文档视界 最新最全的文档下载
当前位置:文档视界 › 15W纯甲类功放电路图及原理

15W纯甲类功放电路图及原理

15W纯甲类功放电路图及原理

纵观目前市场上的Hi-Fi功放,输出功率在100W以上的以甲乙类放大产品居多,50~100W的功放中甲类放大产品占有相当的比例。从高保真的角度来看,功率储备大些当然是好,但若从节省能源的角度来看,就值得考虑了。由于纯甲类功放的效率很低,所以在您欣赏美妙音乐的同时,约有百分之七八十以上的电能变成热量散发掉了。一台每声道输出功率为50W的纯甲类功放,若以30%计其效率,则静态功耗就有 330W之大,说句玩笑话,简直是“守着火炉吃西瓜”。笔者在帮人选购功放时就经常遇到这样的情况:很多人虽然为纯甲类功放的音色所倾倒,但也往往因其“发高烧”的工作状态而忍痛割爱。功耗大也是电子管功放的致命弱点。市场经济是无情的。国内几家有名的生产胆机的厂家,如斯巴克、欧博、大极典也先后推出了自己的晶体管功放,就证明了这一点。

根据我国国情,一般工薪阶层的居室面积多在二十平方米以下,并且通常以客厅或卧室兼作听音室。若音箱的灵敏度在89dB 以上,则10~20W的纯甲类功放就可满足一般欣赏要求。如果在歌舞厅里那样的环境中让我们的耳朵长期承受大音量,听力就会逐渐

减退。再说,吵得左邻右舍不得安宁,也不合适。所以说,如果生产一些功率在15W左右的音质音色较好的功放,静态功耗在100W以下,肯定会有市场。可惜这类功放是个空白。日本金嗓子有一款

A20,每声道纯甲类功放20W,音质有口皆碑,但价钱却令人望而却步。现在,国内生产功放的厂家似乎在攀比,功率越做越大,重量越做越重,但销路却不见得很好。何不制作一些“好吃不贵”的功放来投放市场呢?本着这个思想,我们设计了这台15W纯甲类功放,试图在这方面做一些尝试。

一电路原理

1、功放电路

由 VT1、 VT2组成差动放大电路,每管静态电流约为0.5mA。R3为VT1的集电极负载电阻,VT1与推动级VT4之间为直接耦合。输出级由两只型号相同的 NPN型大功率晶体管VT5、VT6组成,而没有采用互补对称推挽电路。输出管VT6对于负载(扬声器)来说是共发射极电路,而VT5则是射极输出电路,因此是不对称放大。但实验测试表明,整个放大电路在取消大环负反馈(将R5短路)时的开环失真却很小,而且主要是偶次谐波失真。这个功劳应该归功于推动

级电路。推动电路是本机最具特色的电路,它的作用和效果与传统的RC自举电路相比,有过之而无不及。VT4为集-射分割式倒相电路,分别由其集电极和发射极输出一对大小相等、方向相反的信号。VT4对于输出管VT6来说为射极输出电路,电压放大倍数小于1。从VT4集电极输出的信号通过交流电阻很小的发光二极体

VD1,加到输出推动管VT3的基极。VD1的正向导通压降约为1.9V 左右,可看作一个噪声很小的稳压二极管,它使得VT3的发射极电阻R7两端的直流电压UEC基本不变,约比VD1的稳压值小0.7V。对交流信号而言,R7是与VT3的发射结电阻相并联的。VT3和VT5组成同极性达林顿式复合管。因此推挽放大的上臂是由一级共射放大电路(VT4)和二级射极输出电路(VT3、VT5)构成的,而推挽电路的下臂是则由一级射极输出电路(VT4)和一级共射放大电路(VT6)构成,可见是不对称的推挽放大电路。故在选择放大管时,这几只管子的电流放大系数也不必配对。这一点在工厂大批量生产时尤为重要,可以大大降低成本。该样机各管β值如下:

β1=β2=110,β3=50,β4=90,β5=70,β6=90。也就是说,要把β值较大的管子优先安排为VT4和VT6。该功放电路的开环电压放大倍数约为504,闭环电压放大倍数由R4和R5决定,约为

15.7。甲类推挽功率放大电路的理论最高效率为50%,该样机实测最大不失真输出电压的有效值为11V,折合成输出功率约为15W (8Ω),静态功耗约为40W,因此最高效率为37.5%。当无信号输入时,效率为零,40W功率几乎全部消耗于两只输出管上,因此要加上足够面积的散热器,并且保证通风情况良好。

总之,该功放有以下特点:

1功率输出管的电流放大系数不需配对;

2用笔者设计的推动电路取代了传统的自举电路,频率响应好;

3输出电压幅度大;

4电路简单、调整容易、便于制作。

2、稳压电源

由于功放为OCL电路,输出端与扬声器直接耦合,故一般应加装延时保护电路,但由于该机采用了具有短路保护及软启动功能的±17V 双路稳压电源,故省略了这部分电路。正负稳压电路均采用集电极

输出式调整电路,效率高且具有短路保护功能,但不能够自启动。VT7、VT9组成复合电源调整管。 VT11为取样放大管。由于VT11的基极接地,故发射极电位必须为-0.7V才能使它工作于放大状态。所以R19的下端不能接地,而是接至-17V。所以,如果万一负输出电源对地短路,将会使 VT11的发射极与基极间的电压为零,从而使VT11截止,这样调整管VT9、VT7因得不到基极电流也截止,结果使得正输出电源电压为零。由于正、负稳压电路是对称的,故当正电源对地短路时,也会使负电源电压为零。功放电路的输出端省却了扬声器保护电路的原因也在于此,万一有一只输出管发生击穿短路,另一只输出管也会由于上述保护功能而得不到电源电压,这样扬声器中就不会有大的直流电流通过,从而有效地保护了扬声器。

该电源的输出电压基本上由VD4、VD5两只稳压管的稳压值决定,约比它们的稳压值低0.7V左右(即减去VT11、VT12的发射结直流压降),故对两只稳压管要仔细挑选配对。

输入端滤波电容器每边采用两只4700μF的电解电容器并联使用,而输出端的滤波电容器每边仅采用一只10μF的无极性电容

器。通过样机实测,当输出电流为2.4A(满载)时的纹波电压很小:正电源侧为0.8mV,负电源侧为1.25mV。此外,波形并非

100Hz的锯齿状,而是频谱较宽的噪声状。

该电源的稳压性能之所以较好,一是由于集电极输出式稳压电路的调整管具有一定的电压放大倍数,二是由于取样电路的取样比等于1,输出端的电压变化直接通过VD4、VD5耦合到了取样放大管VT11、VT12的发射极。

为了消除一般OCL电路开机时通过扬声器的冲击电流造成的“噗”声,该电源还设计了软启动电路。其工作原理如下:开机后,滤波电容器C3上的正电压通过 R10向C5充电,C5上的电压按指数规律上升。该电压通过R12及VD2加到正电源输出端,同时通过R16为VT12的发射极提供电流,使负电源也同时启动。电源电压达到正常值后,正输出电压通过R14给单向可控硅VD3提供触发电压而使它导通。VD3导通后,其阳极电压降低到0.7V以下,故二极管 VD2截止。C5上的电压通过R12和VD3放电。延迟时间由

R10、C5时间常数决定,本例中此常数为0.33秒,开机时音箱中一点儿声响都没有。

该电源的效率很高,调整管集电极和发射极之间电压降至1V 时,输出电压仍可保持稳定。若市电交流电压为220V时,稳压电路的输入电压设定为±22V (带额定负载),则可以使稳压电源在市电变化±10%时,仍工作在最佳状态。若以调整管压降为7V计算,在满负荷2.4A时的管耗约17W,因此只需较小的散热器,此时效率在70%以上。当调整管压降为3V时,效率为85%。

总之,该电源电路特点是:具有软启动功能;具有正负电源分别短路或同时短路的保护功能,可省去扬声器保护电路;高效率,约70~85%以上;低纹波系数。

二、制作与调整要点

1.元器件的选择

功率输出管VT5、VT6选用东芝的2SC3281,β在70~110之间。实验时也曾选用过三肯的2SC 2922,但发现容易产生高频自激。推动管VT4选用NEC的2SD401,β值为70~90,VT3也用

2SD401,β在50~70之间。当输出管的β值在100以上时,

VT3、VT4也可选用国产管3DG130(3DG12)。输入级VT1、VT2可选

用9012或9015等,β值在100左右,不宜太高,但要求配对;也可选用P沟道结型场效应晶体管,但耐压应不低于40V(因手头无此类管子,故未曾实验)。电阻的功率R6、R10应选1W以上, R7、R16、R19应选1/2W以上,其余不作要求。电阻 R9采用两只1W、0.51Ω电阻并联,作为测量时取样使用。稳压管VD4、VD5应选1W 以上功率的。单向可控硅可选1A电流的任何型号。

电源部分的VT7、VT8选用MJ2955和2N3055或其他互补配对管,要求β大些,最好大于80。推动管VT9、VT10选用中功率管3CK9、3DK9等,β值在50~80之间。取样放大管VT11、VT12选用9014和9015,β值大于100。还要注意正负电源各对应管的β值应该相近,即大致配对。电容C1、C6、C7选用涤纶或聚丙烯电容。稳压电源输入滤波电容C3、C4采用四只4700μF35V优质电解电容两两并联使用。

电源变压器功率容量应不小于100VA,次级交流电压双18V,电流3A以上。整流管可用1N5401。

2.调整要点

电源部分几乎不需要调整。如果电源不能自启动,则应适当减小R10的数值,但应在满载时能够自启动的前提下尽量大一些,以增大延迟时间。功放部分的调整可归结为两项;一是调整R2使输出端电位等于零;二是调整R6使R9上的压降等于0.3V,此时末级静态电流约为 1.18A。注意一开始可将电流调得稍小些,如0.9A,等预热一段时间以后再调到上述规定的数值。

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

功放的说明书

说明书 一、面板布置: 1、本功放由功放、播放器、电平指示器、扬声器四个模块组成。其中功放有放大音频信 号的功能,可把播放器音频、外接音频、话筒音频信号放大,通过调节旋钮可改变信号的大 小。播放器有读取内存卡里的音频文件并转化成音频信号(另有收音机功能)的功能。电平 指示模块是通过计算音频信号,获取音频里音调的高低信号,再通过led灯显示出来,具有 装饰的功能。扬声器是把音频信号转化成声音信号的作用。 2、正前方: 电平指示 13 14 ⑥⑦⑧⑨⑩ 11 12 ①②③④⑤ 左声道右声道①电源指示灯、②音频输入、③音量旋钮、④话筒音量旋钮、⑤话筒输 入、⑥播放器电源开关、⑦上一曲/音量-、⑧播放/暂停、⑨下一曲/音量+、⑩播放模式、11 数据线插孔、12 usb插孔、13播放器显示屏、14 sd卡插孔(注:11、12、14插孔都是输入 插孔,不能输出) 3、正后方: 变压器变压器线散热器遥控器电源线 耳机插孔 扬声器插头 注意:1、使用前检查电源线和变压器线是否完好,外层绝缘皮是否有破损, 若有破损则需要用电胶布粘住,防止皮肤接触而触电。 2、通电时最好不要触碰变压器和变压线。 3、使用时禁止触碰散热器、变压器,防止因温度过高而烫伤。 4、当使用耳机听音频时,只需把耳机插入耳机插孔,但要注意,在 使用耳机之前要控制好音量,防止音量过大而损坏耳机。一般操 作是先把音量调为最小,插入耳机后再慢慢增大。 二、使用步骤: 1、打开电源: 在打开电源前先把音乐音量,话筒音量④调为最小,并确定自带播放器开关⑥处于关闭 状态。然后把电源线接电,则电源指示灯会亮①。 2、接音频: 音频有两种,一种是外接音频输入②,另外一种是自带播放器输入,其优先级是外接音 频输入高于自带播放器音频输入。 (1)外接音频输入需用一根3.5mm音频线与外界播放器连接,另外一端必须接到功 放的外接“音频输入”②插孔,注意播放器的音量③应适当,否则将会烧坏功 放芯片和损坏喇叭。 (2)自带播放器输入:首先把优盘或sd卡插入相应位置11、12、13,然后把播放器 开关打开⑥,启动自带播放器。利用红外线遥控或播放器上的按钮进行操作。 3、调节音量: 找到音量旋钮(处正前方左端第一个旋钮③),顺时针方向旋转即为音量增大。 4、话筒的使用: 话筒选用3.5mm插头的驻极体话筒,一般连电脑话筒都可以使用,不可使用其他话筒。 话筒插头必须插到“话筒输入”⑤,注意区分“音频输入”②插孔。话筒音量也是瞬时针

甲类功放

甲类功放 概述 甲类功放(A类功放)输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不平衡的电流或电压,故无电流输入扬声器。当讯号趋向正极,线路上方的输出晶体管容许流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬声器而且推动扬声器发声。甲类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真(SwitchingDistortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路设计。但这种设计有利有弊,A类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为高热量。当讯号电平增加时,有些功率可进入负载,但许多仍转变为热量。 特点 甲类功放是重播音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足以补偿它的缺点。甲类功率功放发热量惊人,为了有效处理散热问题,甲类功放必须采用大型散热器。因为它的效率低,供电器一定要能提供充足的电流。一部25W 的甲类功放供电器的能力至少够100瓦AB类功放使用。所以甲类机的体积和重量都比甲乙类大,这让制造成本增加,售价也较贵。一般而言,甲类功放的售价约为同等功率甲乙类功放机的两倍或更多。 甲类功放声音上有饱满通透的优点,晶体管功率放大器是由三极管组成的,而三极管是由多组配对(N结及P结),这两个结构成的,当没有外加电压时是截止,只有在上面外加一个偏置电压并且高于它的门限电压,这个N/P结才会导通,有电流通过,三极管才开始工作。 甲类功放是把正向偏置定在最大输出功率的一半处,使功放在没有信号输入时也处于满负载工作状态,使得功放在整个信号周期内都导通都有电流输出。甲类功放使三极管始终工作于线性区,因此甲类功放几乎无失真,听感上质感特别好,尤其是小信号时,整个声音通透细节丰富。纯甲类功放它的造价也是惊人的,它电耗等于是一部空调。特别是百分之百的甲类功放就是指音箱阻抗怎样随频率变化,功放都能保持甲类工作而且输出功率足够,一对音箱虽然它的标称阻抗是8欧姆,便在工作时它的实际阻抗因素是会随频率变化的,时高时低,有时会低至1欧姆,这就要求功放的输出功率能随阻抗降低而倍增,也就是我们常看到的巨甲级数的功放所标输出功率指标,如贵丰单声道旗舰功放安替龙;175W(8Ω)、350W (4Ω)、700W(2Ω)1400W(1Ω),这才是百分之百纯甲功放。只有这样的功放才能使你听到纯甲类的音质。 纯甲类功放的几个为什么 一、为什么“热机”比“冷机”好听 功放刚开机尚无温升或温升较小时,机内温度和环境温度基本一致,此状态下功放称为冷机,这时各级静态电流还较小,末级电流仅二三十毫安(盛夏时稍大),相当于低偏置的甲乙类或乙类,声音自然“好听”不起来,但是随着结温的缓慢升高,每升高1℃,β增加约1%,Vbe减小约2.5mV,这两者同时作用,晶体管静态电流会升高得很快,当机器烘至热平衡时,各级工作点早已达到甲类额定偏置状态,此时声音也是地道的“甲类声”,因此也就相对“好听”。而且功放达热平衡后,各级静态工作点也趋稳定,也有利于改善听感。

15W纯甲类功放电路图及原理

15W纯甲类功放电路图及原理 2009年05月16日 纵观目前市场上的Hi-Fi功放,输出功率在100W以上的以甲乙类放大产品居多,50~100W的功放中甲类放大产品占有相当的比例。从高保真的角度来看,功率储备大些当然是好,但若从节省能源的角度来看,就值得考虑了。由于纯甲类功放的效率很低,所以在您欣赏美妙音乐的同时,约有百分之七八十以上的电能变成热量散发掉了。一台每声道输出功率为50W的纯甲类功放,若以30%计其效率,则静态功耗就有 330W之大,说句玩笑话,简直是“守着火炉吃西瓜”。笔者在帮人选购功放时就经常遇到这样的情况:很多人虽然为纯甲类功放的音色所倾倒,但也往往因其“发高烧”的工作状态而忍痛割爱。功耗大也是电子管功放的致命弱点。市场经济是无情的。国内几家有名的生产胆机的厂家,如斯巴克、欧博、大极典也先后推出了自己的晶体管功放,就证明了这一点。 根据我国国情,一般工薪阶层的居室面积多在二十平方米以下,并且通常以客厅或卧室兼作听音室。若音箱的灵敏度在89dB以上,则10~20W的纯甲类功放就可满足一般欣赏要求。如果在歌舞厅里那样的环境中让我们的耳朵长期承受大音量,听力就会逐渐减退。再说,吵得左邻右舍不得安宁,也不合适。所以说,如果生产一些功率在15W左右的音质音色较好的功放,静态功耗在100W以下,肯定会有市场。可惜这类功放是个空白。日本金嗓子有一款A20,每声道纯甲类功放20W,音质有口皆碑,但价钱却令人望而却步。现在,国内生产功放的厂家似乎在攀比,功率越做越大,重量越做越重,但销路却不见得很好。何不制作一些“好吃不贵”的功放来投放市场呢?本着这个思想,我们设计了这台15W纯甲类功放,试图在这方面做一些尝试。 一电路原理 1、功放电路

单端场效应管甲类功率放大器制作

由于甲类功放在信号放大过程中,不存在交越失真,音乐味浓郁.深受音响发烧友推崇而制约甲类功放普及的一个重要因素是几乎所有的单端甲类机器都需要输出变压器;另外甲类机器功耗较大.机器的稳定性也受到影响。 一般家用的甲类功放,具有的6 W 的功率输出.足以满足音乐欣赏的要求.前提是听音面积不能太大.另外音箱要有较好的灵敏度,从降低制作成本、减小功耗、提高可靠性的角度考虑.需要选择一种结构简单,功耗相对较低的线路。 PASS ZEN 系列放大器具有结构简单,音质好等突出优点。PASS ZEN1放大器比PASS ZEN4,A5等放大器输出功率小得多.电路非常简洁,且静态功耗也小得多.由于PASS ZEN1采用电容作耦合输出,可避免直流输出对扬声器造成的损坏,所以制作时可省去扬声器保护电路;不必担心电容输出放大器的低频下潜问题,从实际测试和听音情况看,声音在20-20000Hz范围内比较平坦,同时由于采用V MOS放大管,音色酷似电子管放大器。 PASS ZEN1放大器原理图如图1所示,从电路上可以看出ZEN1是一级恒流源负载的放大电路,利用IRFP9240作为恒流管,工作在甲类放大状态。由于原理图中所标注型号MOS管较难购买到,实际制作时本机选用代用管。其中MSA92用A1013代替,IRFP9240用IRFP9640代替,IRFP140用IRFP640代替,当然也可选取类似VMOS管做替代实验,但由于脚位及开启电压差别过大,不应用K系列与J系列场效应管。 下面就制作过程中的几个关键问题做介绍。 (1)电源电路 由于PASS ZEN1放大器工作在单端甲类状态,双通道工作时,静态电流约为4 A,如采用单只变压器供电,变压器容量与次级线径均要较大,否则采用每声道独立供电是个不错的选择。本机采用1只500W 环牛为双声道供电;由于静态电流较大,整流桥的容量、品质一定要有保证,双声道供电应选用50A整流

功放电路工作原理

功放电路工作原理 功放电路工作原理1.互补对称式OTL电路工作原理 目前OTL功率放大器几乎全部采用互补对称式电路,如图3-6所示,集成电路OTL功率放大器内部电路也是采用互补对称电路形式。 图中VT1为推动管,VT2、VT3为互补管,VD4是偏置二极管,它处于正向偏置时,其压降约为0.6V,当其导通时,其内阻很小,因而它对于交流而言是短路的,可以认为是放大器在工作时,交流信号同时加在VT2、VT3两管的基极上。 R3、R4为VT2提供了静态偏置电流,C点电压通过R5、R1为VT1提供一个偏置电压,使VT1处于甲类导通状态,当VT1导通后,B点电位由高电平转变为低电平,使二极管VD4正向导通,VT3获得正向偏置电压,处于导通状态。在静态时,由于R3、R4和VD4为VT2、VT3提供很小的正向偏置电压,使VT2、VT3处于甲乙类状态,以克服交越失真。 由于VT2、VT3两管的参数相近,偏置相同,因此两管平分+U电压,即C点电位为1/2U。这也是该电路正常工作时的最大特点,否则,电路工作不正常或电路中有元器件损坏。 输入信号经C1耦合,加到VT1的基级。经VT1放大后的信号从VT1的集电级输出,其输出波形与输入信号波形反相。 在VT1输出正半周信号期间,VT3退出微导通状态而处于截止状态。VT2疏通,故信号经放大后由发射级输出经C4耦合加到扬声器中,这时信号电流从上而下流过扬声器,完成正半周信号的放大过程,在正半周信号结束,即在零点时,电路处于静止状态,此时C 点电压为1/2U,这一电压通过扬声器对C4充电,使C4上充得左正右负的1/2U电压。 在VT1的集电极输出负半周信号时,VT3获得正向偏置而导通,VT2反向偏置而截止,VT3只能通过电容C4储存的电荷工作,这时负半周信号电流的回路是C4正极一VT3发射极---VT3集电极---地—扬声器—C4负极。这时信号电流自上而下流经扬声器,完成负半周信号的放大过程,这样就在扬声器上获得了一个完整周期的信号电流激励,当负信号

15W纯甲类功放电路图及原理

15W純甲類功放電路圖及原理 2009-06-12 22:01:21.0 縱觀目前市場上的Hi-Fi功放,輸出功率在100W以上的以甲乙類放大產品居多,50~100W 的功放中甲類放大產品佔有相當的比例。從高保真的角度來看,功率儲備大些當然是好,但若從節省能源的角度來看,就值得考慮了。由於純甲類功放的效率很低,所以在您欣賞美妙音樂的同時,約有百分之七八十以上的電能變成熱量散發掉了。一台每聲道輸出功率為50W的純甲類功放,若以30%計其效率,則靜態功耗就有330W之大,說句玩笑話,簡直是“守著火爐吃西瓜”。筆者在幫人選購功放時就經常遇到這樣的情況:很多人雖然為純甲類功放的音色所傾倒,但也往往因其“發高燒”的工作狀態而忍痛割愛。功耗大也是電子管功放的致命弱點。市場經濟是無情的。國內幾家有名的生產膽機的廠家,如斯巴克、歐博、大極典也先後推出了自己的電晶體功放,就證明了這一點。 根據我國國情,一般工薪階層的居室面積多在二十平方米以下,並且通常以客廳或臥室兼作聽音室。若音箱的靈敏度在89dB以上,則10~20W的純甲類功放就可滿足一般欣賞要求。如果在歌舞廳裏那樣的環境中讓我們的耳朵長期承受大音量,聽力就會逐漸減退。再說,吵得左鄰右捨不得安寧,也不合適。所以說,如果生產一些功率在15W左右的音質音色較好的功放,靜態功耗在100W以下,肯定會有市場。可惜這類功放是個空白。日本金嗓子有一款A20,每聲道純甲類功放20W,音質有口皆碑,但價錢卻令人望而卻步。現在,國內生產功放的廠家似乎在攀比,功率越做越大,重量越做越重,但銷路卻不見得很好。何不製作一些“好吃不貴”的功放來投放市場呢?本著這個思想,我們設計了這臺15W純甲類功放,試圖在這方面做一些嘗試。 一電路原理 1、功放電路 由VT1、VT2組成差動放大電路,每管靜態電流約為0.5mA。R3為VT1的集電極負載電阻,VT1與推動級VT4之間為直接耦合。輸出級由兩隻型號相同的NPN型大功率電晶體VT5、VT6組成,而沒有採用互補對稱推挽電路。輸出管VT6對於負載(揚聲器)來說是共發射極電路,而VT5則是射極輸出電路,因此是不對稱放大。但實驗測試表明,整個放大電路在取消大環負反饋(將R5短路)時的開環失真卻很小,而且主要是偶次諧波失真。這個功勞應該歸功於推動級電路。推動電路是本機最具特色的電路,它的作用和效果與傳統的RC自舉電路相比,有過之而無不及。VT4為集-射分割式倒相電路,分別由其集電極和發射極輸出一對大小相等、方向相反的信號。VT4對於輸出管VT6來說為射極輸出電路,電壓放大倍數小于1。從VT4集電極輸出的信號通過交流電阻很小的發光二極體VD1,加到輸出推動管VT3的基極。VD1的正嚮導通壓降約為1.9V左右,可看作一個噪聲

TDA2030工作原理

TDA2030工作原理: 用两块TDA2030 组成如图1所示的BTL功放电路,TDA2030(1)为同相放大器,输入信号Vin通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为KVC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01 经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益KVC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即:U01≈Uin?R3 / R2U02≈-U01?R9 / R5 ∵R9=R5 ∴U02 =-U01 因此TDA2030在扬声器上得到的交流电压应为: êUY?=U01 -(-U02)=2U01 =2U02 扬声器得到的功率PY 按下式计算: PY ===4=4 PMONO 电路以TDA2030为中心组成的功率放大器,特点有:失真小、外围元件少、装配简单、功率大、保真度高等,很适合无线电爱好者和音响发烧友自制,学生组装。特意提供TDA2030功放电路图.工作原理:电路中D1—D4为整流二极管,C11为滤波电容,C12为高频退耦电容;RP1为音量调节电位器;IC1、IC2是两个声道的功放集成电路;R1、R2、R3、C2(R7、R8、R9、C7)为功放IC输入端的偏置电路,本电路为单电源供电,功放IC输入端直流电压为1/2电源 电路以TDA2030为中心组成的功率放大器,特点有:失真小、外围元件少、装配简单、功率大、保真度高等,很适合无线电爱好者和音响发烧友自制,学生组装。特意提供TDA2030功放电路图. 三、功放电路图

功放电路

你好,那三个连接失效了,给你另外找了个,你可以参考一下。 制作靓声甲类功放 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分 使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分 有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好评的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试

“简洁至上”的晶体管甲类音频功率放大器3

Hi-Fi界有一句至理名言,就是“简洁至上”。这就是说,假如能用一个元件或器件做成的电路,就尽量不用两个。电子电路中常用的电子元件有电阻、电容、电感等,常用的电子器件有二极管、三极管及集成电路等。电阻、电容都属于线性元件,在放大电路中可以认为不会因它们而产生非线性失真。但是,目前用于放大的电子器件,不论是电子管、晶体管,还是集成电路,统统都是非线性器件,它们是放大电路中产生非线性失真的根源。因此,在放大电路中应尽量少用管子。要做到这一点也并非容易,所以通常所见到的放大电路都比较复杂。要想“简洁”,必须解决两个问题:一是放大倍数要足够大,至少应该在接CD机时能够达到额定的输出功率;二是非线性失真要尽量小些,在不加负反馈或只加少量的负反馈时,谐波失真系数能够达到Hi-Fi要求。 功率放大器的输出电路方式,可按有无输出变压器分为两类。无输出变压器的功放电路为了使扬声器中无直流电流通过,必须采用电容耦合(OTL电路)或者正负两套电源(OCL电路)。本文介绍的晶体管甲类音频放大器选用变压器输出的单管放大方式,每声道只用两只管子,而若采用互补推挽电路,则至少要用四五只管子。由于所用的输出变压器初级阻抗只有几十欧姆,所以绕制起来很容易,性能也很容易达到要求。采用变压器输出的一个突出优点就是可以避免烧扬声器。另外,变压器次级线圈极小的直流电阻,会改善扬声器的阻尼,使瞬态失真减小。 电路结构与特点 该晶体管甲类音频功率放大器电路及电源电路如图1所示。这一功放电路具有高达15W 的有效值输出功率,它只用两只晶体管,并把它们直接相连,复合成一只高跨导的功率场效应晶体管。这是笔者受到绝缘栅双极型晶体管(IGBT)的启发偶尔想到的。IGBT是一种新型半导体功率器件,已成功地应用于高频开关电源中,近几年在高保真声频功率放大器中也常见到它的踪影。它兼有双极型晶体管(即普通PNP、NPN晶体管)和单极型晶体管(即场效应管)两者的优点,但没有两者各自的缺点,所以应用前景非常广阔。普通晶体管的饱和压降小,但开关速度慢,而且是正温度系数。场效应管不需要输入电流,开关速度快,具有负的温度系数,但是导通电阻较大。IGBT的等效电路如图2所示,图中(a)示出了由P沟道场效应管和NPN型晶体管复合而成的IGBT等效电路,(b)示出了由N沟道场效应管和PNP型晶体管复合而成的IGBT等效电路。由于目前的IGBT主要设计目的是用于开关电路而不是线性放大电路,所以其输出特性曲线的线性不太好。笔者采用了一只性能优良的日立名管2SJ77与一只国产大功率晶体管3DD9按IGBT结构复合成输出管。2SJ77(互补管为2SK214)是专门设计用于线性放大的中功率MOSFET,在高保真功率放大器中常用作推动管,口碑颇好。其跨导高达40mA/V(或40mS),输入电容CIS为90pF,还不到大功率场效应管2SJ49(2SK134)输入电容的六分之一。

甲类功率放大器电路、特点及功率计算

甲类功率放大器电路、特点及功率计算 本文将介绍音频功率放大器的甲类放大器,包括甲类放大器的特点、功率计算以及单端甲类功率放大器电路图。 甲类功率放大器的特点音频功率放大器分为甲类放大器和乙类放大器。甲类放大器由于用两只功率管分别担任正半周和负半周音频放大。故声音大,音质好,失真小。又称推挽放大。被现在普遍使用。乙类放大器用单管作半周放大,缺点是功率小,失真大,音质差,使用较少。 甲类功率放大器的功率计算甲类功放不存在交越失真,音频信号可以完整地传输。甲类功放是发烧友追求的目标。一部甲类功放,一其输出功率是多少?功率损耗是多少?这些都是甲类功放制作的前期理论计算。甲类功放多采用NPN 与PNP 配对的推挽式工作方式。 推挽式甲类功放电路,可以看成是由2 个单管式甲类射极器组成。 正电源的NPN 管与负电源的PNP 管分别工作于甲类状态,对整个音频信号进行放大。输出到音箱。 推挽式甲类功放在进行组装调试前一定要知道,做多大的功率?需要多大静态电流?供应电流是多少?损耗是多少?这方面的资料难寻。有些生产厂家在甲类功放上标示的功率是不是真有这么大?购买者都想核实。如何达到以上目标呢? 这就需要对推挽式甲类功放进行理论分析。 图1 是甲类推挽式功放输出电路,这个输出电路可以分解成图2。 图1 甲类推挽式功放输出电路 图2 输出电路分解图 从图2 可知,喇叭所获得的电流是由NPN 和PNP 三极管分别提供的。NPN

功放管和PNP功放管输入的音频信号极性是相同的。 甲类工作状态就是三极管在工作时任何时候都有电流。不论驱动近年来,许多人以低价销售安装中星6B的C波段接收装置。但一般未满两年这些锅体便因严重锈蚀而纷纷解体,以致无信号是正值还是负值,末级管都有电流流过。单管甲类工作集电极电流波形见图3。以正弦波为例,静态电流为正弦波峰值即Io=lf,最大电流为2倍波峰值即Imax=21f=2I.这样的静态电流设置可保证整个信号周期内三极管都有电流流过。要求功放输出功率,必须求出输出电流有效值。电流有效值见图3所示。 输出电流波形阴影部分面积之和等效值: 每个管子甲类输出功率为P甲1=I02Z(Z为输出阻抗)。NPN和PNP两个末级管总输出甲类功率为P甲2=2P甲1=2I02Z.一般音箱阻抗为Z=8Ω。公式简化为P甲2=2I02Z8=16I02z. 识别方法:功放部分使用同样两只功放管的电路,一般就是甲类功放器。 单端甲类功率放大器电路图tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

用分立元件制作甲类功放

用分立元件制作甲类功放 一、甲类功放概述 甲类功放(A 类功放)输出级两个(或两组)晶体管一直处于导通状态,也确实是说不管有无输入信号,它们都维持有导通电流。无输入信号时,上下半区功率功率管通过的电流相等(也确实是静态电流);有输入信号时,上下半区功率功率管通过的电流不等,具体状况如表1。 表1 甲类功放晶体管工作电流 输入波形 工作方式 等效电路电流分配 晶体管VT1的电流为1E i 晶体管VT2的电流为2E i 1E i >2E i O i =1E i -2E i 信号为零时 1E i =2E i (≠0)静态电流 O i =0,扬声器无电流 晶体管VT1的电流为1E i 晶体管VT2的电流为2E i 1E i <2E i O i =2E i -1E i 1.概述 本电路是参照美国名器MONARCHY (帝皇之声)SM-70之电路原理,稍作改动完成的一台线路简练、易安装、易调试、易校声,工作稳固的甲类音频功率放大器。由于左右声道电路完全相同,因此那个地址只给出右声道的电路,如图1所示。 主功率电源±VCC 直接提供给大功率场效应管,±VCC 经穿芯磁阻(抑制高频干绕)送到可调三端稳压器LM317/337,变换成±22V 对称电压供给前置电压放大器;前置电压放大器是大体的同相较例放大器;信号输入用小容量MKS 电容与到大容量MKP 电容并联,用于弥补大容量MKP 电容对高频耦合的不足。

电路结构并非复杂,但元器件的、规格型号却是用心之选,表现了甲类功放造价昂贵的特点。比如,变压器二次侧为两组独立的AC24V,输出功率可达200W;整流桥堆BR252输出电流可达25A;效应管采纳2SK413/2SJ118(假设用2SK1058/2SJ162或许更好);R20~R23采纳5W无感电阻;集成运放选用美国BB(Burr-Brown)公司专为音频而设计的OPA2604,它音色醇厚、圆润,中性偏暖、胆味甚浓,声底较醇厚且略具刚性,专门适合音乐的表现,被誉为最有电子管音色的运算放大器。另外,信号耦合、滤波电容多采纳MKP、MKT和MKS型号,算是音响用电容的中高级水平了。 2.电路调试 调试要点:元件准确无误按图焊好,先将VR2旋至最大值。 (1)接上两组交流电AC24V,旋动VR1,使IC1的④、⑧脚有±22V的直流电压,插入集成运放; (2)将万用表置于DC200mV挡,表笔夹在输出端(OUT)与地之间,旋动VR3,调至万用表读数约为几毫伏(理想值为零); (3)将数字万用表置于DC200mV挡,两只表笔夹在Ω电阻(R20、R2一、R22和R23)两头,旋转VR2,调剂T1集电极和发射极之间的电压差,当万用表读数为75mV时,每只功率管的静态电流为300mA(=75mV/Ω)。然后,再重复步骤(2)的测试,尽可能使输出端静态电压为零。 实际测量发觉说明: 1.T2与T3,T4与T5源极电阻的压降并非相同,比如:R20的压降为72 mV,如R21的压降为38 mV,R22的压降为50 mV,如R23的压降为66 mV。这是由于两只同型号的场效应管门极开通电压的不同性造成的。 2.R20与R21的压降之和与R22与R23的压降之和都相等,即T2与T3的静态电流之和等于T4与T5的静态电流之和,这一点与表6-17的理论分析正好印证。 3.任意一个Ω电阻冷态和热态静态电流都不相同,冷态时比热态电流大。 4.冷态输出端的电压也不是零伏,约为±20mV以下,当机械发烧趋于平稳后,输出端的电压慢慢降接近是零伏,每一个功率管的静态电流也随之降低。 (4)调试完成后T1集电极电压约为,T1发射极电压约为。 3.电压放大倍数 参考图1所示电路,能够看出整个系统的电压放大倍数由前置电压放大器决定,功放级对前置级电压“照单全收”,没有任何反馈操纵通路。因此,整机电压放大倍数A u A u=1+R5/R4 代入参数,得A u=34(倍)或。

甲类乙类甲乙类各种放大电路的原理详解优缺点分析以及应用说明

OCL,OTL,BTL,甲类,乙类,甲乙类各种放大电路的原理详解,优缺点分析,以及应用说明 清华大学张小斌(教授) 一.OCL电路 OCL(output capacitor less)的英文本意是说没有电容的输出级(这样可以使输出在低频时变得平滑),你一定认为这个称谓怪怪的,那是因为OCL不是最早的职业输出级电路而是最终的。OTL(OCL从它发展而来)电路的标配有上一句所说的奇怪的电容。OTL在后面谈论。之所以说OCL是“最终的”是因为它是最迎合集成电路趋势的(集成电路中最容易制造的类型)。 OCL电路的基本形式如下图所示: 它的最重要的特点是双电源,注意电源在集成电路中可不是什么难题。正是这个双电源的结构特点让电容下岗了。Ui作为输出信号,在正的时候T1管发生作用;在负的时候T2管发生作用。于是能产生一个连续的输出,信号如右图所示。但是,当信号的电压在-0.6V 到0.6V之间(以硅管为例),T1和T2管的导通就成了问题了,这种状况会造成信号输出的交越失真。面对这个问题,我们只能设置合适的静态工作点,目的就是,在没有Ui时,

T1和T2就已经微导通了,那么这个时候来一点点Ui就可以自由的让T1或T2导通。这是个很有逻辑的想法。见下面的电路: 这个旨在消除交越失真的电路在从正电源+VCC经R1、D1、D2、R2到负电源——VCC 形成一个直流电流的旅行中,必然使T1和T2的两个基极之间产生电压,电压的大小等于两个二极管的压降之和。这样T1和T2管就均处于微导通状态了。这种结构稍显幼稚,我们在实际中喜欢采用(b)中的形式,学名Ube倍增电路(注意要是I2远大于Ib),意思是说,合理选择R3、R4的阻值,可以使Ub1、b2得到(1+R3/R4)Ube的直流电压。 为了增大T1和T2管的电流放大系数,减小前级的驱动电流,常采用复合管的架构,复合管前面已经由gemfield讨论过了。现在就该讨论OTL的情况了,电路如下图:

并联稳压电源电路图

发烧友对音响音质的追求是无止境的,特别是前级放大电路,都希望得到更纯净的音乐背景和更好的音质。要做一套音质上乘的功放,首先要有一款性能优越的前级放大电路,而一款好的前级放大电路要发挥其最佳性能,就需要有优秀的电源给其供电!有的Hi—END 级的前级机就使用了干电池供电了,如:日本松下公司的极品功放前级 SU-C7000 就采用电池供电了!而国内的获奖机其前级电路就多为由分立元件组成的,图 1 是稳压IC 、分立稳压电路、电池三种供电系统的噪音比较图。 在这里向广大发烧友介绍国内获奖机用得最多的甲类并联式稳压电路,电路图见图 2 ,用该电路给前级放大电路供电,背景非常宁静,使低频埪制力变好,而且有力度,中高频变得滑顺,柔和,大大改善了音乐,在主观听感上感觉较为温和,没有一些冷艳,刺耳

感,用该电源电路去摩机,可起到立竿见影的效果,音响音质改善十分明显!因为一般音响多为用三端稳压或串联式稳压,好一些的用有源伺服稳压,而甲类并联式稳压电源电路的性能和电池供电的性能最接近,效果当然显著! 下面分析一下甲类并联式稳压电源的工作原理: 220V 的市电经过变压器降压后经整流桥整流后由 C1 ( C2 )滤波,滤去交流杂波,接着由性能优越的 LM317 与 R1 组成的恒流电路(约 160mA ,足可以驱动任何纯甲类前级放大电路,若要电流更大,改变 R1 的阻值即可)、恒流电路能够阻断电源噪音,并有效地退耦掉后级通过电源对前级的干扰,经过恒流之后的电源由 VT1 ( VT2 )、 VD1 ( VD2 )及 RP1 ( RP2 )、 R2 —R5 )等构成电压误差取样设置电路并经R6 ( R7 )的控制调整管 VT3 ( VT4 )的基极,改变调整管的导

TDA1521制作15W双声道功放电路图

TDA1521制作15W双声道功放电路图TDA1521制作15W双声道功放电路图 ------------------------------------------------- 常用伴音电路,TDA1521 该电路摘自长虹C2191,为OTL双声道接法。 TDA1521引脚功能及参考电压: 1脚:11V——反向输入1(L声道信号输入) 2脚:11V——正向输入1 3脚:11V——参考1(OCL接法时为0V,OTL接法时为1/2Vcc) 4脚:11V——输出1(L声道信号输出) 5脚:0V——负电源输入(OTL接法时接地) 6脚:11V——输出2(R声道信号输出) 7脚:22V——正电源输入 8脚:11V——正向输入2 9脚:11V——反向输入2(R声道信号输入) TDA1521是荷兰飞利浦公司设计的 低失真度及高稳度的芯片。其中的参数为:TDA1521在电压为?16V、阻抗为8Ω时~输出功率为2×15W~此时的失真仅为0.5,。输入阻抗20KΩ, 输入灵敏度600mV,信噪比达到85dB。其电路设有等待、静噪状态~具有过热保护~低失调电压高纹

波抑制~而且热阻极低~具有极佳的高频解析力和低频力度。其音色通透纯正~低音力度丰满厚实~高音清亮明快~很有电子管的韵味。 1、本功放板经过精心设计、布局。板材选用1.6mm的优质玻璃纤维板~焊盘喷锡制造,尺寸:7.5cm*7cm)。 2、本功放板输出不失真功率为:15W*2。散热片尺寸为76MM*43MM*22MM. 3、整流为3A~200V的HER303快恢复二极管~电源滤波和退偶电容选用日本黑金刚105?长寿命电容~高频滤波为松下CBB无极电容。耦合为橘红色的飞利浦补品电容~贝茹尔电路为德国西门子千层饼无极电容和优质金属五环电阻。芯片为原装的飞利浦TDA1521(非台湾产,。 4、优质的元件和合理的设计保证了本功放板的音质十分出色。,本功放板实物和图片完全相同,。整流快恢复二极管是原装库存的~管脚有少许氧化~焊接前请用刀片清理好管脚的氧化层再焊接~防止虚焊: 5、电源建议选用交流双12V输出~功率不小于30W的变压器。散热片注意要和地绝缘: 实物拍摄图片: 成品板实物拍摄图片

TDA2030功放电路原理分析

TDA2030功放电路原理: TDA2030功放电路,其制作简单,价格低廉,输出功率大,保真性好,一、电路工作原理查看!图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为(R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。二、元器件的选择集成功率放大器TDA2030。RP为碳膜电位器。C1、C2为电解电容器,耐压为16V,C3、C4、C5为瓷介电容。R1、R2、R3为碳膜电阻,额定功率为1/8W。R4为碳膜电阻,额定功率为1/4W。VD1、VD2为IN4007小功率整流二极管。B为4Ω或8Ω、15W全频扬声器。三、电路制作在新窗口打开查看!图2是本电路印制电路板图及TDA2030管脚图。由于TDA2030输出功率较大,因此需加散热器。而TDA2030的负电源引脚(3脚)与散热器相连,所以在装散热器时,要注意散热器不能与其他元器件相接触。 1u耦合电容是耦合兼隔离。因为是单电源,三个100k电阻是供正端提供电源电压的中点电压,两个分压,一个隔离。150k电阻是反馈电阻。反相端4.7k电阻及下面22u电容对信号有一个滤波作用。 22μ电容器不是耦合电容,是去耦电容器,使得电源经两个100K分压后,由22μ滤波后,再经100K 给IC的1脚提供工作点。 ——★1电阻与22μ电解电容构成了“负反馈”电路,用以改善音质,和调整输出电平的。 ——★2、调整图中150K、4.7K电阻的“比值”,可以改变“负反馈”的大小。而负反馈的大、小,对输出波

最新功放电路图

功放电路图 ------------------------------------------作者xxxx ------------------------------------------日期xxxx

功放维修图解 目前流行的功率放大器除采用集成电路功放外几乎都是用分立元件构成的OCL电路。基本电路由差动输入级、电压放大级、电流放大级(推动级)、功率输出级和保护电路组成。附图A是结构框、图B是实用电路例图,有结构简单的基本电路形式,也有增加了辅助电路和补偿电路的复杂电路形式。 本文把常见的OCL电路分解成几块,从电路的简单原理,常见的电路构成,检查时电路的识别,维修的基本方法逐个进行介绍。认识了局部电路拼出整个电路图时功放的维修就相对容易多了。C是电压分布图。电压测量是功放检修中基本方法,电压分布是以输入端到输出端为0V中轴线,越向上红色越深表示正电压越高,越向下蓝色越深表示负电压越低.图B这种全对称电路电压也正负对称,是检

修测量的主要依据。 一、差动输入级 图1是最基本的差动(差分)输入级电路,它由两个完全对称的单管放大器组合而成,两个管的基极分别是正负输入端。一个输入端作为信号输入用,另一个输入端为反向输入末端负反

馈用。因其能有效地抑制输出端的零点漂移而成为OCL电路的输入门户.输入级有单差动和双差动之别,单差动电路简洁,双差动对称性好。从前级送来的信号通过一个电容和电阻所连接的三极管就是差动输入级,相邻的同型号管子就是差动的另一半。输入端接的是一个管的基极则是单差动,如接着两个管的基极,就是双差动。为克服电源波动对电路的影响,图2在差动放大器的发射极增加了恒流源。有的在集电极增加了镜流源如图3,保证了差动两管静态电流的一致性。图4是既有恒流源又有镜流源的高挡机采用的差动输入电路。

相关文档
相关文档 最新文档