文档视界 最新最全的文档下载
当前位置:文档视界 › 高分子材料的表面改性技术研究

高分子材料的表面改性技术研究

高分子材料的表面改性技术研究
高分子材料的表面改性技术研究

高分子材料的表面改性技术研究

摘要:高分子材料表面改性在实际应用中具有非常巨大的价值,因此,必须加强对其表面改性技术的研究,不断进步,从而能够充分发挥出其应用的价值。

关键词:高分子材料表面改性技术等离子体

一、高分子材料的表面改性的简述

高分子材料表面是介于高分子材料本体和外部环境之间的相边界。在许多时候高分子材料表面的物理和化学性质对其应用有至关重要的影响。以聚烯烃(主要是聚乙烯与聚丙烯)类塑料为例,其表面具有化学反应性低、极性小、表面能低、憎水等特点。如果不经过改性处理,塑料制品就很难进行粘接、电镀、涂饰、层压、印刷等二次加工,这会大大缩小其应用范围。近年来,关于高分子材料在生物医学上的应用研究很多.但普通高分子材料表面的生物相容性很差,如不经过表面改性而直接应用会发生不希望的蛋白质吸附和细胞粘附等问题。

表面改性就是在保持材料或制品原有性能的前提下,赋予其表面新的性能。高分子材料经过表面改性后可以改变表面的化学组成、提高表面极性、增加表面能、改善结晶形态和表面形貌、除去弱边界层等.从而提高高分子材料表面的润湿性、粘结性及很多其他性能。

二、高分子材料的表面改性技术研究

(一)等离子体处理

等离子体处理是将材料暴露于非聚合性气体等离子体中,利用等离子体轰击材料表面,等离子体中的活性物质与高分子材料表面进行各种相互作用,引起高分子材料结构发生许多变化,进而对高分子材料进行表面改性。等离子体处理能够改善高分子材料的表面性能,包括染色性、湿润性、印刷性、粘合性、防静电性、表面固化等。

聚合物材料的浸润性与许多领域有关,如印刷、喷涂和染色等,但由于聚合物材料表面自由能低,故而导致浸润性能不好。Guruvenket等分别用氩和氧等离子体处理聚苯乙烯和聚乙烯表面,通过测定接触角对表面性能进行了研究,对于氩和氧等离子体,接触角随着等离子体能量和处理时间增加而减少,ATR一FTIR分析表明,在聚合物表面有含氧基团,如羰基、羧基、醚键和过氧基等的生成。

Lai等通过接触角测量仪、X一射线光电子能谱(XPS)和扫描电子显微镜(SEM)研究了微波氩等离子体处理聚碳酸酯、聚丙烯和聚酯的表面特性。结果显示,等离子体处理改变了表面的化学成分和粗糙度,化学成分的改变使得聚合物表面具有较高的亲水性,其主要原因是由于含氧基团所占比率的增加,这与他人的研究结果一致;但是进一步的研究分析表明,C=O 双键是导致聚合物表面亲水性增加的关键因素。

(二)等离子体聚合

等离子体聚合是将高分子材料暴露于聚合性气体中,表面沉积一层较薄的聚合物膜,等离子体聚合法有如下优点:(1)成膜均匀;(2)膜中无气体;(3)膜与基体附着性能好;(4)可进行大面积的涂复;(5)易和其它气相法(CVD)法、真空蒸镀法等结合。在表面保护膜、光学材料、电子材料、分离膜、医用材料等方面的等离子体聚合表面改性进行了广泛的研究。Tab.2列出了几个研究实例,等离子体聚合可用于制备导电高分子膜,在电子器件、传感器上有着广阔的应用前景,也可用于制备光刻胶膜、分离膜、绝缘膜、光学材料的反射率、折射率控制、薄膜波导、生物医学材料等。等离子体膜在分离中研究最多的是作气体分离膜,对渗透气化膜、反渗透膜也已作了大量的研究,PVC与液晶N-对乙氧基苄叉对丁基苯胺的共混体系具有良好的相容性,并可使膜的透气率大幅度提高,但存在液晶挥发损失问题,利用氟碳化合物有较强厌氧能力,用等离子体聚合物在累积复合物膜表面进行改性可提高其氧氮分离系数;等离子体聚合膜在电子材料中的应用不仅局限于绝缘,已发展到了作导体、半导体、超导材料方面,有关超导膜的研究是一个很活跃的领域;N.Inagaki等研究了用TFE等离子体

聚合对PE和磁铁矿进行表面改性,使其电性能得到改善。利用等离子体聚合可获得优良的光导纤维,含氟单体聚合物膜光学性能优越,由于等离子体聚合物在制备保护膜方面倍受注目,根据实际需要可分别制成具有防腐、耐磨、防氧化等特性的保护膜,关于这方面的研究很活跃,利用等离子体聚合在高分子材料表面形成非常薄的高分子薄膜,可赋予高分子材料表面各种突出的优良性能,如在乙丙橡胶上用等离子体法镀一层PTFE膜呈现出良好的耐蒸汽性和耐酸性,用C2H2/CO2/H2混合气体的等离子聚合可以大大改进薄膜的湿润性和亲水性。(三)离子体接枝聚合

等离子体接枝聚合是先对高分子材料进行等离子体处理,利用表面产生的活性自由基引发具有功能性的单体在材料表面进行接枝共聚。等离子体接枝聚合方法有:①气相接枝:材料表面经等离子体处理后接触单体进行气相接枝聚合;②无氧液相接枝:材料表面经等离子体处理后直接进人液状单体内进行接枝聚合;③有氧液相接枝:材料表面经等离子体处理后接触大气形成过氧化物,再进入液状单体内由过氧化物引发接枝聚合;④同时照射法:单体吸附于材料表面,再暴露于等离子体中进行接枝聚合,活化和单体接枝于材料表面同时进行。接枝适当的单体或聚合物可改善材料的亲水或拒水性、粘附性、耐疲劳、防腐、耐磨、导电性及选择渗透性及生物相容性等。

黄健等用低温等离子体预处理的方法,将N一异丙基丙烯酰胺(NIPAAm)接枝在聚乙烯微滤膜上。结果表明,等离子体处理产生的活性基团寿命长,水对接枝聚合反应具有加速效应,接枝膜的水通量在32℃附近出现了不连续的变化,聚(N一异丙基丙烯酰胺)(PNIPAAm)接枝链起到了化学阀的作用;许海燕等利用等离子体表面接枝技术提高了医用聚氨酯的血液相容性,表面的氧/氮元素比提高,水接触角减小,抗凝血能力提高,氮等离子体处理过的材料,其凝血速度减小,效果为未处理材料的20%~30%。

三、结论

随着社会经济的快速发展,高分子材料的表面改性技术有了更新的进展,因此,必须加强对其技术研究,使其表面改性技术能够在更广的领域得到应用。

参考文献:

【1】刘鹏等离子体表面改性技术在医用高分子材料领域的应用 [期刊论文]- 《中国医疗器械信息》 - 2005(5)

【2】余红伟高分子材料表面接枝的方法及应用[期刊论文]-《胶体与聚合物》 - 2003(3)

智能型高分子膜的制备及应用研究进展

智能型高分子膜的制备及应用研究进展 摘要:膜材料的智能化是当今分离材料领域发展的一个新方向。讨论了智能型高分子膜材料的分类、制备方法及其环境响应特性等,分析了智能型高分子膜的应用现状及其应用前景,并展望了智能型高分子膜技术今后的研究和发展方向。 关键词:智能膜,智能高分子 Research process in preparation of intelligent polymer membranes and their application Abstract: the membrane material is the separation of intelligent material field in a new direction of development. Intelligent polymer film are discussed Material classification, preparation metho d and its environment, the response characteristics of intelligent polymer film and the application prospect of application situation and prospects of intelligent polymer membrane technology res earch and development direction. Keywords: intelligent membrane, intelligent polymer (一)引言膜的调研 膜是一种二维材料,是两相之间的选择性屏障。在自然界中,特别是在生物体内广泛存在,它与生命活动密切相关,是一切生命活动的基础,如能量转换、细胞识别、免疫激素、药物的作用和物质的传输等构成生命活动的基本问题,都与生物膜功能有关,而所有这些活动都是在界面上发生的,因此,研究膜及其界面具有重要的意义。近几年来,膜作为一种新型的高分离、浓缩、提纯及净化技术,已经广泛应用于生产。但是,随着人民生活水平的不断提高和科学技术的不断进步,对膜的要求也越来越高。由于目前已应用于生产的和科学研究的膜材料并不能响应环境的变化,已经不能满足人们的需要所以一种新型的膜应运而生——智能膜,智能膜能够响应各种环境的变化,而逐渐成为近几年来人们开发和研究的热点之一。智能膜材是智能材料的一种,即可感知、响应外界环境细微变化与刺激而发生膨胀、收缩等相应的自身调节,并且有功能发现能力的膜用材料。目前应用主要是高分子材料,合成高分子和天然高分子材料。 智能型高分子膜 膜技术是一种高效的流体分离技术,与传统的分离技术(如蒸馏等)相比具有效率高、能耗低、操作简便、对环境无污染等特点,在节能降耗、清洁生产和循环经济中发挥着越来越重要的作用。在膜分离中,膜材料起着关键作用,目前人们对高分子膜材料的研究逐渐 从传统商品化膜材料向功能性、智能型膜材料的方向发展。与传统商品分离膜不同,智能膜中含有对外界刺激做出可逆反应的基团或链段,从而使膜的结构岁外界刺激变化而可逆地改变,导致膜性能(如孔径大小、亲/疏水性等)的改变,从而控制膜的通量,提高膜的选择性。目前,膜材料的智能化已经成为当今分离材料领域发展的一个新方向。智能高分子膜在控制释放、化学分离、生物医药、化学传感器、人工脏器、水处理等多个领域具有重要的潜在价值。 现状前景 智能高分子膜是近十年来膜研究的一个崭新的领域。随着高新技术的发展,它已经在很多方面取得了较大的进步,例如在物质分离,感应元件,药物释放系统和固定化酶等方面有了一定的研究和应用,逐步开发出了一些新型膜材如LB (langmuir-blodgett)膜,分子自组装膜,纳米自组装膜和具有可调纳米孔道的高分子薄膜等。但是,目前,我国智能膜材的研究与开发存在着不足,与世界先进水平相比尚有相当大的差距,制约着我国信息、航天、航空、能源、建筑材料、

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

分离膜的改性方法

高分子分离膜的改性方法 张爱娟(04300036) [摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水 性,提高膜的抗污染能力已成为有待解决的迫切问题。由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。 [关键词]:膜;改性;物理改性;化学改性 一引言 膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。目前使用的大多数膜的材料是聚丙烯(PP)。聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。对膜材料的改性的方法有物理改性,化学改性和表面生物改性。 二物理改性 2.1 表面物理改性 1】 2.1.1 表面涂覆改性【 以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是活性剂易从高分子表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留率分离膜的可能性。 2.1.2 表面吸附改性【2】

高分子材料改性(郭静主编)课后习题标准答案剖析

第一章绪论 第二章高分子材料共混改性 1.什么是相容性,以什么作为判断依据? 是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。 2.反应性共混体系的概念以及反应机理是什么? 是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。 3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。 (1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。如:天然橡胶-丁苯橡胶。 (2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。 (3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。 (4)UCST和LCST相互交叠,形成封闭的两相区 (5)多重UCST和LCST 4.什么是相逆转,它与旋节分离的区别表现在哪些方面? 相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。 (1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。 (2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围 (3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴, 5.相容性的表征方法有哪些,试举例加以说明。 玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。 玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,

第七章 聚合物的表面改性技术介绍

第七章聚合物的表面改性 聚合物表面改性原因:①聚合物表面能低②聚合物表面具有化学惰性难以润湿和粘合③聚合物表面污染及存在弱边界层聚合物表面改性的目的:①改变表面化学组成,引进带有反应性的功能团②清除杂质或弱边界层③改变界面的物理形态④提高表面能,改进聚合物表面的润湿性和黏结性⑤设计界面过渡层 第七章聚合物的表面改性 聚合物的表面改性的方法:电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。这些方法一般只引起10-8~10-4m 厚表面层的物理或化学变化,不影响其整体性质。 7-1 电晕放电处理 电晕放电是聚烯烃薄膜中最常用的表面处理方法。因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。电晕放电处理装置如图 7-1 电晕放电处理 原理:塑料薄膜在电极和感应辊之间通过。当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。 7-1 电晕放电处理 7-1 电晕放电处理 以上两图表明: 1.电晕处理后低密度聚乙烯(LDPE)表面张力的变化:开始表面张力随电晕处理的电流增大而显著提高,当电流超过100 mA 后,表面张力增加速度趋缓2.电晕处理后低密度聚乙烯(LDPE)剥夺力的影响(变化同上) 7-2 火焰处理和热处理 一、火焰处理:1.定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表面发生氧化反应而达到处理的目的。 2.常用可燃气体:采用焦炉煤气或甲烷、丙烷、丁烷、天然气和一定比例的空气或氧气。即焦炉煤气甲烷、丙烷、丁烷、天然气 7-2 火焰处理和热处理 3.常用火焰处理来提高其表面性能的物质(粘接性)聚乙烯、聚丙烯的薄膜、薄片吹塑的瓶、罐、桶等 4.例如:用聚丙烯制作汽车保险杠,用火焰处理来提高其表面的可漆性。 5.原理:火焰燃烧的温度可达1000-2700oC,处理的时间极短(0.01~0.1s内)(以避免工件受高温影响而发生变形、软化甚至熔化) 7-2 火焰处理和热处理 火焰中含有许多激活的自由基、离子、电子和中子,如激发态的O﹑NO﹑OH和NH,可夺取聚合物表面的氢,随后按自由基机理进行表面氧化反应,使聚合物表面生成羰基、羧基、羟基等含氧活性基团和不饱和双键,从而提高聚合物的表面活性。二、热处理1.定义:7-2 火焰处理和热处理 把聚合物暴露在热空气中进行氧化反应,使其表面引进羰基、羧基以及某些胺基和过氧化物,从而获得可润湿性和黏结性。2.热处理的温度只有几百(<500oC)摄氏度,远低于火焰处理的温度,因而处理时间较长。 7-3 化学处理 指用化学试剂浸洗聚合物使其表面发生化学和物理变化的方法。优点:工艺简单,设备投资小,因而应用广泛。一、含氟聚合物1.如聚四氟乙烯(PTFE )、氟化乙烯-丙烯共聚物(FEP )和聚三氟乙烯( PTFE )等

高分子材料改性

1填充改性:在聚合物基体中或在聚合物加工成型过程中加入一系列在组成结构不同固体添加物。 2混杂增强:是一种以上不同品种的增强纤维或其他增强材料匹配在一起用于聚合物得到复合材料。3纤维的临界长度lc:以基体包裹纤维的复合物在顺纤维轴上拉伸。当从整体传到纤维上的应力刚能使纤维断裂时纤维的应有长度。 4IPN:是两种或两种以上的共混聚合物,分子链相互贯穿并至少一种聚合物分子链以化学键的方式交联而形成的网络结构。 5高分子合金:在显微镜下观察可以聚合物共混物具有类似金属合金的相结构(即宏观不分离,微观非均相结构)称为高分子合金。 6相容性:指聚合物彼此互相容纳,形成宏观均匀材料的能力。 7纳米复合材料:指其中至少有一相物质是纳米级(1—100nm)范围内的多相复合材料。 8海-岛结构:是一种两相体系,且一项为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样。 9等粘点:A组分与B组分熔体黏度相等的这一点,称为“等黏点” 问答可能题 1.熔融态化学反应类型及各自的影响因素? 答:类型:交联反应、接枝反应、降解反应、官能团反应。 影响交联因素:1过氧化物的品种与用量2交联时 间与温度3环境气氛4抗氧剂5酸性物质6填充剂 7助交联剂 影响接枝因素:1接枝单体的含量2引发剂3反应 温度4反应时间5交联或降解的控制6共单体 2填料的性质? 答:(1)几何形态特征:球状(加工流动性):玻璃微珠片状(刚性):云母、滑石粉 (2)粒径小,填充效果好(分散均匀) 粒径表示方法:1.平均粒径() 2.目数(每平方英寸筛网上的筛孔数) 3.比表面积()(3)表面形态与性质:光滑(加工流动性)、粗糙(机械互锁、有大量微孔(有一定互锁作用) 3.填料的分散混合过程? 答:大致分四个过程。<1>使聚合物添加剂粉碎。将聚合物和填料加入到体系中,在外界作用下将大块聚合物和添加剂破碎成较小粒子。 <2>使添加剂渗入到聚合物中。聚合物在剪切热和传导热作用下,降到黏流状时,使速度加快,较小粒子克服聚合物内聚力,渗入到聚合物中。、 <3>分散。较小粒子进一步减小,直到粒子大小,固相粒子逐渐分散。 <4>分布均化。分散固相粒子逐渐混合,直至均匀分散到聚合物中。 5增强纤维种类及各有那些常用的表面处理方法?答:玻璃纤维、碳纤维和植物纤维等。 玻璃纤维的表面处理方法:硅烷偶联剂处理、表面接枝处理、酸碱刻蚀处理。 碳纤维表面处理法:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法。 植物纤维的表面处理方法:热处理法、碱处理法、改变表面张力法、偶联法、表面接枝法。 7纤维状加工过程易碎问题?措施:1.后期加入纤 维 2.提高熔融温度 3.降低剪切力 8简述制造纤维增强材料片材的常用方法? (1)熔融浸渍法。首先将连续纤维或短切纤维制成毡或针刺毡,经预热与挤出机挤出的热塑性树脂薄层,通过浸渍,冷却固化,最后切割。 (2)悬浮沉积法。将纤维和树脂均匀分布在水中,使纤维釜单丝分散,树脂单粒分散,通过流浆箱和成型网加入絮凝剂,凝聚与水分离形成湿片,通过干燥,黏合,压扎成片材。 (3)静电吸附热压法。将热塑性树脂制成薄膜带电,通过短纤维槽时,纤维吸附在薄膜上,然后压合。(4)液态化床法。将一定粒度粉末树脂放在流动床的孔床上,使其带一定量静电荷,并翻腾是树枝附在接地纤维上通过切断器被切成定长再通过热轧区和冷却区而制成片材。 9影响共混物结构形态的因素? 答:1相容性。相容性越好,聚合物越容易扩散而 达到均匀混合。2配比与黏度的综合影响。(P157. 图4-16)3.内聚能密度。内聚能密度大的聚合物,其分子间作用力大,不易分散,因此在共聚物体系 中更趋于分散相。4制备方法不同的制备方法会产 生不同的形态结构。 10提高共混物相容性的方法? 答:(1)对聚合物进行化学改性(2)加入增溶剂(3) 改善共混加工工艺(4)在共混组分间交联(5)共 溶剂法和IPN法。 12.聚合物的填充效果通过哪几方面评价?为什么 答:1聚合物填充改性的经济效果利用填料实现 聚合物的填充改性,其目的是降低成本改善材料的 某些性能。2填充聚合物的力学性能作为材料使 用强度是应用的基础。3填充聚合物的热性能。 12.无机纳米粒子增韧机理? 答1.刚性无机粒子产生应力集中效应,引发周围树 脂产生微开裂,吸引一定的变形功: 2.刚性粒子存在使基体树脂裂纹扩展受阻和钝化, 终止裂纹继续开裂: 3.填料的微细化,例子比表面积增大,产生微开裂, 吸引更多冲击能量阻止材料的断裂: 6界面结合对力学性能的影响? 界面强度高低,对聚合物各方面的影响显著,最突 出的是力学性能。(1)拉伸强度:在平行于取向方 向,拉伸强度提高。垂直于取向方向时,若纤维与 聚合物结合强度比较好时,则强度提高,否则不提 高。当纤维无取向时,则各同性时,各方向强度均 有所提高。(2)韧性与冲击强度:当纤维自身的强 度小于界面强度与摩擦力之和时,即受到作用时, 纤维发生断裂。此时对其冲击性能不利,当纤维自 身的强度大于两者之和时,则会发生脱出,对冲击 作用有吸收作用,提高其冲击强度。 11层状纳米材料的性能? 答:1.力学性能和耐热性 2.高阻隔特性 3.阻燃性 4.导电功能 5.抗菌功能 6.吸波特性 7.各向异性 14什么是混杂增强、是混杂效应?混杂方式有哪 些? 答:增强聚合物复合材料是由两种或两种以上不同 品种的增强纤维或其他增强材料匹配在一起用于 聚合物二得到的材料。混杂效应:混杂效应是由 于多种纤维货增强材料与树脂基体的相互作用产 应的结果,有正效应和负效应。常见的形式:(1) 纤维——纤维混杂 2)纤维——无机离子混杂增强(3)纤维原位混杂 增强如 4填料体积成体的计算?P76 22配比与黏度的综合影响。(P157.图4-16) 高概率填空题 1充母料的理想横型:1填料核2偶联层3分散层4 增混层填充母料的方法1挤出法2密炼法3造粒法 4 开炼法 1改性的分类:物理改性:共混、填充、增强 化学改性:接枝、交联、嵌段、降解 2交联分为:物理交联:结晶或缠结 化学交联:以化学键形成交联 3化学反应形式:溶液形式,熔融形式(多数) 4熔融态化学反应器:密炼机、螺杆挤出机、高校 连续混合机组 5熔融态化学反应类型:交联、接指、断链、能团 反应 7填料的作用:增量,增强,赋予功能 8填料的种类:1.阻燃性的;2.增大硬度,石英 3. 减小硬度,滑石粉 9填料处理的目的:1.增加与聚合物的相容性 2. 提高界面粘合不产生分离 10常用的表面处理剂:1.表面活性剂 2.偶联剂(钛 酸酯,铝酸酯)3.有机高分子处理剂 4.无机物处 理剂 5.其他 11填充改性交联:1.经济效果 2.力学性能 3.热性 能 4.电性能,光学性能,加工性能 12加入纤维的作用:增强 13增强纤维种类:1.玻璃纤维 2.碳纤维 3…. 14纤维表面处理原则:1.极性相近原则 2.界面酸 碱匹配原则 3.形成界面化学键原则 4.引入可塑 界面原则 17共混改性方法:物理方法:机械共混法,干粉共 混法,熔融共混法,溶液共混法,乳液共混法。 化学方法:共聚-共混法,反应共混法,IPN法 18共混物的形态,结构 1.均相结构 2.非结晶聚 合物构成的多相共混体系 3.两相互锁成交错结构 4.相互贯穿的两相连续结果 5.结晶非结晶聚合物 共混物的形态,结构 19增溶剂类型 1.非反应型增溶剂 2.反应型增溶 剂 3.低分子增溶剂 20热塑性弹性体是由塑料和橡胶构成的,其中塑料 是连续的,橡胶是分散的。 21改善共混物透明性的方法 1.使参与共混的分散 相与连续相折射率相同 2.使共混物分散粒径小于 可见光波长 22在硬质PVC中加氯化PE起增韧改性作用:在软 质PVC中加氯化PE起增塑改性作用 23纳米复合材料的制备方法 1.溶胶-凝胶法 2.原 位聚合法 3.插层法 4.共混法 24共混物的形态首先划分为均相体系和两相体系。 两相体系又分:海-岛与海-海结构

聚合物表界面改性方法

聚合物表界面改性方法概述 摘要:聚合物由于表面能低、表面具有化学惰性、难以润湿和粘合、聚合物表面污染及存在弱边界层,所以要使用一定的方法金星表面改性,提高整体性能。聚合物表面改性通常需要改变表面化学组成,引进带有反应性的功能团;清除杂质或弱边界层;改变界面的物理形态,提高表面能;改进聚合物表面的润湿性和黏结性;设计界面过渡层等。 关键词:聚合物;表面改性;研究进展,应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了常见的改性及最新的研究进展。下面将结合具体聚合物材料详细介绍各种改性方法。 这些方法一般只引起10-8~10-4m厚表面层的物理或化学变化,不影响其整体性质。 一、电晕放电处理 电晕放电是聚烯烃薄膜中最常用的表面处理方法。因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。 原理:塑料薄膜在电极和感应辊之间通过。当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。 二、火焰处理和热处理 ⒈火焰处理 ①定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表

高分子材料与工程_就业前景和社会需求

材料工程类属于理工科类,是研究有机及生物高分子材料的制备、结构、性能和加工应用的 高新技术专业。材料工程科学的形成可以追溯到19世纪30年代,但直到20世纪70年代, 才得到全面的发展。目前高分子材料已被广泛应用于生活、生产、科研和国防等各个领域, 成为我国科学研究的一个重点领域。学生毕业后可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。 由于高分子材料发展十分迅速,所以申请这个专业的人数也稍微偏多,竞争相对激烈。在就业方面可以从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作,就业前景很不错。所以美国大学的录取要求相对别的专业都会有所提高。 高分子材料与工程专业就业前景 当今,高分子材料又向着尖端领域发展,新的特殊性能高分子功能材料不断出现, 前 景十分的广阔?市场对高分子人才的需求也日益增加,无论是在日常化工,还是在高精尖端科技,高分子人才都备受欢迎,高分子材料专业的社会需求一直处于化学、材料类专业的前列?随着国际国内对环境保护的重视,印刷包装领域也在不断改进材料,如环保型印刷材料、环保型包装材料和新型数字印刷材料等都是产业发展方向,相信经过四年的学习,在印刷包装材料领域一定大有可为?高分子材料与工程专业就业前景广阔,高分子材料人才可以在绝大多数 工业领域取得发展,因为需要高分子材料的行业多得超乎你的想像?学任何专业,如果立志于毕业后干本行业,专业课是必须要学好的,另外英语也能成为你的一把利器? 高分子材料与工程专业就业前景之课程介绍 高等数学、大学物理、计算机文化基础及语言、近代化学基础(包括无机、有机、分析化学等)、物理化学、仪器分析、工程力学、高分子化学和物理、材料科学与工程基础、工程制图、化工原理、高分子材料成型加工基础、高分子材料成型机械及模具基础、聚合物 共混改性原理、机械设计基础、机械原理及计算机设计、高分子材料加工新技术、模具工程设计、模具CAD/CAE、聚合物成型机械等. 高分子材料与工程专业就业前景之培养目标 本专业培养德、智、体全面发展,掌握高分子材料合成、加工的基本原理,能在高分子材料的合成、共混改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生 产及经营管理、教学等方面工作,并具有开拓创新精神和竞争能力的高级工程技术人才?高分子材料与工程专业就业前景之就业方向 本专业毕业生的择业面很宽,适应能力强.适合于高分子材料合成与加工、复合材料、橡胶、塑料及纤维制品等的生产企业以及研究单位的新产品研发、生产和管理工作,以及高 等院校的教学和科研.主要面向化工、建材、汽车、石油化工、航天航空、电子、家电、包装以及造船等行业. 高分子材料与工程专业就业前景之市场需求 高分子材料与工程专业为当今国内应用广泛,是研究天然及生物有机高分子材料的 设计、合成、制备以及组成、结构、性能和加工应用的充满活力的材料类学科,其工业和研究体系已经成为国民经济发展的支柱产业.高分子材料与工程专业就业前景是众多专业发 展前景好的专业之一.近年来本科毕业生读研比例均在65%以上,一次就业率均超过95%,毕业生深受国内各行业的青睐;学院注重国际化人才培养,除每年招收部分优秀学生进入学校英才班学习,与国际著名大学进行联合培养以外,还与国外多个知名高校合作,选送优秀本科生 进行联合培养;专业拥有高分子化学实验室、高分子物理实验室、功能高分子实验室和多家企业联合

膜的改性

1.膜改性由于具有清洁、廉价、节能等特点,近年来得到快速发展,是解决膜污染的有效方法之一。本文综合介绍了膜的基体改性、表面改性这两种改性类型和目前常用的改性方法包括表面涂覆、表面活性剂改性、化学修饰改性、仿生改性等等,并简单介绍了膜改性在环境领域的应用,探讨了膜改性今后的发展。 3. 膜改性类型 膜的改性主要有两种方法,其一是基体改性,其二是表面改性。 3.1基体改性: 3.1.1共混制膜是一种非常适用和常用的膜改性方法,这种方法是将传统制膜材料与另一种聚合物共混,改性在成膜过程中完成,不需要繁琐的后续处理步骤,很适合工业化生产。所制备的膜既具有传统膜的物理、化学和机械性能,又具备所添加的共混物功能,取长补短,消除各单一聚合物组分性能上的弱点,获得综合性能较为理想的膜材料。通常说来,共混膜是为了提高膜的亲水性能。国外研究者关注于共混膜的性能、微观形态结构以及共混物质的相容性。 3.1.2共聚改性是指通过两种或者两种以上单体间的聚合反应改善膜材料的性能。在制备过程中,各单体之间发生复杂的反应,形成最终的共聚膜。目前,常见的共聚膜有聚合物膜的璜化如璜化聚砜,璜化聚丙烯腈,璜化聚苯乙烯,璜化聚醋酸乙烯酯等。 Hester J F等合成了一种以聚甲基丙烯酸甲酯为主链,聚乙二醇为支链的两亲性梳状聚合物P(MMA~r PEOM),并且提出了两亲性聚合物在相转化制膜过程中在膜表面的表面富集及自组装行为。由于在成膜过程中膜和凝固浴之间存在水浓度梯度,两亲性聚合物向表面迁移,形成表面富集。表面富集的程度与凝固浴的温度正相关,温度升高,富集现象明显,反之,则富集度下降。依据这种原理,可以利用制膜过程中使用外加热源而达到表面富集的效果。例如将膜置于热水中进行热处理,表面富集程度可以进一步提高。另外,当膜的亲水性由于使用而遭到破坏时,可通过热处理使两亲性梳状聚合物亲水性侧链重新迁移到膜表面,从而使膜的亲水特性得以自我恢复。Hester等还研究了PEO链长对膜性能的影响,发现随着链长的增加,膜的亲水性和抗污染能力进一步提高。 3.2表面改性 3.2.1物理改性 在膜表面涂覆具有特定功能的高分子基团,膜的性能由所涂覆基团的性质决定,

高分子材料改性作业

天津城市建设学院 《高分子材料改性》结课作业 PVC树脂的共混改性 班级:09级材料化学(2)班 学号:09460219 姓名:张玉锐

PVC树脂的共混改性 摘要: PVC树脂由于具有一定的极性,因此与很多极性聚合物相容性很好,如丁腈橡胶、MBS、ABS及CPE等。PVC与非极性聚合物的相容性不好,共混时可以利用加入增容剂的方法来实现。 关键词: 极性 PVC树脂增容剂相容性

正文: 由于PVC树脂分子链中有大量的极性键C—Cl键,分子之间存在着较大作用力,因此PVC树脂比较坚硬,对外显示一定的脆性;另外,其分子中的C—cl键在受热时,特别是在成型加工时,容易脱去HCl分子,在大分子链中引入不饱和键,这就大大影响了树脂的耐老化性能。20世纪中期以后,人们利用物理共混的方法对PVC树脂进行了大量的改性研究。高聚物共混是一种简便而有效的改性方法。一般说来,将两种或两种以上不同的高聚物共混时,可以制备兼有这些高聚物性质的混合物。 聚氯乙烯(PVC)是最早工业化的塑料品种之一,也是产量较大的一种通用塑料,目前产量仅次于聚乙烯,居第二位。聚氯乙烯由氯乙烯(VC)按自由基历程聚合而得,其化学反应式简示为: nCH 2=CHCl—[CH2一CHC]n。 在工业上,聚氯乙烯可按悬浮聚合、乳液聚合、溶液聚合和本体聚合四种方法生产。 聚氯乙烯的共混改性聚氯乙烯(PVC)是最早工业化的树脂品种之一,目前产量仅次于聚乙烯,居第二位。聚氯乙烯是由氯乙烯单体采用悬浮、乳液、溶液或本体聚合方法按自由基历程聚合而成。分子呈无定形线形结构,无支链。分子中氯原子赋予该聚合物较大的极性与刚性,并具有良好的耐化学性、绝缘性和透光性。加入增塑剂可制得柔软曲折的聚氯乙烯制品。 聚氯乙烯的共混是聚合物之间的混合,共混体系的热力学是最重要的影响因素,也就是相容性问题。聚氯乙烯共混改性的应用主要有两种,一种是用作PVC加工助剂,另一种是用作PVC抗冲击改性剂。 (1)PVC加工助剂 ①烯酸酯类聚合物如聚丙烯酸酯类聚甲基丙烯酸酯类,或以MMA为主的共聚物。 ②苯乙烯、甲基丙烯酸酯或丙烯酸酯共聚物。 ③ABS(丙烯腈/丁二烯/苯乙烯)树脂,其苯乙烯含量较高。 ④SAN(苯乙烯/丙烯腈)树脂,苯乙烯含量较高者。 ⑤聚o—甲基苯乙烯(PAMS),线性低分子量均聚物,相容性虽比MMA为主的共聚物差,但价格便宜,另外它还有润滑作用。 (2)PVC抗冲击改性剂 ①氯化聚乙烯(CPE)。采用高密度聚乙烯进行氯化,C1的含量为30%一42%。一般采用PVC与CPE共混;也有将PVC接枝到CPE上。共混物的耐候性好,适于屋子外墙挡雨板,窗框,异型材等。 ②乙烯—醋酸乙烯共聚物(EVA)。PVC/EVA共混物耐低温性能、耐候性及保色性好。此共混物也有粉料与粒料两种。 ③ABS(丙烯腈-丁二烯—苯乙烯共聚物)。一般选用丁二烯含量较高者即低模量ABS。 ④MBS(甲基丙烯酸甲酯—了二烯—苯乙烯共聚物)。制法是将MMA及S接枝到聚丁二烯乳液上或丁苯乳液上。 ⑤MABS(甲基丙烯酸甲酯—丙烯腈—丁二烯—苯乙烯共聚物)MABS可以是MBS与ABS 的共混物,也可以将MMA,AN及S在聚丁二烯或了苯乳液中进行接枝。 ⑥丙烯酸酯类聚合物。通常是将MMA接枝到聚丙烯酸丁酯上或聚丙烯酸异辛酯上,是一种弹性体。这类产品加工性好,耐候性好,与硬PVC片共混,可制得玻璃样透明片,

高分子材料的等离子体表面处理分析

高分子材料的等离子体表面处理 摘要 阐述了等离子体表面改性技术的作用原理, 总结论述了等离子体对高聚物表面作用的几种理论, 经低温等离子体处理的高分子材料表面发生多种物理和化学变化,重点介绍了低温等离子体在医用高分子材料、合成纤维材料、薄膜材料中的研究概况和进展。 关键词: 等离子体; 表面改性; 高分子材料; 0 引言 高分子聚合物材料同金属材料相比具有许多优点, 如密度小、比强度和比模量低、耐蚀性能好、成型工艺简单、成本低廉、优异的化学稳定性、热稳定性好、卓越的介电性能、极低的摩擦系数、良好的润滑作用及优异的耐候性等, 因此广泛应用于包装、印刷、农业、轻工、电子、仪表、航天航空、医用器械、复合材料等行业[1]。但其应用范围和使用效益往往会受到表面性能的制约,因此常常需按使用目的改善或变换其表面性能,如材料或部件的粘着性,高分子膜的印刷性、透过性等。 1 高分子材料的表面改性 高分子材料的各种表面性能的获得取决于材料的表面结构和相关的界面特性,所以高分子材料的界面物性控制是非常必要的。 图1 界面物控技术内容及应用领域 图1所示为界面物性控制技术的内容和相关的应用领域。为了使高分子材料适合各种应用需要,大体上有两类作法。一类是利用各种表面改性技术产生一个新的表面活性层,从而改变表面、界面的基本特性。另一类作法是借助功能性薄膜或表面层形成技术在原表面上敷膜。这两种作法的目的都是为了使材料具有或同时具有几种表面性能。为此,人们研究开发了许多种可供利用的表面处理技术。诸如化学湿法处理,利用电子束或紫外线的干式处理,利用表面活性剂的添加剂处理以及采用真空蒸渡的金属化处理等。本论文主要介绍的等离子体表面处理是利用低压气体辉光放电的干式处理技术。既能改变表面结构,控制界面物性,也可以按需求进行表面敷膜。在塑料、天然纤维、功能性高分子膜的表面处理方面有着巨大

SiO2表面改性机理及其对高分子材料性能的影响

SiO2表面改性机理及其对高分子材料性能的影响 (高材11201:瞿启凡;指导老师:肖伟) 该文简要介绍了表面改性机理!对其作为填料改性高分子材料的研究进行了梳理!针对橡胶、塑料、涂料及胶黏剂等进行了一一阐述!并对未来研究内容及方向做出展望。 关键词:刚性SiO2,表面改性,填充,高分子材料 高分子材料具有结构独特易于改性和加工的特点,具有其他材料无可比拟不可取代的许多优异性能。促使其在国民经济建设、国防及科学技术应用等领域具有不可替代的优势,已逐渐发展成为人们生产生活中不可或缺的材料之一。然而,随着时代的发展和科学技术的进步,对高分子材料性能方面提出了更高要求。因此,对高分子材料性能方面的改良研究越来越多,如通过调整高分子材料内在分子结构与其他有机高分子材料进行共混以及采用无机刚性粉体SiO2作为添加剂等手段。其中,通过采用刚性无机材料(如炭黑黏土等)作为添加剂,可以在很大程度上提高高分子材料性能,已成为学者们争相研究的热点。 刚性无机材料具有很高化学稳定性和热稳定性、无毒、无刺激、使用安全、在自然界中分布广泛、对高分子材料改性有着重要作用,但无机刚性粉体SiO2颗粒表面具有很强极性,是典型亲水性材料,与亲油高分子材料物性间存在巨大差异,难以在有机基体中均匀分散,另外作为添加剂颗粒尺寸通常较小甚至为纳米颗粒,颗粒表面氢键的存在极大表面能使其极易发生团聚,以聚集体形式存在,分散效果差。苏瑞彩也从内外表面原子所受力场不同的角度分析了团聚机理,即处于晶体内部原子受力受到来自周围对称价键力和稍远原子的范德华力、受力对称,价键饱和,而表面原子受力来自其临近内部原子的非对称价键力和其他原子的远程范德华力,受力不对称,价键不饱和,易与外界原子键合形成大颗粒团聚体。的这些特性使其极不易分散。因此,要发挥无机刚性粉体SiO2独特作用,必须改善其在高分子材料基体中的分散效果,改善与高分子材料的亲和性、相容性,提高其加工流动性,增强两相间界面结合力,以此来增加其填充量,提高高分子材料性能。 1.SiO2表面改性机理 SiO2表面亲水疏油,在有机质中难以均匀分散,与有机体间结合力差,因此使用前必须对其进行表面改性。SiO2颗粒表面含有大量羟基基团使其呈现为亲水性。该结果已经被大量文献中未改性SiO2红外光谱分析结果中验证。 针对SiO2颗粒表面特性,其在液相中改性机理有3种"即静电作用机理、吸附层媒介作用机理以及化学键键合作用机理! 1.1静电作用机理和吸附层媒介机理 静电作用机理即利用化学键—离子键形成的本质,利用SiO2 颗粒表面具有羟基基团,根据相反电荷在颗粒表面的相互吸引作用完成包覆。其本质是利用静电作用,阴阳离子之间可以作用在任何方向上,方向性差!

聚合物表面改性方法综述

聚合物表面改性方法综述 摘要:聚合物表面改性的方法很多,本文主要对溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法进行综述。前几种方法都是化学处理法, 在基底上形成的新的极性表面层与体相结合一体, 非常牢固;最后一种方法为物理过程, 能够精确控制改性区域, 对于改善材料表面微摩擦性能有重要作用。 关键词:聚合物;表面改性;化学处理法;物理过程 在当今的社会中,材料是人类赖以生存和发展的重要物质,是现代工业和高科技发展的基础和关键。由于材料单体的种类有限,而且材料单体的单一的某的些性能比较差,不符合人们所求,所以要对其材料经行改性。 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。 1溶液处理方法 1.1溶液氧化法 溶液氧化法是一种应用时间较长的处理方法, 由于其简便易行, 可以处理形状复杂的 部件, 且条件易于控制, 一直受到广泛关注。溶液氧化法对聚合物表面改性影响较大的因素主要是化学氧化剂的种类及配方、处理时间、处理温度。常用的氧化体系有: 氯酸- 硫酸系、高锰酸- 硫酸系、无水铬酸- 四氯乙烷系、铬酸- 醋酸系、重铬酸- 硫酸系及硫代硫酸铵- 硝酸银系等, 其中以后两种体系最为常用。溶液氧化法处理聚乙烯表面是一个典型的氧化反应, 反应的温度和时间对氧化处理有很大的影响, 王博等系统的研究了用重铬酸钾- 浓硫酸、高锰酸钾-浓硫酸体系处理市售农用聚乙烯薄膜表面时温度和时间对表面性质的影响[ 1]。实验发现, 当氧化体系温度低于30 o C时, 氧化处理基本不能发生, 温度升高,对制备氧化深度大 的产品有利, 但是过高的温度会使聚乙烯表面萎缩变形, 最适宜的温度为45~ 60 o C。当氧化时间少于30 min 时, 氧化程度很小, 几乎观察不到, 当氧化时间超过30 min 后, 氧化作用 明显加强。进一步的研究表明, 合适的氧化时间为45 min左右。由此可见, 表面氧化处理效 果和氧化时间、氧化温度之间有一种平衡关系。只有在一定的时间和温度范围内才能得到最佳的效果。 1.2溶剂浸渍法 溶剂浸渍法是用适当的溶剂处理聚合物表面, 溶剂与聚合物表面发生溶解、吸附和化学反应等作用,从而达到除污、增加粗糙度及提高表面极性等效果。聚碳酸酯在1, 6- 己二胺水溶液或N, N - 二甲基- 1,3- 丙二胺水溶液中进行处理时, 会发生某种化学反应, 使表面活化。聚乙烯在进行溶液氧化处理之前,可选用适当的溶剂, 如CCl4 对聚乙烯进行预浸渍。这样可 以除掉聚合物弱的边界层, 在制品表面形成凹凸不平的孔穴, 增加表面粗糙程度, 使氧化液 与制品表面接触面积增加, 从而提高氧化处理效果。 1.3水解法

臭氧化法在高分子生物材料表面改性中的应用

知识介绍 臭氧化法在高分子生物材料表面改性中的应用 袁幼菱 艾 飞 臧晓鹏 沈 健 林思聪 (南京大学表面和界面化学工程技术研究中心南京 210093) 摘 要 综述了臭氧化法在高分子生物材料表面改性中的应用及研究,介绍了臭氧化法的特点,过氧化物浓度的测定及臭氧化反应和过氧化物引发接枝共聚的反应机理。 关键词 臭氧化法 表面改性 接枝共聚 反应机理 Abstract The application and research advances in surface m odification of biopolymer materials using ozoniza2 tion have been reviewed.The characteristics of ozonization,determination of peroxide complex concentration and the mechanism of ozonization and graft copolymerization generated by peroxide complex were als o described. K ey w ords Ozonization,Surface m odification,G raft copolylmerization,Mechanism 近来已有一系列不同的技术用于高聚物表面改性,高聚物表面接枝聚合就是其中的一种。高聚物表面接枝聚合方法为现有的高聚物具有多姿多彩的新的不同功能提供了途径,使聚合物具有亲水性、粘接、生物相容性、导电性、防雾、防臭及润滑等的性质[1]。利用在聚合物表面氧化来改善聚合物表面性质已被广泛地应用于聚合物工业。 发展生物材料的一个重要途径是在物理力学性能适当的材料表面上建立特定的分子结构,使得生物材料的物理力学性能与生物相容性相统一。高聚物表面接枝聚合已被广泛地应用在高分子生物材料表面改性上。在接枝聚合反应中,可以通过各种方法如化学试剂法[2]、等离子体法[3~4]、紫外光照射法[5~6]、电晕放电[7]、电子束[8]、辉光放电[9]和臭氧化法[10~11]等等。利用这些方法,首先是在聚合物基材表面引入官能团,然后引发聚合。本文主要介绍臭氧化法及其在高分子生物材料表面改性中的应用及研究进展。 1 臭氧化法 臭氧化法跟其它方法相比较,其最大的优点是能在聚合物表面均匀引入过氧基团,并且具有实验步骤简单,操作容易,适用性广,费用低的优点,因此被广泛应用于高分子领域中[10~14]。当高聚物暴露在臭氧气体中时,除了形成羰基和羧基集团外,还生成氢过氧化物[15]。这些氢过氧化物具有引发乙烯基单体聚合的能力,导致在臭氧化的聚合物材料表面的接枝反应[10]。臭氧化并不停留在材料表面的氧化,也可以渗透到材料的内部。臭氧化的程度和材料、臭氧浓度及臭氧化时间有关[16]。但是同时必须考虑臭氧活化会引起高聚物的降解而产生对材料力学性能的影响。Park 等[17]对聚氨酯(PU)膜进行15,30,60和180min臭氧处理后,测试膜的力学性能,发现处理前后没有什么改变。Ikada等[10]把PU膜在50V时臭氧处理60min后,发现膜变得不透明,即发生降解。 袁幼菱 女,38岁,博士,副教授,从事高分子生物材料表面改性的研究。 973国家重点基础研究发展规划项目(N o G1*******),南京大学博士后基金资助项目 2002201204收稿,2002205228修回

相关文档
相关文档 最新文档