文档视界 最新最全的文档下载
当前位置:文档视界 › 高等数学 第二类曲线积分与路径无关问题1

高等数学 第二类曲线积分与路径无关问题1

高等数学 第二类曲线积分与路径无关问题1
高等数学 第二类曲线积分与路径无关问题1

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称性, 参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

高等数学公式总结(绝对完整版).

高等数学公式大全 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

(完整)高等数学常用积分公式查询表

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学积分表推导全过程

1 (一)含有ax+b 的积分 1.C b ax a b ax d b ax a dx ++=++=+??ln 1)(11b ax 2.()()C u a b ax b ax d a dx u u u +++= ++=+??)1()()(b ax 1b ax 3. C b ax b b ax a b ax b ax d a b dax b ax b ax a dx b ax b b ax a dx b ax ax a dx b ax x ++-+=++-++=+-+=+=+?????)ln (1 )(111222 4.?? ????++-+-++=+--+=+=+??????b ax b ax d b b ax d b b ax d b ax a dx b ax b abx b ax a dx b ax x a a dx b ax x )()(2)()(12)(11232222222 C b ax b b ax b b ax a +?? ????+-+-+= ln )(2)(2112 23 5. ()C x b ax b x C a b b ax b C ax b ax b dx ax b ax b a b ax x dx ++-=++++-=+-+-=??? ??-+-=+??ln 1ln ln 1ln 1ln ln 111)(11 6.()()C x b a b ax b a bx x dx b a b ax dx b a dx x b dx bx a b ax b a x b b ax x dx +-++-=-++=??????-++=+?????ln ln 11111222222222 C x b ax b a bx +++= ln 12 7.()()()()C b ax a b b ax a b ax dx a b b ax dx a dx b ax a b b ax a b ax xdx ++?++=+-+=?? ????+-+=+????1ln 11122222 C b ax b b ax a +?? ? ??+++= ln 12 8.()()()()()???? +??? ? ??+-+-=+-+-=+--+=+C b ax b b ax b ax a b ax dx a b b ax xdx a b a x dx b ax a b a bx b ax a dx b ax x 23222222 2 22 22ln 21221 9. ()()()()C x b ax b b ax b C b x b ax b b ax b x dx b b ax dx b a b ax b adx b ax x dx ++-+=+++-+=++-+-=+????ln 11ln ln 111222 2222 (二)含有b ax +的积分 10. ()()C b ax a b ax d b ax a dx b ax ++=++= +??3 321 11.()()()()()???+-= ++-+= +-++=+3 2 32 5 22315232521b ax b ax a C b ax a b b ax a dx b ax a b dx b ax b ax a dx b ax x C + 12. () ()()?--+=+-+-++=+????b ax a a b b ax a dx b ax a b dx b ax x a b dx b ax b ax a dx b ax x 23152 [ 272 21 2 73 222 2 2 ()()()() C b ax b abx x a a C b ax a b b ax +++-= ++-+3 2223 33 2 3 812151052 32]

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. =1arsh x C a +=ln(x C ++ 32. C + 33. x C + 34. x =C + 35.2 x 2ln(2a x C -++ 39.x 2 ln(2a x C +++ 43.d x x ?=ln a a C x ++ 44.2d x x ?=ln(x C +++ 47. x C 53.x 2 ln 2 a x C + 57.d x x ?arccos a a C x + 59. =arcsin x C a + 61. x =C

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

高等数学曲面积分与曲线积分重点难点

第十二章曲线积分与曲面积分 一.基本要求 1.正确理解两类曲线积分与两类曲面积分的概念和性质及几何意义和物理意义。 2.熟练掌握两类曲线积分和两类曲面积分的计算方法,了解两类曲线积分和两 类曲面积分之间相互关系。 3.掌握格林公式及应用,熟悉和会应用平面曲线积分与路经无关的条件。掌握 二元函数全微分方程的求解方法。 4.掌握高斯公式及应用,了解斯托克斯公式,知道通量与散度,环流量与旋度。 5.会用曲线积分和曲面积分求一些几何量与物理量(弧长、曲面面积、质量、 重心、转动惯量、功及流量等)。 二.主要内容(见第二页至第十三页) 1.主要内容联系(框图) 2.曲线积分和曲面积分(表格) 3.曲线和曲面积分的解题步骤(框图) 4.格林公式、高斯公式及斯托克斯公式(表格) 5.在平面区域G上曲线积分与路径无关的(四个等价)条件(框图) 6.全微分方程(框图) 7.注解(注一至注十)(表格) 三.考点与难点 考点: 1.两类曲线积分化为定积分的计算方法及两类曲面积分化为二重积分的计算

方法。 2.格林公式和高斯公式成立的条件和结论,正确灵活地应用格林公式和高斯 公式。 3.应用平面曲线积分与路径无关的四个条件。 4.曲线积分和曲面积分的几何意义和物理意义,将几何问题和物理问题化为曲线积分问题和曲面积分问题求解。 难点: 应用各类型的积分之间关系,选择合适的(可计算的,更方便的)积分计算。 四.例题及题解(见第十四页至第二十一页) 例1至例15 五.部分习题题解(见第二十二页至第三十页) 习题(一)至习题(十五) 六.试卷(见第三十一页至第三十八页) 试卷)(A 、试卷)(B 、试卷)(C 七.试卷答案及题解(见第三十九页至第四十六页) 试卷)(A 、试卷)(B 、试卷)(C 答案及题解 二.主要內容 1。主要内容联系(框图)

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

高等数学常用导数积分公式查询表好

(1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- +

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2. ()d ax b x μ +?= 11 ()(1) ax b C a μμ++++(1μ≠-) ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

第二类曲线积分典型例题解析

高等数学(2)第12章第二类曲线积分典型例题解析 例1 若对任意的x ,y 有y P x Q ??≡??,设C 是有向闭曲线,则?+C y Q x P d d = . 解:由格林公式将 y x y P x Q y y x Q x y x P D C d d )( d ),(d ),(??-??=+??? 其中D 为C l 围成的平面区域,及条件 y P x Q ??≡??知,应该填写:0 例2._______d d =+-? y x x y l ,其中l 是延圆周1)1()1(2 2 =-+-y x 正向一周. 解:因为圆周1)1()1(2 2=-+-y x 所围圆面积D 为:π?2 1,由格林公式得: ?? ?+=+-D l y x y x x y d d )11(d d =π2,应该填写:π2 例3 若),(y x P 及),(y x Q 在单连通域D 内有连续的一阶偏导数,则在D 内,曲线积分? +l y Q x P d d 与路径无关的充分必要条件是( ). A .在域D 内恒有 y Q x P ??=?? B .在域D 内恒有y P x Q ??=?? C .在D 内任一条闭曲线l '上,曲线积分0d d ≠+?' l y Q x P D .在D 内任一条闭曲线l '上,曲线积分 0d d =+?' l y Q x P 解:若),(),,(y x Q y x P 在单连通区域D 内有一阶连续偏导数,则 ?+l y y x Q x y x P d ),(d ),(与路径无关D y x y P x Q ∈??=??? ),(,。 所以选择:B 例4 设C 是平面上有向曲线,下列曲线积分中,( )是与路径无关的. A .? +C y x x yx d d 332 B .?-C y x x y d d C . ?-C y x x xy d d 22 D .?+C y y x yx d d 33 2 解:因为选项A 中, 23323)(,3)3(x x x x Q x y yx y P =??=??=??=??,由曲线积分与路径无关的充分必要条件知道,正确选择:A

第二类曲线积分的计算修订版

第二类曲线积分的计算 Document number:PBGCG-0857-BTDO-0089-PTT1998

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

第二类曲线积分典型例题解析

第二类曲线积分典型例 题解析 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

高等数学(2)第12章第二类曲线积分典型例题解析 例1 若对任意的x ,y 有y P x Q ??≡??,设C 是有向闭曲线,则?+C y Q x P d d = . 解:由格林公式将 其中D 为C l 围成的平面区域,及条件y P x Q ??≡??知,应该填写:0 例2._______d d =+-?y x x y l ,其中l 是延圆周1)1()1(22=-+-y x 正向一周. 解:因为圆周1)1()1(22=-+-y x 所围圆面积D 为:π?21,由格林公式得:???+=+-D l y x y x x y d d )11(d d =π2,应该填写:π2 例3 若),(y x P 及),(y x Q 在单连通域D 内有连续的一阶偏导数,则在D 内,曲线积分?+l y Q x P d d 与路径无关的充分必要条件是( ). A .在域D 内恒有y Q x P ??=?? B .在域D 内恒有y P x Q ??=?? C .在D 内任一条闭曲线l '上,曲线积分0d d ≠+?'l y Q x P D .在D 内任一条闭曲线l '上,曲线积分0d d =+?' l y Q x P 解:若),(),,(y x Q y x P 在单连通区域D 内有一阶连续偏导数,则 ?+l y y x Q x y x P d ),(d ),(与路径无关D y x y P x Q ∈??=???),(,。 所以选择:B 例4 设C 是平面上有向曲线,下列曲线积分中,( )是与路径无关的. A .?+C y x x yx d d 332 B .?-C y x x y d d C .?-C y x x xy d d 22 D .?+C y y x yx d d 332

曲线积分与曲面积分 期末复习题 高等数学下册

第十章 曲线积分与曲面积分答案 一、选择题 1.曲线积分 ()sin ()cos x L f x e ydx f x ydy ??--? ??与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = B A. 1()2x x e e -- B. 1()2x x e e -- C. 1 ()2 x x e e -+ 2.闭曲线C 为1x y +=的正向,则 C ydx xdy x y -+=+?? C .2 C 3.闭曲线C 为2 2 41x y +=的正向,则 224C ydx xdy x y -+=+?? D A.2π- B. 2π D. π 4.∑为YOZ 平面上2 2 1y z +≤,则 222 ()x y z ds ∑ ++=?? D B. π C. 14 π D. 1 2 π 5.设222:C x y a +=,则22 ()C x y ds +=?? C A.2 2a π B. 2 a π C. 32a π D. 3 4a π 6. 设∑为球面2 2 2 1x y z ++= ,则曲面积分 ∑ [ B ] A.4π B.2π C.π D.12 π 7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分 ? =L yds [ C ] A. 21 B. 2 1 - C. 22 D. 22- 8. 设I=? L ds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧, 则I=[D ] A. 655 B.1255 C.6155- D. 12 1 55-

9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A. ?-l ydy xdx 21; B. ?-l xdx ydy 2 1 ; C. ?-l xdy ydx 21; D. ?-l ydx xdy 21 。 10.设2 2 2 2 :(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 C A.1 4S S xds xds =???? B.1 4S S yds yds =???? C.1 4S S zds zds =???? D.1 4S S xyzds xyzds =???? 二、填空题 1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分 ?=+-L y dy x e ydx )(2 -2 为球面2222a z y x =++的外侧,则??=-+-+-s dxdy y x dzdx x z dydz z y )()()(0 3. ? =++-12 2 22y x y x xdy ydx =π2- 4.曲线积分 2 2()C x y ds +??,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5 .设∑为上半球面)0z z = ≥,则曲面积分()222ds y x z ∑ ++??= 32π 6. 设曲线C 为圆周2 2 1x y +=,则曲线积分 ()2 23d C x y x s +-?? 2π . 7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分?=+C ds ) y x ( 8. 设∑为上半球面z =,则曲面积分 ∑ 的值为 8 3 π。 9. 光滑曲面z=f (x ,y )在xoy 平面上的投影区域为D ,则曲面z=f (x ,y )的面积是 ????+??+=D d y z x z S σ22)()( 1 10.设L 是抛物线3 y x =上从点(2,8)到点(0,0)的一段弧,则曲线积分(24)L x y dx -=? 12

相关文档
相关文档 最新文档