文档视界 最新最全的文档下载
当前位置:文档视界 › 美国药典usp L1~L60对应色谱柱类型及型号

美国药典usp L1~L60对应色谱柱类型及型号

美国药典usp L1~L60对应色谱柱类型及型号
美国药典usp L1~L60对应色谱柱类型及型号

下面分别是USPL1~L60的对应。

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10μm in diameter.

L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50μm in diameter.

L3—Porous silica particles,5to 10μm in diameter.

L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter.

L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter.

L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50μm in diameter.

L7—Octylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter.

L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10μm in diameter.

L9—10-μm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating.

L10—Nitrile groups chemically bonded to porous silica particles,3to 10μm in diameter.

L11—Phenyl groups chemically bonded to porous silica particles,5to 10μm in diameter.

L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50μm in diameter.

L13—Trimethylsilane chemically bonded to porous silica particles,3to 10μm in diameter.

L14—Silica gel 10μm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating.

L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter.

L16—Dimethylsilane chemically bonded to porous silica particles,5to 10μm in diameter.

L17—Strong cation-exchange resin consisting of sulfonated cross-linked

styrene-divinylbenzene copolymer in the hydrogen form,7to 11μm in diameter.

L18—Amino and cyano groups chemically bonded to porous silica particles,3to 10μm in diameter.

L19—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the calcium form,about 9μm in diameter.

L20—Dihydroxypropane groups chemically bonded to porous silica particles,5to 10μm in diameter.

L21—Arigid,spherical styrene-divinylbenzene copolymer,5to 10μm in diameter.

L22—Acation-exchange resin made of porous polystyrene gel with sulfonic acid groups,about 10μm in size.

L23—An anion-exchange resin made of porous polymethacrylate or polyacrylate gel with quaternary ammonium groups,about 10μm in size.

L24—Asemi-rigid hydrophilic gel consisting of vinyl polymers with numerous hydroxyl groups on the matrix surface,32to 63μm in diameter.5

L25—Packing having the capacity to separate compounds with a molecular weight range from 100–5000(as determined by polyethylene oxide),applied to neutral,anionic,and cationic water-soluble polymers.Apolymethacrylate resin base,cross-linked with polyhydroxylated ether (surface contained some residual carboxyl functional groups)was found suitable.

L26—Butyl silane chemically bonded to totally porous silica particles,5to 10μm in diameter.

L27—Porous silica particles,30to 50μm in diameter.

L28—Amultifunctional support,which consists of a high purity,100?,spherical silica substrate that has been bonded with anionic exchanger,amine functionality in addition to a conventional reversed phase C8functionality.

L29—Gamma alumina,reverse-phase,low carbon percentage by weight,alumina-based polybutadiene spherical particles,5μm in diameter with a pore volume of 80?.

L30—Ethyl silane chemically bonded to totally porous silica particles,3to 10μm in diameter.

L31—Astrong anion-exchange resin-quaternary amine bonded on latex particles attached to a

core of 8.5-μm macroporous particles having a pore size of 2000?and consisting of ethylvinylbenzene cross-linked with 55%divinylbenzene.

L32—Achiral ligand-exchange packing–L-proline copper complex covalently bonded to irregularly shaped silica particles,5to 10μm in diameter.

L33—Packing having the capacity to separate dextrans by molecular size over a range of 4,000to 500,000Da.It is spherical,silica-based,and processed to provide pHstability.6

L34—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the lead form,about 9μm in diameter.

L35—Azirconium-stabilized spherical silica packing with a hydrophilic (diol-type)molecular monolayer bonded phase having a pore size of 150?.

L36—A3,5-dinitrobenzoyl derivative of L-phenylglycine covalently bonded to 5-μm aminopropyl silica.

L37—Packing having the capacity to separate proteins by molecular size over a range of 2,000to 40,000Da.It is a polymethacrylate gel.

L38—Amethacrylate-based size-exclusion packing for water-soluble samples.

L39—Ahydrophilic polyhydroxymethacrylate gel of totally porous spherical resin.

L40—Cellulose tris-3,5-dimethylphenylcarbamate coated porous silica particles,5to 20μm in diameter.

L41—Immobilized a1-acid glycoprotein on spherical silica particles,5μm in diameter.

L42—Octylsilane and octadecylsilane groups chemically bonded to porous silica particles,5μm in diameter.

L43—Pentafluorophenyl groups chemically bonded to silica particles by a propyl spacer,5to 10μm in diameter.

L44—Amultifunctional support,which consists of a high purity,60?,spherical silica substrate that has been bonded with a cationic exchanger,sulfonic acid functionality in addition to a conventional reversed phase C8functionality.

L45—Beta cyclodextrin bonded to porous silica particles,5to 10μm in diameter.

L46—Polystyrene/divinylbenzene substrate agglomerated with quaternary amine functionalized latex beads,10μm in diameter.

L47—High-capacity anion-exchange microporous substrate,fully functionalized with trimethlyamine groups,8μm in diameter.7

L48—Sulfonated,cross-linked polystyrene with an outer layer of submicron,porous,anion-exchange microbeads,15μm in diameter.

L49—Areversed-phase packing made by coating a thin layer of polybutadiene onto spherical porous zirconia particles,3to 10μm in diameter.8

L50—Multifunction resin with reversed-phase retention and strong anion-exchange functionalities.The resin consists of ethylvinylbenzene,55%cross-linked with divinylbenzene copolymer,3to 15μm in diameter,and a surface area not less than 350m2per g.Substrate is coated with quaternary ammonium functionalized latex particles consisting of styrene cross-linked with divinylbenzene.9

L51—Amylose tris-3,5-dimethylphenylcarbamate-coated,porous,spherical,silica particles,5to 10μm in diameter.10

L52—Astrong cation exchange resin made of porous silica with sulfopropyl groups,5to 10μm in diameter.11

L53—Weak cation-exchange resin consisting of ethylvinylbenzene,55%cross-linked with divinylbenzene copolymer,3to 15μm diameter.Substrate is surface grafted with carboxylic acid and/or phosphoric acid functionalized monomers.Capacity not less than 500μEq/column.12

L54—Asize exclusion medium made of covalent bonding of dextran to highly cross-linked porous agarose beads,about 13μm in diameter.13

L55—Astrong cation-exchange resin made of porous silica coated with polybutadiene–maleic acid copolymer,about 5μm in diameter.14

L56—Isopropyl silane chemically bonded to totally porous silica particles,3to 10μm in diameter.15

L57—Achiral-recognition protein,ovomucoid,chemically bonded to silica particles,about 5μm

in diameter,with a pore size of 120?.

L58—Strong cation-exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the sodium form,about 7to 11μm in diameter.16

L59—Packing having the capacity to separate proteins by molecular weight over the range of 10to 500kDa.It is spherical (10μm),silica-based,and processed to provide hydrophilic characteristics and pHstability.17USP28

L60—Spherical,porous silica gel,3or 5μm in diameter,the surface of which has been covalently modified with palmitamidopropyl groups and endcapped with acetamidopropyl groups to a ligand density of about 6μmoles per m2.18USP28

美国药典规定色谱柱类型

L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱 L22:带有磺酸基团的多孔苯乙烯阳离子交换柱 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW 范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相,即C4柱 L27:30~50mm的全多孔硅胶微粒 L28:多功能载体,100?的高纯硅胶加以氨基键合以及C8反相键合的官能团 L29:氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5mm,孔径80? L30:全多孔硅胶键合乙基硅烷固定相 L31:季胺基改性孔径2000?的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂 L32: L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料 L33:能够分离分子量4000~40000MW范围蛋白质分子的球形硅胶固定相, pH稳定性好 L34:铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形 L35:锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150? L36:5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰 L37:适合分离分子量2000~40000MW的聚甲基丙烯酸酯凝胶 L38:水溶性甲基丙烯酸酯基质SEC色谱柱 L39:亲水全多孔聚羟基甲基丙烯酸酯色谱柱 L40:Tris 3,5-二甲基苯基氨基甲酸酯纤维素涂覆多孔硅胶微球 L41:球形硅胶表面固定α1酸糖蛋白固定相 L42: C8和C18硅烷化学键合多孔硅胶固定相 L43:硅胶微球键合五氟代苯基固定相

色谱柱的种类与评价

色谱柱的种类与评价 一般地说,根据样品的性质决定采用何种液相色谱方法,然后再选择不同类型的柱。即不同类型的柱则代表了不同的色谱方法。 不同种类色谱柱的差异在于柱结构、柱填料和柱尺寸的不同。 色谱柱有不同的尺寸(长度和内径),分制备型、常规分析型和微型。不同类型柱的硬件也不同,(包括接头、柱管等方面),还有径向加压柱和夹套加热柱等。 不同液相色谱法的尺寸根据需要可以选取,普通分析3~30cm 长,内径4~8mm。常用20cm长、4.6mm内径的柱。制备型柱内径一般为8mm、25cm长。微型柱内径l~3mm,长10~20cm。不同的填料分析的效果可能不同,这是因为生产过程不同所致。同一厂商生产的同种填料因批号不同也会有差异,这种差异可能从基质就开始(表面积、杂质、特殊处理),还有键合的化学物质(一氯或三氯硅烷反应剂),不同厂家生产的填料还会因专利技术(预处理、键合过程、填装技术)等不同而呈现较大差异。由于种种差异、仅能假设同一批号的柱有基本相同的性质。

多数柱填料基质采用多孔硅胶微粒,通常有球形和无定形两种,具有不同的粒度、孔径和表面积。多孔聚合物微粒也适用于反相色谱。聚合物柱的流动相范围广,流动相pH值可在1至13之间。而硅胶基质pH仅能在2.5和7之间。显然,聚合物柱要好一些,但目前仍是以硅胶基质的柱为主。原则上,聚合物柱可以克服硅胶基质柱的某些不足,但需要大量的实验来证实,要进一步考查聚合物基质填料的全面优越性。 在实际工作中,选择性能良好的色谱柱可得到好的结果,首先要注意柱径、长度、填料种类和填料粒度。 评价色谱柱的好坏不仅只是N数,还应考虑组分在柱上的保留、键合相表面的物性、柱压降以及峰不对称因子As等。每一根新色谱柱都应标出详细参数,主要内容包括公司名称、柱名称(商标)、柱填料、尺寸。附一张标准参考色谱图,并标出色谱条件、样品名称、流动相组成、流速、柱温、进样体积、检测器、峰的保留时间及峰名称等。评价一根色谱柱的主要指标是:①塔板数N值;②峰不对称因子As;③柱压降;④键合相浓度。 此文章由广州深华生物技术有限公司编辑修改。

美国及欧洲药典系统适应性要求

系统适应性——美国药典 系统适应性是气相和液相色谱分析方法的重要组成部分,用于证明色谱系统的分离度和重现性能满足样品的分析要求。 测试基于这样的原理:仪器、电路、方法和样品组成一个整体系统,我们可以对这个系统进行测试评估。 影响色谱系统的因素包括: 流动相的组成、离子强度、温度和pH值 柱子大小、流速、柱温和压力 固定相特点,包括填料类型,载体形状、粒径、孔 径、表面积等。 常用固定相为反相硅胶,以十八碳烷基健合硅胶 最常用,其它经过化学修饰 的硅胶也有使用。 分离度R s是理论塔板数n的函数(也叫柱效),α是分离因子,k 是容量因子(所有符号的意义见前文“色谱定义和说明”部分)。在规定的色谱条件下,n表示洗脱物中相邻化合物的分离程度,可作为衡量色谱系统柱效能的指标,但是不如直接测试的结果可靠。峰的尖锐程度部分反映柱效,这个参数对检查微量物质至关重要。 标准品或者标准溶液需要重复进样以确保精密度。除非个论中有规定, 系统适用性五针的数据的相对标准偏差不超过2.0%, 如果超过2.0%的话, 需要进样六针。 在含量测定中,如果纯品含

H是峰高,即峰最高点到基线的距离;h是噪音最大值和最小值之间的差值。 系统适应性测试的数据通过重复进样标准品或者特定文件中规定的对照溶液而得到, 此文件中对相关参数的定义同样适用于其它操作条件,以下情况可做相应调整: 标准品(包括参考物质) 对适应性测试中的所有化合 物均适用 在系统适应性测试中为改进色谱系统性能而作适 当调整 对色谱系统的调整不能弥补柱子和系统本身的缺陷。 为满足系统适应性要求而对分析方法调整时,除非另有规定,以下每个变量的最大值都应考虑;这些调整需要附加有效数据。为验证新方法的系统适应性,需要对改变条件后的分析方法重新评价。多处改动会对系统性能产生积累效果,在分析之前能仔细考虑。在梯度洗脱中不推荐改变流动性组成,如果必须改变,则只对溶剂体积或滞后体积改变。 流动相pH(HPLC):在配备

L1和L8是美国药典

L1和L8是美国药典(USP)规定的色谱柱编号(2009-08-13 19:33:47)转载标签:杂谈分类:学术L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50mm表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50mm表面多孔薄壳型硅胶柱 L5:30~50mm表面多孔薄壳型氧化铝柱 L6:30~50mm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10mm硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10mm全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

色谱柱的分类及特点

3-1 柱的结构 1、堵棒(或导管) 2、接头 3、接头 4、密封圈 5、螺帽 6、柱密封圈 7、柱管 8、柱填料9 10、过滤片 3-2 柱的分类: 根据所有的担体材料分为三种: a.硅胶型:机械强度高,易制成小颗粒,理论塔板数高。 b.聚全物型:在广泛的PH值范围内稳定 c.羟基磷灰石型:对蛋白质等生物高分子样品有特殊的选择性。 根据分离方式分类: a.硅胶型

1)正相:SIL--磷脂、NH --糖、维生素E,CN--甾类激素。 2)反相:ODS(C18)、(C8 CN TMS Pheny1)低分子量化全物。 3)离子交换: WAX(弱碱阴离子交换)--核苷酸、蛋白质 WCX(弱酸阳离子交换)--蛋白质 SAX(强碱阴离子交换)--核苷酸 SCX(强酸阳离子交换)--儿茶酚胶 4)凝胶过滤: Diol--蛋白质GF--

蛋白质 b.聚合物型: 1)反相:ODP--50--肽,蛋白质,低分化合物。 2)离子交换:ISC--氨基酸,胍类化合物,ISA--糖,IC--无机离子,PA--蛋白质,ES--蛋白质。 3)配位交换:SCR(磺化聚苯乙烯)--糖。 4)离子排阻:SCR-101H 102H --有机酸 5)凝胶过滤:ION--多糖GS--水溶性分子 6)凝胶渗透色谱(GPC):GPD

--合成分子、橡胶。 7)羟基磷灰石型:HPC--蛋白质、核苷酸 按尺寸分类: 1.制备:30mm 50mm 内径,半制备:20mm内径。 2.分析:标准型柱:4_8mm内径。 快速色谱柱:3mm内径、5cm长、4.6mm内径。 小孔径柱:2.5mm内径,微孔径柱1mm内径。 3-3柱的技术指标 *耐压:不小于40Mpa。 *渗透性:反相--流动相甲醇1ml/min,压力3Mpa。

气相色谱毛细管柱使用知识

气相色谱毛细管柱使用知识 气相色谱毛细管柱因其高分离能力、高灵敏度、高分析速度等独特优点而得到迅速发展。随着弹性石英交联毛细管柱技术的日益成熟和性能的不断完善,已成为分离复杂多组分混合物、及多项目分析的主要手段,在各领域应用中大有取代填充柱的趋势。现在新型气相色谱仪、气相色谱-质谱联用仪基本上都是采用毛细管色谱柱进行分离分析。但是,毛细管色谱柱柱内径较小,固定液的膜薄,用于食品中残留物分析时,若使用不当,色谱柱性能很快就会下降。 毛细管柱只能安装在配有专用毛细管柱连接装置的气相色谱仪上。现在购买仪器时最常规的配置是配毛细管分流/不分流进样口。 毛细管色谱柱的类型 毛细管色谱柱的类型有很多种,但目前最常用和商品化的,是开口熔融石英交联毛细管色谱柱。下面介绍此类毛细管色谱柱的性能特点。 一、熔融石英毛细管柱 (1) 熔融石英毛细管柱材料 现在市售商品化的气相色谱用毛细管柱几乎都是由熔融石英制作的,简称石英毛细管柱。制作毛细管柱用的石英纯度非常高,几乎无其它杂质。它具有熔点高(近2000℃)、热膨胀系数低、化学稳定性好和抗张强度高等特点,是制备毛细管柱的理想材料。

毛细管柱内壁存在有许多具有吸附活性的基团,这些基团的存在直接影响固定相涂渍效果,所以,在涂渍固定相之前,柱表面必须经过适当预处理,以期得到较高的柱效和对称的色谱图形。 (2) 石英毛细管柱的聚酰亚胺外涂层 石英毛细管柱很脆,只有在毛细管柱外涂一层聚酰亚胺保护材料后才具有很好的弹性,在使用这样的色谱柱时应十分小心,避免将聚酰亚胺涂层损坏,导致毛细管柱易折断。 通常商品毛细管柱出厂时都固定在一个金属丝制作的柱架上,柱架的直径与毛细管柱的直径成正比,即:毛细管柱的直径越大,固定架的直径也就越大。对于0.53mm 内径的毛细管柱,过度弯曲很容易折断,使用安装时要格外小心。 石英毛细管柱外涂层还有采用镀铝膜的,这类柱子适用于高温分析。但日常分析工作中使用较少,这里不作详细介绍。 二、液体固定相 将固定相均匀涂渍在毛细管柱的内壁,制成壁涂型毛细管柱,这类毛细管柱属非交联型毛细管柱。现在只有少部分的非交联固定相的毛细管柱在使用。非交联毛细管柱的固定相容易流失,不能清洗,因此使用寿命较短,但制作成本较低,涂渍相对较容易,往往在毛细管柱研制前期过程中采用此方法。在使用这类毛细管色谱柱时,应注意使用温度不要超过液体固定相的最高使用温度。建议不要在气相色谱-质谱联用仪上使用。 三、交联固定相 现在市售的商品毛细管色谱柱基本上均采用交联技术,将固定相与石英表面结合起来,在毛细管柱表面形成一层不溶的类似橡胶的非常稳固的涂层。被交联的固定相与涂渍的固定相相比,流失低,抗污染,热稳定性好,使用寿命长。

美国药典(USP)规定的色谱柱编号

美国药典(USP)规定的色谱柱编号 L1和L8是美国药典(USP)规定的色谱柱编号,其实就是ODS柱和NH2柱。下面是USP规定的编号所对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称ODS柱 L2:30~50m m表面多孔薄壳型键合十八烷基固定相,简称C18柱 L3:多孔硅胶微粒,即一般的硅胶柱 L4:30~50m m表面多孔薄壳型硅胶柱 L5:30~50m m表面多孔薄壳型氧化铝柱 L6:30~50m m实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱 L7:全多孔硅胶微粒键合C8官能团固定相,简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相,简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相,即SCX柱 L10:多孔硅胶微球键合氰基固定相(CN),简称CN柱 L11:键合苯基多孔硅胶微球固定相,简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子交换柱 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1),简称C1柱 L14:10m m硅胶化学键合强碱性季铵盐阴离子交换固定相,简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相,简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 C2柱 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L18:3~10m m全多孔硅胶化学键合胺基(NH2)和氰基(CN)柱 L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol),简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球填料柱

美国药典USP31 71 无菌检查法中文版

美国药典USP31-NF26无菌检查法《71》.doc 71 STERILITY TESTS 无菌检查法 此通则的各部分已经与欧洲药典和/或日本药典的对应部分做了协调。不一致的部分用符号()来标明。 下面这些步骤适用于测定是否某个用于无菌用途的药品是否符合其具体的各论中关于无菌 检查的要求。只要其性质许可,这些药品将使用供试产品无菌检查法项下的膜过滤法来检测。如果膜过滤技术是不适合的,则使用在供试产品无菌检查法项下的培养基直接接种法。除了具有标记为无菌通道的设备之外,所有的设备均须使用培养基直接接种法进行检测。在结果的观测与理解项下包含了复验的规定。 由于无菌检查法是一个非常精确的程序,在此过程中程序的无菌状态必须得到确保以实现对结果的正确理解,因此人员经过适当的培训并取得资质是非常重要的。无菌检查在无菌条件下进行。为了实现这样的条件,试验环境必须调整到适合进行无菌检查的方式。为避免污染而采取的特定预防措施应不会对任何试图在检查中发现的微生物产生影响。通过在工作区域作适当取样并进行适当控制,来定期监测进行此试验的工作条件。 这些药典规定程序自身的设计不能确保一批产品无菌或已经灭菌。这主要是通过灭菌工艺或者无菌操作程序的验证来完成。 当通过适当的药典方法获得了某物品中微生物污染的证据,这样获得的结果是该物品未能达到无菌检验要求的结论性证据,即便使用替代程序得到了不同的结果也无法否定此结果。如要获得关于无菌检验的其他信息,见药品的灭菌和无菌保证<1211> 按照下面描述的方法配制实验用培养基;或者使用脱水培养基,只要根据其制造商或者分销商说明进行恢复之后,其能够符合好氧菌、厌氧菌、霉菌生长促进试验的要求即可。使用经过验证的工艺对培养基进行灭菌操作。 下面的培养基已经被证实适合进行无菌检查。巯基醋酸盐液体培养基主要用于厌氧菌的培养。但其也用于检测好氧菌。大豆酪蛋白消化物培养基适合于培养霉菌和好氧菌。 Fluid Thioglycollate Medium 巯基醋酸盐液体培养基

最全的 关于 药品 炽灼残渣检查方法(中国药典、美国药典、欧洲药典)

药品的炽灼残渣检测方法(欧洲药典、美国药典) 1 原理:药品(多为有机化合物)经高温加热分解或挥发后遗留下的不挥发无机物(多为金属的氧化物,碳酸盐,磷酸盐,硅酸盐和氯化物等)。 2 仪器与用具:高温炉、坩埚、坩埚钳、通风柜 3 试剂与试液:硫酸分析纯 4 操作步骤 中国药典检测方法 空坩埚恒重:取坩埚置于高温炉内,将盖子斜盖在坩埚上,经700~800℃炽灼约30~60分钟,取出坩埚,稍冷片刻,移置干燥器内并盖上盖子,放冷至室温,精密称定坩埚重量。再在上述条件下炽灼约30分钟,取出,置干燥器内,放冷,称重;重复数次,直至恒重,备用。如无特殊情况,空坩埚在700~800℃(或500~600℃)炽灼二小时即可恒重。 称取供试品:取供试品~或各该药品项下规定的重量,置已炽灼至恒重的坩埚内,精密称定。 炭化:将盛有供试品的坩埚斜置电炉,炽灼至供试品全部炭化呈黑色,并不冒浓烟,放冷至室温。“炭化”操作应在通风柜内进行。 灰化:除另有规定外,滴加硫酸~,使炭化物全部湿润,继续在电炉上加热至硫酸蒸气除尽,白烟完全消失(以上操作应在通风柜内进行),将坩埚移置高温炉内,盖子斜盖于坩埚上,在700~800℃炽灼,约60分钟,使供试品完全灰化,(如供试品要做重金属试验,则灰化温度应在500~600℃)。 恒重:按操作方法5.4.4,依法操作炽灼30分钟,直至恒重。如无特殊情况,在700~800℃(或500~600℃)炽灼二小时即可恒重。

如需将残渣留作重金属检查,则炽灼温度控制在500~600℃。 5 欧洲药典检测方法 在600±50℃灼烧一个白金、瓷或石英坩埚30分钟,干燥器内冷却后称重。加入规定量的样品于上述坩埚内,称重。 用1mL的硫酸湿润样品,在低温上加热直至样品完全炭化。冷却后,用少量的硫酸湿润残渣,加热直至白烟不再产生。 在600±50℃的高温炉内灼烧,直至残渣完全灰化(在操作过程不应有火焰出现),干燥器内冷却后称重,并计算残渣的量。 除非另有规定,假如残渣的量超过规定的限量,重复用硫酸湿润和灼烧,与前面操作相同,直至恒重。 6 美国药典方法 称取1~2g样品或规定量的样品于已经灼烧,冷却和称重的合适坩埚(600℃±50℃炽灼30分钟),用少量(1mL)的硫酸湿润样品,在低温上加热直至样品完全炭化。 冷却后,除非另有规定,用少量(1mL)的硫酸湿润残渣,加热直至白烟不再产生。 在600℃±50℃的高温炉内灼烧,或者其它规定的温度,直至完全灰化,在干燥器内冷却后称重,计算残渣的量。 假如残渣的量超过规定的限量,再用1ml硫酸湿润残渣,继续低温加热和灼烧(与前面操作相同),并计算残渣的量。除非另有规定,继续烧烧直至恒重或残渣的量符合规定的限量。

USP色谱柱解释

L1和L8是美国药典(USP)规定的色谱柱编号,其实就是C18柱和NH2柱。下面是对应的色谱柱类型。 L1:十八烷基键合多孔硅胶或无机氧化物微粒固定相,简称C18或ODS L2:30~50um表面多孔薄壳型键合C18(ODS)固定相 L3:多孔硅胶微粒即一般的硅胶柱 L4:30~50um表面多孔薄壳型硅胶 L5:30~50um表面多孔薄壳型氧化铝 L6:30~50um实心微球表面包覆磺化碳氟聚合物-强阳离子交换固定相 L7:全多孔硅胶微粒键合C8官能团固定相简称C8柱 L8:全多孔硅胶微粒键合非交联NH2固定相简称NH2柱 L9:强酸性阳离子交换基团键合全多孔不规则形硅胶固定相 L10:多孔硅胶微球键合氰基固定相(CN)简称CN柱 L11:键合苯基多孔硅胶微球固定相简称苯基柱 L12:无孔微球键合季胺功能团的强阴离子填料 L13:三乙基硅烷化学键合全多孔硅胶微球固定相(C1)简称C1柱 L14:10um硅胶化学键合强碱性季铵盐阴离子交换固定相简称SAX柱 L15:已基硅烷化学键合全多孔硅胶微球固定相简称C6柱 L16:二甲基硅烷化学键合全多孔硅胶微粒固定相 L17:氢型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L18: 3~10um全多孔硅胶化学键合胺基(NH2)和氰基(CN) L19:钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换树脂 L20:二羟基丙烷基化学键合多孔硅胶微球固定相(Diol)简称二醇基柱 L21:刚性苯乙烯-二乙烯基苯共聚物微球 L22:带有磺酸基团的多孔苯乙烯阳离子交换树脂 L23:带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换树脂 L24:表面含有大量羟基的半刚性聚乙烯醇亲水凝胶 L25:聚甲基丙烯酸酯树脂交联羟基醚(表面含有残余羧基功能团)树脂。能分离分子量100~5000MW范围的水溶性中性、阳离子型及阴离子型聚合物(用聚氧乙烯测定)的固定相 L26:丁基硅烷化学键合全多孔硅胶微球固定相 L27:30~50um的全多孔硅胶微粒

气相色谱使用规范

气相色谱操作规范 1型号及参数 1.1型号 Perki nElmer Clarus GC 1.2参数 环境温度:+25C (士3C) 氢气输出压力:60-90Psi 载气压力:60-90Psi 电源电压:230V (士5% ,50/60Hz (士1% 功率:〉3000VA 2操作规范 2.1测量前的准备 在做样前用1ml的专用注射器吸取1ml标准气体对仪器进行标 ^定。 2.2操作步骤 2.2.1将气相色谱载气(氮气)总阀门打开,调节第二道阀门使输出 压力达到0.4Mpa。然后打开氢气和空气发生器,等上二十分钟,然后打开电脑,双击电脑桌面上软件。再把仪器电源打开。 2.2.2编辑仪器控制方法

运行TotalChrom色谱工作站软件,双击桌面上软件图标,进入软件,输入用户名:manager(小写),密码,三步法的操作获得定量结果: 建立新的方法文件、建立报告模板、建立序列表 2.221建立新的方法文件单击Method图标,开始编辑方法:Create new method: 新建方法,Load recently edited method: 调用最近使用过的方法。 222.1.1选择一种方式,点0K进入下一步; 2.2.2.1.2选择一种方式,点击0K进入下一步; Data Acquisitio n:数据采集参数选择; Data Channel:数据通道选择,用单一检测器时选A或B,两个检器同时使用时选Dual, Set Data Rate:数据采样频率的选择(此处可用默认值)。 2.2.2.1.3然后点Next进入下一步:lnstrument Control仪器控制参数:222.131 Oven/lnlets:柱温箱程序温度/进样口程序温度控制 Oven Ramp:柱温箱程序温度Rate:程序升温速率Temp:温度。Hold:温度保持时间如果不使用程序升温,只需将Rate1设为0,设置相应的Initial Temp 和Initial Hold 即可。 2.2.2.1. 3.2heated zone setpoints:加热区温度设置(即进样口温度设置),将要使用的进样口温度设置为需要的温度,不使用的进样口温度最好设置为零.如果进样口为PSS程序控制进样口,此处只能选择温度

usp美国药典结构梳理

USP35-NF-30结构整理 vivi2010-10-02 USP总目录: 1 New Official Text修订文件 加快修订过程包括勘误表,临时修订声明(IRAS),修订公告。勘误表,临时修订声明,修订公告在USP网站上New Official Text部分刊出,勘误表,临时修订公告也会在PF上刊出2front matter前言 药典与处方集增补删减情况,审核人员,辅料收录情况 3凡例

药典, 1标题和修订 2 药典地位和法律认可 3标准复合性 4专论和通则 5 专论组成 6 检验规范和检验方法 7 测试结果 8 术语和定义 9 处方和配药 10 包装存储与标签 4通则 4.1章节列表 4.2一般检查和含量测定(章节编号小于1000)

检查和含量分析的一般要求 检查和含量分析的仪器, 微生物检查,生物检查和含量测定, 化学检查和含量测定, 物理检查和测定 4.3一般信息(章节号大于1000) 5食物补充剂通则 6试剂(试剂,指示剂,溶液等) 7参考表 性状描述和溶解性查询表(按字母顺序) 8食品补充剂各论(字母顺序) 9NF各论(辅料标准) 10 USP各论 11术语 附件:通则的章节中文目录(使用起来比较方便,直接找对应章节号即可)一、通用试验和检定 (1)试验和检定的总要求 1 注射剂 11 参比标准物 (2)试验和检定的装置 16 自动分析方法 21 测温仪 31 容量装置,如容量瓶、移液管、滴定管,各种规格的误差限度

41 砝码和天平 (3)微生物学试验 51 抗菌效力试验 55 生物指示剂:耐受性能试验 61 微生物限度试验 61 非灭菌制品的微生物检查:计数试验 62 非灭菌制品的特定菌检查,如大肠杆菌、金葡菌、沙门氏菌等 71 无菌试验 (4)生物学试验和检定 81 抗生素微生物检定 85 细菌内毒素试验 87 体外生物反应性试验:检查合成橡胶、塑料、高聚物对哺乳类细胞培养的影响 88 体内生物反应性试验:检查上述物质对小鼠、兔iv、ip或肌内植入的影响 91 泛酸钙检定 111 生物检定法的设计和分析 115 右泛醇检定 121 胰岛素检定 141 蛋白质——生物适应试验,用缺蛋白饲料大鼠,观察水解蛋白注射液和氨基酸混合物的作用 151 热原检查法 161 输血、输液器及类似医疗装置的内毒素、热原、无菌检查 171 维生素B12 活性检定 (5)化学试验和检定 A 鉴别试验 181 有机含氮碱的鉴别 191 一般鉴别试验 193 四环素类鉴别 197 分光光度法鉴别试验 201 薄层色谱鉴别试验 B 限量试验

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

中国、美国、欧洲药典比较

:徐涛学号:专业:中药生物技术学 《中国药典》、《美国药典》、《欧洲药典》比较 1、各国药典概况 1.1 历史沿革 《中国药典》 英文名称Pharmacopoeia of The People’s Republic of China;简称Ch .P。 1950年4月,成立了第一届中国药典编纂委员会,药典委员会分设名词、化学药、制剂、植物药、生物制品、动物药、药理、剂量8个小组,第一版《中国药典》于1953年由卫生部编印发行。1957年出版《中国药典》1953年增补本。1953年药典共收载药品531中,其中化学药215种,植物药与油脂类65种,动物药13种,抗生素2种,生物制品25种,各类制剂211种。 1965年1月26日卫生部颁布《中国药典》1963年版(第二版)发行通知和实施办法。本版药典收载药品1310种,分一、二部,各有凡例和有关的目录,一部收载中医常用的中药材446种和中药成方制剂197;二部收载化学药品667种。此外,一部记载药品的“功能主治”,二部增加了药品的“作用与用途”。 1979年10月4日卫生部颁布《中国药典》1977年版(第三版),自1980年1月1日起执行。本版药典共收载药品1925种,其中一部收载中草药材(包括少数民族药材)、中草药提取物、植物油脂以及单味药材制剂等882种,成方制剂(包括少数民族药成方)270种,共1152种;二部收载化学药品、生物制品等773种。 1985年9月出版《中国药典》1985年版(第四版),1986年4月1日起执行。本版收载药品1489种,其中一部收载中药材、植物油脂及单味制剂506种,成方制剂207种,共713种,二部收载化学药品、生物制品等776种。 1990年12月3日卫生部颁布《中国药典》1990年版(第五版),自1991年7月1日起执行。1990年版的第一、第二增补本先后于1992、1993年出版,英文版于1993年7月出版。本版共收载药品1751种,一部收载784种,其中中药材、植物油脂等509种,中药成方及单味制剂275种;二部收载化学制品、生物制品等967种。与1985年版药典收载品种相比,一部新增80种,二部新增213种,删去25种。药典二部项下规定的“作用与用途”和“用法与用量”分别改为“类别”和“剂量”。有关品种的红外光谱吸收图谱,收入《药品红外光谱集》另行出版,该版药典附录不在刊印。 1995年卫生部颁布《中国药典》1995版(第六版),自1996年4月1日起正式执行。本版药典收载药品2375种,一部收载920种,其中中药材、植物油脂522种,中药成方及单味制剂398种;二部收载1455种,包括化学药、抗生素、生化药、放射性药品、生物制品及辅料等。一部新增142种,二

美国药典色谱柱分类

L1—Octadecyl silane chemically bonded to porous silica or ceramic micro-particles,3to 10μm in diameter. L2—Octadecyl silane chemically bonded to silica gel of a controlled surface porosity that has been bonded to a solid spherical core,30to 50μm in diameter. L3—Porous silica particles,5to 10μm in diameter. L4—Silica gel of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L5—Alumina of controlled surface porosity bonded to a solid spherical core,30to 50μm in diameter. L6—Strong cation-exchange packing–sulfonated fluorocarbon polymer coated on a solid spherical core,30to 50μm in diameter. L7—Octylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter. L8—An essentially monomolecular layer of aminopropylsilane chemically bonded to totally porous silica gel support,10μm in diameter. L9—10-μm irregular or spherical,totally porous silica gel having a chemically bonded,strongly acidic cation-exchange coating. L10—Nitrile groups chemically bonded to porous silica particles,3to 10μm in diameter. L11—Phenyl groups chemically bonded to porous silica particles,5to 10μm in diameter. L12—Astrong anion-exchange packing made by chemically bonding a quaternary amine to a solid silica spherical core,30to 50μm in diameter. L13—Trimethylsilane chemically bonded to porous silica particles,3to 10μm in diameter. L14—Silica gel 10μm in diameter having a chemically bonded,strongly basic quaternary ammonium anion-exchange coating. L15—Hexylsilane chemically bonded to totally porous silica particles,3to 10μm in diameter.

气相色谱色谱柱的选择及分类

气相色谱色谱柱的选择及分类 1.1 固定相的选择 当面对一个未知物时,先试用现有GC柱,如果该柱分离不理想,根据你对样品的了解,基本原则是分析物与固定相有相似化学性质时才会相互作用。这说明对样品越了解,越容易找到合适的固定相。 非极性分子——通常仅由C和H组成并且无偶极矩,直联(正烷)是常见的非极性化合物的例子。 极性分子——主要由C和H组成同时也有其他原子,如:N、O、P、S或卤素。样品包括有醇类、胺类、硫醇类、酮类、有机卤化物等。 可极化物质——主要由C和H组成同时包含不饱和键。通常有:炔和芳香族化合物。 如果你的样品是具有相似的化学性质的非极性组分的混合物,比如大多数石油馏分中的烃,你可以试用OV-1毛细管色谱柱,它按沸点顺序分离。如果你怀疑有芳族化合物,试着用有苯基的SE-52或SE-54柱。 极性或可极化组分样品能够在中极性和/或可极化固定相色谱柱上进行分析,如有苯基或类似基团固定相,比如OV-17或OV-225柱。如果需要更高极性,可以选用聚乙二醇(PEG)固定相,即通常所说的WAX固定相。 1.2膜厚选择 薄膜比厚膜洗脱组分快、峰分离好、温度低。 一般而言,色谱柱的膜厚为0.25到0.5μm。对于流出达300℃的大多数样品(包括蜡、甘油三脂、甾族化合物等)能够很好的分析。对于更高的洗脱温度,可以用0.1μm的液膜。而厚液膜对于低沸点化合物有利,对于流出温度在100℃~200℃之间的物质,用1~1.5μm的液膜效果较好。超厚膜(3~5μm)用于分析气体、溶剂和可吹扫出来的物质,以增加样品组分与固定相的相互作用。另一个选择厚膜的原因是当用大口径柱时保持分离度和保留时间。由于这个原因,大口径柱都只有厚膜。厚膜的流失较大,温度极限必须随膜厚度增加而下降。 1.3长度选择 一般情况,15m柱用于快速筛选简单混合物或分子量极高的化合物。30m柱是最普遍的柱长。超长柱(50、60或100m、150m)用于非常复杂的样品。

中国、美国、欧洲药典比较

姓名:徐涛学号:14211020462 专业:中药生物技术学 《中国药典》、《美国药典》、《欧洲药典》比较 1、各国药典概况 1.1 历史沿革 《中国药典》 英文名称Pharmacopoeia of The People’s Republic of China;简称Ch .P。 1950年4月,成立了第一届中国药典编纂委员会,药典委员会分设名词、 化学药、制剂、植物药、生物制品、动物药、药理、剂量8个小组,第一版 《中国药典》于1953年由卫生部编印发行。1957年出版《中国药典》1953年 增补本。1953年药典共收载药品531中,其中化学药215种,植物药与油脂类 65种,动物药13种,抗生素2种,生物制品25种,各类制剂211种。 1965年1月26日卫生部颁布《中国药典》1963年版(第二版)发行通知和实施办法。本版药典收载药品1310种,分一、二部,各有凡例和有关的目录,一部收载中医常用的中药材446种和中药成方制剂197;二部收载化学药品667种。此外,一部记载药品的“功能主治”,二部增加了药品的“作用与用途”。 1979年10月4日卫生部颁布《中国药典》1977年版(第三版),自1980 年1月1日起执行。本版药典共收载药品1925种,其中一部收载中草药材(包括少数民族药材)、中草药提取物、植物油脂以及单味药材制剂等882种,成 方制剂(包括少数民族药成方)270种,共1152种;二部收载化学药品、生物 制品等773种。 1985年9月出版《中国药典》1985年版(第四版),1986年4月1日起执行。本版收载药品1489种,其中一部收载中药材、植物油脂及单味制剂506种,成方制剂207种,共713种,二部收载化学药品、生物制品等776种。 1990年12月3日卫生部颁布《中国药典》1990年版(第五版),自1991 年7月1日起执行。1990年版的第一、第二增补本先后于1992、1993年出版,英文版于1993年7月出版。本版共收载药品1751种,一部收载784种,其中 中药材、植物油脂等509种,中药成方及单味制剂275种;二部收载化学制品、生物制品等967种。与1985年版药典收载品种相比,一部新增80种,二部新 增213种,删去25种。药典二部项下规定的“作用与用途”和“用法与用量” 分别改为“类别”和“剂量”。有关品种的红外光谱吸收图谱,收入《药品红 外光谱集》另行出版,该版药典附录内不在刊印。 1995年卫生部颁布《中国药典》1995版(第六版),自1996年4月1日起正式执行。本版药典收载药品2375种,一部收载920种,其中中药材、植物油脂522种,中药成方及单味制剂398种;二部收载1455种,包括化学药、抗生素、生化药、放射性药品、生物制品及辅料等。一部新增142种,二部新增品 种499种。二部药品外文名称改用英文名,取消拉丁名;中文名称只收载药品 法定通用名称,不再列副名。

美国药典USP气相色谱柱对照表

美国药典USP气相色谱柱对照表 L62 C30硅胶键合于完全多孔球状硅胶,粒径3~15μm。 G48 Highly polar, partially cross-linked cyanopolysiloxane. Rt-2560 G46 14% 氰丙基苯基- 86% 甲基聚硅氧烷 CB-1701MXT?-1701Rtx?-1701VF-1701ms OV-1701CBX-1701DB-1701DB-1701P G43 6% 氰丙基苯基- 94% 二甲基聚硅氧烷 MXT?-624DB-624MXT?-Volatiles CBX-1301 MXT?-1301OV-1301CB-624Rtx?-1301 VF-624ms/VF-1301ms Rtx?-624CB-1301CBX-624 G42 35% 苯基- 65% 二甲基乙烯聚硅氧烷 DB-35Rtx?-35MXT?-35CBX-35 HP-35DB-35MS G38 固定相G1 加减尾剂 MXT-1Rtx?-1MS Rtx?-1 G36 1% 乙烯基- 5% 苯基甲基聚硅氧烷 Rtx?-5MS Rtx?-5CBX-5MXT?-5 G35 聚乙二醇和硝基对苯二甲酸二乙二醇酯 DB-FFAP HP-FFAP CB-FFAP G32 20% Phenylmethyl-80% dimethylpolysiloxane. MXT?-20 G27 5% 苯基- 95% 甲基聚硅氧烷 CB-5XTI?-5Rtx?-5SIL MS VF-5ms Rtx?-5PONA HP-5MS HP-5DB-5MS SE-52DB-5SE-54 G25 聚乙二醇TPA(Carbowax 20M 对苯二酸) FFAP CBX-FFAP G19 25% 苯基- 25% 氰丙基甲基聚硅氧烷 OV-225Rtx?-225VF-23ms CBX-225 G17 75% 苯基- 25% 甲基聚硅氧烷 MXT?-65 G16 聚乙二醇(平均分子量15,000) DB-WAX CBX-Wax CB-WAX Stabilwax?PEG-20M Stabilwax?-DB Stabilwax?-DA MXT?-WAX

相关文档
相关文档 最新文档