。干污泥经灼烧后(600℃)剩下的灰分称为污泥灰分。 ①测定方法 先将已知恒重的磁坩埚称量并记录(W 3),再将测定过污泥干重的滤纸和干污泥一并故入磁坩埚中,先在普通电炉上加热碳化,然后放入马弗炉内(600℃)烧40min ,取出放入干燥器内冷却,称量(W 4)。(表3) ②计算 % 100?= 干污泥质量灰分质量 污泥灰分 或 3 21 100%w w w w -?-4污泥灰分= (3) 143()() 1000(g/L)w w w w MLVSS v ---?2= (4) 式中 W 1——滤纸的净重,g ; W 2——滤纸及截留悬浮物固体的质量之和,g ;

如何判断厌氧颗粒污泥的活性

如何判断厌氧颗粒污泥的活性 摘要 进入夏季以来,厌氧颗粒污泥的采购逐渐增多。根据污泥的活性不同,有的颗粒污泥卖1200~1400元/吨,而有的只能卖到500~600元/吨;价格相差一倍多。那么如何判断污泥的活性,如何买到质量可靠的厌氧污泥呢?今天,我们就和大家来聊聊如何判断厌氧颗粒污泥活性的话题。 正文: 厌氧颗粒污泥的性能可以通过以下七个方面进行判断: 1.颜色 活性良好的厌氧颗粒污泥呈黑色,有明显光泽;活性差的污泥颜色发灰,缺 乏光泽。 良好污泥钙化污泥 2.颗粒度 活性良好的厌氧颗粒污泥粒径一般在0.5 ~ 2 mm,大小均匀。造纸厂的厌 氧污泥粒径通常会稍稍大一些。 3.弹性 用手按压厌氧污泥时,能够感受到厌氧污泥有轻微的弹性。 4.沉降速度 厌氧颗粒污泥的沉降速度应保持在50 ~150 m/h之间;若沉降速度过快,说

明污泥中的厌氧细菌比较少,钙等无机成分比较多;沉降速度过慢,在上升流速较高或者受冲击时,容易造成污泥流失。 沉降速度计算方法:在200ml的量筒中装满清水,测量液面高度为h,然后将少量的厌氧颗粒放在水面,记录污泥从液面沉降到筒底的平均时间为S,h/S 即可得到沉降速度。 5.颗粒度 颗粒污泥占厌氧污泥总量的60~70%,越高越好。 颗粒度的测量方法:取约200~500ml的厌氧污泥,静置后排出上清液,记录体积为V1,然后像“淘米”一样,反复用清水将絮状污泥洗出,留下颗粒污泥,记录体积为V2,V2/V1就是颗粒度。 6.VSS/TSS TSS和VSS分别是指单位体积的污泥中,总固体和挥发性固体的质量。 VSS/TSS通常在0.7~0.75。 VSS/TSS代表厌氧细菌在颗粒污泥中的比例,比值越高,意味着厌氧细菌的比例越高,比值高的一般可以达到0.8;比值偏低,是因为其中的惰性物质偏多,相应的活性也差一些,比值低的可以达到0.3。 7.厌氧污泥活性 厌氧污泥活性是厌氧颗粒污泥最为重要的一个指标,用厌氧污泥产甲烷活性表示,活性良好的厌氧污泥负荷可以达到0.3~0.5 KgCOD CH4 /(KgVSS.d)。 厌氧活性测试:首先是将乙酸、丙酸等按一定比例配置成底物,再添加含N、Co、Mn、B……的营养母液以维持厌氧污泥活性,再投加一定量的厌氧颗粒污泥样品后,模拟整个厌氧反应过程3~5个次,然后根据COD的去除率,产气速率得出污泥的产甲烷活性。 由于该测试比较复杂,试验精度要求高,国内仅有个别几家环保公司真正具有测试能力。 如下是测试装置的原理示意图:

关于活性污泥法的详解

关于活性污泥法的详解 活性污泥法是由多种好氧微生物与兼性厌氧微生物(在某些情况下还可能有少量厌氧微生物)与废水中的有机、无机固体物混凝交织在一起形成的絮状物。使活性污泥起到净化作用的主体是细菌,多数是革兰阴性菌,此外还有大量的原生动物和后生动物,以及微生物代谢残留物和一些从污水中夹带的惰性有机物、无机物等。 活性污泥的含水率在99%左右,密度为1.002~1.006g/m3。其结构疏松,表面积很大,对有机污染物有着强烈的吸附和氧化(分解)能力。此外,活性污泥还具有良好的自身凝聚和沉降性能。 1.活性污泥法的原理及环境影响因素 活性污泥法的工艺原理是在人工充氧的曝气池中,利用活性污泥去除废水中的有机物,然后再二沉池中使污泥和水分离。大部分污泥再回流到曝气池中,多余部分则排出。 普通活性污泥法的处理系统中由以下几部分组成:①曝气池、②曝气系统、③二沉池、④污泥回流系统、⑤剩余污泥排放系统。 活性污泥法净化废水能力强、效率高、占地面积小、臭味轻微,但产生剩余污泥量大,另外需要一定的电能来向废水中不断供氧。 2.影响活性污泥性能的环境因素主要有: (1).溶解氧(好氧处理中,一般在1.5~2mg/L为宜)。 (2).水温(好氧处理中,宜在15~25℃的范围内)。 (3).pH值(一般以6.5~9为宜)。

(4).营养料(一般要求BOD?:N:P=100:5:1为宜)。 (5).有毒物质(重金属、一些非金属化合物、油类物质等)数量亦应加予控制。 3.活性污泥法的性能评价指标 活性污泥法的性能评价指标主要有以下几项。 (1).生物相观察:即利用光学显微镜或电子显微镜观察活性污泥中的细菌、真菌、原生动物及后生动物等微生物的种类、数量、优势度及代谢活动等状况,在一定程度上反映整个系统的运行状况。 (2).混合液悬浮固体浓度(MLSS):指曝气池中单位体积混合液中活性污泥悬浮固体的质量,也称为污泥浓度。MLSS代表混合液悬浮固体中有机物的含量。 (3).污泥沉降比(SV):指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定污泥沉降比。 (4).污泥体积指数(SVI):指曝气池混合液沉淀30min后,每单位质量干泥形成的湿污泥的体积,常用单位为mL/g。 污泥体积指数(SVI)能较好的反应出活性污泥的松散程度、凝聚和沉降性能。一般城市污水正常运行条件下的SVI值在100~150mL/g 之间。SVI值过低,说明泥粒细小,无机质含量高,缺乏活性;SVI 值过高,说明污泥沉降性能不好,并且已经有产生膨胀现象的可能。如果SVI>200mL/g,污泥难于分离,容易产生污泥膨胀。 4.活性污泥法的运行方式

活性污泥培养方法

活性污泥培养方法 通过工程实例总结,就如何缩短污水生化调试所需时间,从调试前期准备到污水全负荷投入运行,分3个阶段予以解剖分析。介绍了前期准备工作的内容和所需物料的种类及数量;调试各阶段物料投加量及所需控制的条件;调试过程所需注意的事项。文中所述内容尤其适用于以鼓风机曝气为主的生化处理设施。 污水处理设施在正式投入使用时,其生化处理装置均需进行污泥接种、驯化(俗称调试)。对于规模较大的污水处理设施尽量缩短调试时间,使处理主体尽快投入正常运行,在实际操作过程中有着重要的意义。我们通过多个日处理万吨的污水处理设施的生化调试发现,在生化调试过程中,如果准备充分,正常气温下一般7~10d即可完成生化设施的培菌接种工作;10d后就可以对污水进行驯化,20d左右便可进入正常运行。 本文将分三方面对生化调试工作中需注意的问题进行简要分析。为方便起见,文中所列数据均以生化池体积5000m3为基准。 1. 前期准备阶段 1.1. 物料准备 ①污泥准备 对于万立方米级污水处理装置而言,其生化池体积较大,为了保证生化池初始污泥浓度,需要准备投加的原始污泥量很大。理论上讲,投加后生化池的污泥的质量浓度最好控制在2 500mg/L左右。实际运行

时,为了节约成本,调试期间初始污泥的质量浓度可控制在1 500mg/L 左右,一日处理1×104m3污水生化时间为12h的污水处理装置为例,调试前需准备含水率在80%的活性污泥约40m3。污泥品种最好是同类或相似的活性污泥。如有困难,其它活性较强的污泥也可使用。污泥在使用前为保证一定的活性,对待用的污泥需进行喷水保湿处理,在保湿条件下污泥的活性至少可保持15d以上。 ②碳源培养寄的准备 生化调试过程中理想的碳源是大粪及淀粉。一般来说调试前期以加入大粪为主,中后期以加入淀粉为主,为接生成本,淀粉可用地脚面粉替代。由于大粪无法事先储存,因此,事前需和有关部门确定好调试期间需要的数量。调试期间碳源准备量一般按如下原则进行估算。每天投加到生化池的COD量按混合后生化池COD的质量浓度在200~300mg/L水平计,其中地脚面粉COD的质量折算量约为1t[COD]/t[面粉]。大粪的COD折算比较困难,根据经验,在整个调试期间需100~150 m3的大粪。加入大粪的目的除补充碳源外,还可增加生化池菌种的引入。地脚面粉可准备10~15t。 ③磷源、氮源的准备 补充碳源一般以普钙Ca(H2PO4)2为主,补充的氮源以尿素CO(NH2)2为主。生化池COD的质量浓度在300mg/L时估计BOD5值一般以100mg/L计,补充量按m(BOD5):m(N):m(P)=100:5:1折算,每天需补充淀粉2000-3000kg,尿素100kg,补普钙200kg,质量比按照淀粉:尿素:普钙=20-30:1:2补给。调试期间需准备尿素

活性污泥法污水处理

水污染控制工程课程设计 城镇污水处理厂设计 指导教师刘军坛 姓名秦琪宁 目录 摘要 (3) 第一章引言...................................... 1.1设计依据的数据参数........................................................................................ 1.2设计原则............................................................................................................ 1.3设计依据............................................................................................................ 第二章污水处理工艺流程的比较及选择错误!未定义书 签。 2.1 选择活性污泥法的原因................................................................................... 第三章工艺流程的设计计算.. (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房............................................................................................................ 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

污泥活性抑制和污泥上浮的检测及控制

污泥活性抑制和污泥上浮的检测及控制

论文作者:丁峰1 徐学清1 彭永臻2 王淑莹2 高春梯2 摘要:引起污泥活性抑制和污泥上浮的原因在进水水质方面有:过量表面活性物质和类脂化合物,过低或过高的pH值冲击,碱度过高,水温过热,酚及其衍生物、醇、醛、某些有机酸、硫化物、重金属及卤化物等致毒性底物的流入;工艺运行方面的原因有:过量曝气,污泥缺氧反硝化,污泥回流量过大,池底积泥腐化以及机械应力等,还有起沫丝状菌的过量生长产生的泡沫和浮渣。控制活性污泥上浮的主要措施有:调节曝气剂的DO、pH值,采用均质调节池并控制其液位,合理投加营养盐等。 关键词:废水处理活性污泥污泥上浮冲击致毒控制   引言 在采用活性污泥法处理废水的运行过程中,有多种原因可引起曝气池活性污泥的活性受到抑制而导致微生物性质和类

群的改变、有机底物的去除率下降。有些微生物(如丝状菌)的过量增长会形成泡沫(foam)或浮渣(scum),运行时机械应力、挟裹气泡等均会使活性污泥的比重降低而上浮飘走,不仅增加了出水中的悬浮固体量,而且会大大降低生物反应系统中活性污泥的活性和数量。本文在阅读大量国内外文献基础上,对导致活性污泥活性抑制与上浮的原因、检测分析方法和控制技术进行了讨论。 1 引起活性污泥上浮的主要因素 1.1 进水水质 1.1.1 过量的表面活性物质和油脂类化合物 这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。另外,当进水含油脂量过高时,经过曝气与混合,油脂会附聚在菌胶团表面,使细菌缺氧死亡,导致比重降低而上浮[1-3]。

好氧活性污泥性能指标

好氧活性污泥性能指标集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

好氧活性污泥性能指标 1 掌握活性污泥性能指标的重要性 中原油田污水处理厂主要处理城市生活污水,采用合建式一体化氧化沟(Combined And Integrated Oxidation Ditch)工艺。相对传统活性污泥法工艺而言,氧化沟工艺流程短,设备及构筑物利用率高,投资小,占地少,运行成本低;出水水质好,抗冲击负荷能力强,除磷脱氮效率高,污泥易稳定,便于自动化控制等。但是,在实际运行过程中,仍存在一系列的问题。包括: (1)污泥膨胀问题: 当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。 针对污泥膨胀的起因,可采取不同对策:由缺氧、水温高造成的,可加大曝气量或降低进水量以减轻负荷,或适当降低MLSS(控制污泥回流量),使需氧量减少;如污泥负荷过高,可提高MLSS,以调整负荷,必要时可停止进水,闷曝一段时间;可通过投加氮、磷肥,调整营养物质平衡(BOD5:N:P=100:5:1);pH值过低,可投加石灰调节;漂白粉和液氯(按干污泥的%~%投加),能抑制丝状菌繁殖,控制结合水性污泥膨胀。 (2)泡沫问题: 由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。用表面喷淋水或除沫剂去除泡沫,常用除沫剂有机油、煤油、硅油,投量为~L。通过增加曝气池污泥浓度或适当减小曝气量,也能有效控制泡沫产生。当废水中含表面活性物质较多时,易预先用泡沫分离法或其他方法去除。另外也可考虑增设一套除油装置。但最重要的是要加强水源管理,减少含油过高废水及其它有毒废水的进入。 (3)污泥上浮问题: 当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在缺氧区易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。 发生污泥上浮后应暂停进水,打碎或清除污泥,判明原因,调整操作。污泥沉降性差,可投加混凝剂或惰性物质,改善沉淀性;如进水负荷大应减小进水量或加大回流量;如污泥颗粒细小可降低曝气机转速;如发现污泥腐化,应加大曝气量,清除积泥,并设法改善池内水力条件。 (4)流速不均及污泥沉积问题: 在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。一般认为,最低流速应为s,不发生沉积的平均流速应达到~s。但是由于转刷浸没深度有限,导致底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。 加装上、下游导流板是改善流速分布、提高充氧能力的有效方法和最方便的措施。另外,通过在曝气机上游设置水下推动器也可以对曝气转刷底部低速区的混合液循环流动起到积极推动作用,从而解决氧化沟底部流速低、污泥沉积的问题。设置水下推动器专门用于推动混合液可以使氧化沟的运行方式更加灵活,这对于节约能源、提高效率具有十分重要的意义。

活性污泥的常见问题

一、大块污泥上浮 沉淀池断续见有拳头大小污泥上浮。引起大块污泥上浮有两种情况: 1、反硝化污泥 上浮污泥色泽较淡,有时带铁锈色。造成原因是曝气池内硝化程度较高,含氮化合物经氨化作用及硝化作用被转化成硝酸盐,NO3-N浓度较高,此时若沉淀池内因回流比过小或回流不畅等原因使泥面升高,污泥长期得不到更新,沉淀池底部污泥可因缺氧而使硝酸盐反硝化,产生的氨气呈小气泡集结于污泥上,最终是污泥大块上浮。 改进办法是加大回流比,使沉淀池污泥更新并降低沉淀池泥层,减少泥龄,多排泥以降低污泥浓度,还可适当降低曝气池的DO水平。上述措施可降低硝化作用,以减少硝酸盐的来源。 2、腐化污泥 与反硝化污泥不同之处在于污泥色黑,并用强烈恶臭。产生的原因为二沉池有死角造成积泥,时间长即厌氧腐化,产生H2S,CO2,H2等气体,最终使污泥向上浮。 解除方法有消除死角区的积泥,例如经常用压缩空气在死角区充气,增加污泥回流等。对容易积泥的区域,应在设计中设法予以改进。 二、小颗粒污泥上浮 小颗粒污泥不断随水带出,俗称漂泥。引起漂泥的原因大致可有如下几种: 1、生物系统处理负荷(水量和浓度)变大,可以出现跑泥,多为水量增加后,二沉池的停留时间就缩短了,活性污泥来不及沉降就流出了二沉池,由此产生跑泥。同时,进水浓度增高,会导致活性污泥活性增强,不利沉降。出水浑浊而带有跑泥现象。 2、丝状菌膨胀污泥来不及沉降会产生跑泥现象。 3、过于低负荷运行,污泥老化后,微生物自身氧化,解絮。同样会产生跑泥。 4、气温低,曝气过度,PH变化过大,有毒及惰性物质进入生物系统等等,也会产生跑泥。 5、进水水质。如PH、毒物等突变,有毒及惰性物质进入生物系统等等,也会产生跑泥。 6、污泥因缺营养或充氧过度造成老化。 7、进水氨氮过高,C/N低,使污泥胶体机制解体而解絮。 8、池温过高,往往超过40度 9、机械曝气翼轮转速过高,使絮粒破碎。 解决办法是弄清原因,分别对待。在污泥中毒时应停止有毒废水的进入;对缺乏营养,污泥老化和解絮污泥须适当投加营养,采取复壮措施。 溶解氧低污泥进水负荷高有机物消解不完全,出水浑浊而且色度偏暗。溶解氧持续高。进水负荷低容易造成污泥自身氧化质轻引起难以沉降,轻质污泥随出水飘出水浑浊。二沉浮泥多是厌氧底泥腐化造成。一因回流量太小,二刮泥机损坏出校刮泥死角长期积泥。

活性污泥老化的原因及解决方法

活性污泥老化的原因及解决方法 1、活性污泥老化现象概述 活性污泥老化的现象,在目前大多数运行着的好氧生化系统中普遍存在,而活性污泥的老化不但会导致出水主要污染指标的升高,更多的是会出现能源的浪费。因为通常导致活性污泥的老化与过度曝气、负荷过低有关,而这些运行问题都会消耗过度的能源。 2、活性污泥老化判断要点 (1)活性污泥沉降比表现观察活性污泥是否发生老化 ①活性污泥沉降速度方面。通常可以再活性污泥沉降比实验中发现,老化了的活性污泥能够在较短的时间内完成沉淀阶段,当然其他各阶段的沉降速度也相当快,通常较非老化活性污泥沉降速度快1.4倍左右。 ②活性污泥絮团大小。老化的活性污泥絮团都较大,但比较松散,其絮凝速度也较快。 ③活性污泥颜色。老化的活性污泥颜色显得很深暗、灰黑,不具鲜活的光泽。 ④上清液清澈度。老化后的活性污泥容易解体,所以游离在水体中的细小解絮体较多,但是絮体间的间隙水却保持较好的清澈度。 ⑤液面浮渣。浮渣的产生,确实也与活性污泥老化有关。因为老化的活性污泥会导致部分细菌死亡,解体后的菌胶团细菌会被曝气打散后粘附气泡而使浮渣或泡沫产生。 (2)显微镜观察活性污泥是否发生老化 通常是看后生动物的数量占优势,表面看起来视乎和原生动物表现无关,事实上还是有明显的联系的。主要表现在,出现后生动物占优势就肯定不会有非活性污泥类原生动物的优势明显,最多可以看到极少量的散兵游勇;相反也是一样,非活性污泥类原生动物占优势时,通常看不到后生动物的踪迹。为此,后生动物的大量繁殖可以作为活性污泥老化的指标。 (3)食微比的确认 通常发生或可能发生活性污泥老化的情况下,食微比都处于或长期处于低水平状态,特别是食微比低于0.05时,出现活性污泥老化的几率很大。

活性污泥法参数表

德国是世界上环境保护工作开展较好的国家,在污水处理的脱氮除磷方面积累了很多值得借鉴的经验。现将德国排水技术协会(ATV)最新制定的城市污水设计规范A131中关于生物脱氮(硝化和反硝化)的曝气池设计方法介绍给大家,以供参考。 一、A131的应用条件: ≈2,TKN/BOD5≤0.25; ①进水的COD/BOD 5 ②出水达到废水规范VwV的规定。 对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于: ①希望达到的脱氮效果; ②曝气池进水中硝酸盐氮NO -N和BOD5的比值; 3 ③曝气池进水中易降解BOD5占的比例; ④泥龄ts; ⑤曝气池中的悬浮固体浓度X; ⑥污水温度。 图1为前置反硝化系统流程。(无) 1、计算NDN/BOD5和VDN/VT NDN------需经反硝化去除的氮 VDN------反硝化区体积 VT-------总体积 NDN表示需经反硝化去除的氮,它与进水的BOD5之比决定了反硝化区体积VDN 占总体积VT的大小。 由氮平衡计算NDN/BOD5: NDN=TKNi-Noe-Nme-Ns 式中 TKNi——进水总凯氏氮,mg/L Noe——出水中有机氮,一般取1~2mg/L Nme——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。按德国标准控制在18mg/L以下,则设计时取0.67×18=12mg/L Ns——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L

由此可计算NDN/BOD5之值,然后从表1查得VDN/VT。 表1晴天和一般情况下反硝化设计参考值 VDN/VT 反硝化能力,以kgNDN/kgBOD5计,(t=10℃) 2、泥龄 泥龄ts是活性污泥在曝气池中的平均停留时间,即 ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量 tS=(X×VT)/(QS×XR+Q×XE) 式中 tS——泥龄,d X——曝气池中的活性污泥浓度,即MLSS,kg/m3 VT——曝气池总体积,m3 QS——每天排出的剩余污泥体积,m3/d XR——剩余污泥浓度,kg/m3 Q——设计污水流量,m3/d XE——二沉池出水的悬浮固体浓度,kg/m3 根据要求达到的处理程度和污水处理厂的规模,从表2选取应保证的最小泥龄。 表2处理程度及处理厂规模和最小泥龄的关系

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ① 曝气池:反应主体 ② 二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③ 回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④ 剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤ 供氧系统: 提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ① 废水中含有足够的可容性易降解有机物; ② 混合液含有足够的溶解氧; ③ 活性污泥在池呈悬浮状态; ④ 活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤ 无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ① 物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水 中难于生物降解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: 剩余活性污泥 回流污泥 二次 沉淀池 废曝气池 初次 沉淀池 出水 空气

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法的各种指标及相互关系

活性污泥法的各种指标及相互关系:MLVSS /MLSS一般0.75左右,SVI =混合液30min 静沉后污泥溶积/污泥干重=SV%×10/MLSS(100ML 量筒) 影响活性污泥处理效果的因素:①溶解氧2mg/l左右为宜②营养物BOD:N:P=100:5:1③PH值6.5-9.0④水温:20-30度⑤有毒物质:重金属、H2S等无机物质和氰、酚等有机物质。会破坏细菌细胞某些必要的生理结构,或抑制细菌的代谢过程。 衡量曝气效果的指标及适用围:动力效率(Ep)、氧转移效率(EA)对鼓风曝气而言即氧利用率、充氧能力(对机械曝气而言) 活性污泥法常见的问题及处理方法:①污泥膨胀:防止办法:加强操作管理,经常检测污水水质、溶解氧、污泥沉降比、污泥指数等。解决办法:缺氧、水温高可加大曝气量或降低进水量以减轻负荷或适当降低MLSS,使需氧量减少。如污泥负荷率过高,可适当提高MLSS值,以调整负荷。如PH值过低,可投加石灰调整PH。若污泥大量流失,则可投氯化铁,帮助凝聚。②污泥解体:污水中存在有毒物质,鉴别是运行方面的问题则对污水量、回流污泥量、空气量和排泥状态以及SV%、MLSS、DO、Ns等进行检查,加以调整;如是混入有毒物质,需查明来源,采取相应对策。③污泥脱氮:呈块状上浮,由于硝化进程较高,在沉淀池产生反硝化,氮脱出附于污泥上,从而使污泥比重降低,整块上浮。解决办法:增加污泥回流量或及时排除剩余污泥,在脱氮之前将污泥排除;或降低混合液污泥浓度,缩短污泥岭和降低溶解氧等,使之不进行到硝化阶段。④污泥腐化:污泥长期滞留而进行厌氧发酵生成气体,从而大块污泥上浮的现象。防止措施:a、安设不使污泥外溢的浮渣清除设备;b、消除沉淀池的死角区;c、加大池底坡度或改进池底刮泥设备,不使污泥滞留于池底。⑤泡沫:原因污水中存在大量合成洗涤剂或其他起泡物质。措施:分段注水以提高混合液浓度;进行喷水或投加除泡剂等。 生物滤池:是以土壤自净原理为依据,有过滤田和灌溉田逐步发展来的。废水长期以滴

活性污泥的沉降性能

活性污泥的沉降性能 在生物处理系统中,活性污泥的特性,特别是污泥的沉降性能,直接影响着二沉池的工艺设计与运行。 衡量活性污泥沉降性能的参数有二个:一是污泥指数SVI(mL/g);二是污泥沉降比:SV%。 SVI的物理意义是:曝气池出口混合液经30min静沉后,每克干污泥所形成的沉淀污泥所占的容积(mL)。 SV%又称30分钟沉降比,混合液在量筒内静置30 分钟后所形成的沉淀污泥的容积占原混合液容积的百分率。 SVI、SV%与混合液污泥浓度MLSS(g/L)之间有下列关系: SVI=SV / MLSS (mL/g)(1-1) 或SV=SVI×MLSS (mL/L) SVI值能反应出活性污泥的凝聚、沉淀性能,过低说明泥粒细小,无机物含量高,污泥缺乏活性;过高则说明污泥沉降性能不好,并具有产生膨胀现象的可能。其沉降性能一般区别如下: SVI< 100 沉降性能好; 100 < SVI< 200 沉降性能一般; SVI > 200 沉降性能不好。 从式(1-1)可看出:要想获得适当的SVI值,则需在设计时选用适当的污泥浓度(MLSS)值,当进入生物反应器中的有机物量一定时,污泥浓度愈高,则污泥负荷(F/M)愈小,所以在设计时必须正确选择污泥负荷(F/M)。 污泥浓度(MLSS)、污泥负荷(F/M)与曝气池体积(V)之间有下列关系:F/M= Q?S0/V?MLSS 式中: Q —污水流量(m3/h);

S0— BOD5浓度(kg/m3); V —曝气池体积m3。其它同前。 在设计中一般根据污泥负荷(F/M)选择确定污泥指数(SVI),此数据一般采用运行值或试验值,可根据表1选取,混合液污泥浓度可根据处理工艺从表2中选取。 对大多数废水, F/M在下述范围内:0.3<F/M<0.6。

相关文档