文档视界 最新最全的文档下载
当前位置:文档视界 › 小动物磁性纳米颗粒磁共振成像

小动物磁性纳米颗粒磁共振成像

小动物磁性纳米颗粒磁共振成像
小动物磁性纳米颗粒磁共振成像

MagImaging?小动物磁共振/磁粒子成像造影剂

NanoEast?的背后是一个科学家团队,有来自化学、生物医学工程、临床医学、医学电子学等领域的专家和教授,东纳生物专注于生物医学纳米材料与纳米技术的研发,

致力于纳米材料与纳米技术的生物医学应用。NanoEast?已成为生命科学领域重要的

纳米材料及纳米技术的优质服务商。

MagImaging?是一个拥有完整磁共振成像(MRI)/磁粒子成像(MPI)造影剂系列产品的影像学试剂,可以用于科研及临床前的小动物体内成像研究。MagImaging?试剂的发明得益于东纳生物的科学家长期的纳米材料研制及其医学应用的研究进展,完全

符合动物成像实验研究的标准,具有突出的成像质量,并且所有的MagImaging?造

影剂都采用经过大量实验验证的安全剂量,在小动物的耐受计量范围。

磁共振成像(MRI)是利用氢核的磁共振弛豫信号进行成像,磁性纳米颗粒造影剂通

过静脉注射在血液系统及相关组织分布或靶向到特定器官中,形成局部磁场微扰并改

变氢核弛豫信号,从而实现对比增强。磁粒子成像(MPI)系统由布鲁克与飞利浦公司合作开发,相关研究2005年首次在《自然》杂志上发表,其断层扫描成像技术通过直接探测注入体内的磁性纳米颗粒而获得快速和高分辨成像,是磁成像领域又一项突破

性创新。

MagImaging?小动物磁共振/磁粒子成像造影剂系类是专为MRI和MPI系统设计的磁性四氧化三铁(Fe3O4)纳米颗粒对比增强试剂。具有如下优势:

l 采用纳米材料合成领域先进的高温热解法制备,具有均一的尺寸、高的饱和磁化强

度和对比增强成像效果;

l 纳米颗粒表面采用生物相容性的PEG或磷脂PEG进行高密度修饰,因而具有较长的体内血液循环时间和肿瘤被动靶向能力,并且PEG末端具有甲氧基、羧基、氨基等基团,方便与特异性靶向识别分子(如抗体、适配体、靶向肽等)偶联,从而构建靶向

纳米探针;

l PEG末端或者磷脂层内可以通过化学偶联或疏水相互作用引入荧光、化疗药物等分子,从而构建多模态或多功能诊疗纳米探针;

l 优化的控制制备技术可以提供多种尺寸的磁性纳米颗粒,包括5nm、10nm、25nm、50nm,为客户研究纳米颗粒体内行为和成像的尺寸依赖性提供了手段。

磁性纳米颗粒形貌控制制备(Chemistry of Materials, 2013, 25, 3702)

磁性纳米颗粒PEG化、荧光或药物分子负载及表面偶联特异性靶向分子(Biomaterials 2014,35:9126; Nanoscale 2016, 8, 16902)

l 被动靶向和主动靶向磁共振T2加权成像

采用上述方法对磁性纳米颗粒(电镜尺寸10nm左右,具有T2加强成像能力)进行PEG修饰和RGD小肽(具有靶向肿瘤新生血管的功能)的偶联,分别构建被动靶向和主动靶向磁性纳米探针。PEG作为一种美国FDA批准的极少数能作为体内注射药用的聚合物,具有极高的水溶性、抗蛋白吸附能力和良好的生物相容性。将其修饰在纳米颗粒的表面可以有效降低颗粒与血浆蛋白的相互作用,降低生物毒性,延长体内血液循环时间。Maglmaging?磁性纳米颗粒经PEG修饰后,通过肿瘤EPR(Enhanced Permeability and Retention,增强的渗透与滞留)效应,有效被动靶向到肿瘤组织

(4T1乳腺癌小鼠模型),表面偶联RGD后获得了更清晰和更长时间的MRI增强。同时由于小鼠肿瘤EPR效应的异质性,可以清晰看到磁性纳米颗粒在肿瘤组织中的不同分布。

肿瘤被动靶向(左)和主动靶向(右)MRI(Nanoscale 2016, 8, 16902)

l 磁性纳米探针评价肿瘤EPR效应异质性及指导用药

为了评价肿瘤EPR效应的异质性,构建了一种水动力尺寸32nm的PEG化磁性纳米探针,对多只4T1乳腺癌小鼠模型进行磁共振成像,发现不同小鼠肿瘤确实被动靶向成像效果不同。根据成像效果差异,将小鼠分成三组,分布给与载紫杉醇纳米胶束药物进行治疗,发现磁共振成像效果好的小鼠获得了更好的治疗效果。这个研究为发展影像学指导纳米药物用药提供了新的手段。

PEG化磁性纳米探针评价肿瘤EPR效应异质性及指导用药

(Nanoscale, 2018, 10, 1788)

l 超小磁性纳米探针用于肿瘤主动靶向磁共振T1加权成像

Maglmaging?超小磁性纳米颗粒(电镜尺寸5nm左右,具有T1加权成像能力)通过表面PEG化修饰,并在末端羧基上偶联靶向肿瘤新生血管的RGD环肽,从而构建磁性靶向纳米探针,其水动力尺寸小于20nm,具有优秀的生物相容性,可实现对肿瘤的磁共振T1靶向成像。一个重要应用案例,利用该探针实现了对小鼠肝原位肿瘤(2-3mm)模型的靶向成像,获得了理想的效果。

超小磁性纳米探针实现对肝原位肿瘤的主动靶向成像及示意图

(Theranostics 2016; 6(11):1780-1791)

l 基于磁性纳米颗粒的多模态成像探针及肿瘤磁感应热疗

借助磁性纳米颗粒平台将两种或多种对比剂进行复合,形成一些新型的联合对比剂,即多模态对比剂,可同时用于不同影像设备的检测,实现多种显像模式的优势互补。这种all-in-one的纳米颗粒平台的设计思路在医学诊断中具有非常重要的意义。基于Maglmaging?PEG化磁性纳米颗粒平台,在脂质层中包埋脂溶性荧光分子,在表面修饰RGD环肽靶向肿瘤新生血管,结合磁性纳米颗粒在交变磁场中的升温特性,可实现磁共振成像、荧光成像和热成像指导的肿瘤磁感应热疗。

多模态成像指导肿瘤磁感应热疗

(Biomaterials 2014,35:9126; Nanoscale 2016, 8, 16902)

MagImaging?小动物磁共振/磁粒子成像造影剂产品目录

1、磁共振T1成像

2、磁共振T2成像

6、载药磁性纳米颗粒

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

高频磁性纳米材料的电磁性能调控及其在磁性电子器件中的应用

项目名称:高频磁性纳米材料的电磁性能调控及其 在磁性电子器件中的应用 首席科学家:薛德胜兰州大学 起止年限:2012.1至2016.8 依托部门:教育部

一、关键科学问题及研究内容 本项目根据电子信息技术中对GHz频段的高性能、微型化薄膜电感和近场抗电磁干扰器件用高频磁性纳米材料的迫切要求,通过磁性纳米材料与纳米结构的可控制备,突破Snoek理论极限的制约,探索提高磁性纳米材料高频性质的新机制,突破传统微波磁性材料不能同时保持高共振频率和高磁导率的瓶颈,获得1-5 GHz波段内高磁导率的高频磁性纳米材料;并针对高频磁性纳米材料在1-5 GHz电子信息传输和近场抗电磁干扰技术中的具体应用,探索保持优良高频磁性基础上的电磁匹配机制,突破电磁波的连续介质理论,设计并实现具有良好电磁匹配的可工作在1-5 GHz的微型化薄膜电感和近场抗电磁干扰器件。 针对GHz频率下,同时提高磁性纳米材料的共振频率和磁导率,以及获得优异性能的薄膜电感和近场抗电磁干扰器件,拟解决的关键科学问题包括: ●自然共振机制下,同时提高磁性纳米材料共振频率和磁导率的机制,以及双 各向异性控制下大幅度调控高频磁性的机制及磁化强度的动力学过程。 ●非自然共振机制下,提高磁性纳米材料共振频率和磁导率的机制,以及有效 各向异性和体积共同作用下的超顺磁阻塞共振频率对高频磁性的影响机制。 ●描述磁性纳米材料电磁性质的有效理论,以及核/壳结构的形态、相构成和 各相的体积分数对新型磁性/介电纳米材料的高频电磁耦合机制和匹配关系的宽范围调控机制。 ●分离介质对电磁波传输特性的影响机制,以及高性能薄膜电感和抗电磁干扰 器件的设计理论和器件研制。 主要研究内容包括: ●以高饱和磁化强度M s的铁基和钴基铁磁金属及合金为基础,制备磁性纳米 薄膜、颗粒膜及多层膜。通过溅射时外加磁场、倾斜溅射、反铁磁钉扎、衬底修饰等手段,在样品平面内产生单轴或单向磁各向异性。通过薄膜的微结构优化,降低矫顽力H c,提高磁导率 ;改变面内各向异性,探索大范围调控磁性纳米薄膜高频磁性的规律。 ●制备线度比(aspect ratio)大的片状软磁纳米颗粒,调整静态磁矩分布在薄 片平面内,利用形状调控垂直片状纳米颗粒平面的各向异性场,用磁场热处理、应力、取向等方式在片状纳米颗粒平面内产生和调节各向异性场。研究这两个各向异性场的比值与材料高频磁性的关系。寻找大幅度提高双各向异性片状磁性纳米颗粒的规律,探索提高高频磁性的新机制。 ●采用高温热解或还原的方法制备单分散、表面活性剂分子包覆的不同形状的

镧系元素掺杂的上转换纳米颗粒

·44卷(2015年)9期 镧系元素掺杂的上转换纳米颗粒 (中国原子能科学研究院周书华编译自Marco Bettinelli ,Luís Carlos ,Xiaogang Liu.Physics Today ,2015,(9):38) 光子上转换——光与物质相互作用将低能激光转换为高能光发射——是非线性光学中最令人着迷的效应。在已研究过的几种上转换方法中,镧基光子上转换是最有效的。 1961年,John Porter 在用非同时光子激发Pr 3+离子时,观察到镨掺杂的氯化镧(LaCl 3:Pr )晶体的发光现象。此后几年中,一些研究人员利用掺杂离子之间的能量转移进行了镧系敏化的上转换。 然而,直到21世纪初,研究集中于块状玻璃或晶体材料中光子的上转换,其发展前景并没有得到展现。随着上转换纳米材料的出现,情况发生了显著变化。在纳米水平上,许多新效应开始起作用,为上转换研究打开了新的局面。 早期研究中遇到的主要挑战在于,为了吸收等间隔增加的入射激光能量,有效的上转换材料的能级必须成阶梯状排列。由于这一原因,早期关于上转换的工作几乎完全集中在少数能满足这种严格要求的几种掺杂离子上(即Er 3+,Tm 3+和Ho 离子),因而可获得的发射波长受到很大限制。2011年,随着每层掺杂着不同离子的核—壳纳米结构的研发,上转换研究有了重要突破。在图1所示的结构中,核心掺杂离子(称作敏化剂)吸收入射的激光光子。所吸收的能量通过一系列 步骤转移给壳掺杂离子(称作激活剂),后者发射上转换辐射。大部分情况下,将Yb 3+和Nd 3+选作敏化剂的材料,因为Yb 3+在980nm 处及Nd 3+在800nm 处有很大的吸收截面。激活剂可以是一些镧系离子中的任一种,而不需要具有阶梯状的能级。因而核—壳上转换纳米颗粒可以发射任何颜色的光。 尽管对镧系掺杂的上转换纳米颗粒的研究还处在初级阶段,但是已经出现了令人印象深刻的成果,展现出广泛的应用潜力,包括单颗粒跟踪、生物成像和治疗学、热感应、光伏学、防伪以及全色三维立体显示。 利用发出的光实时跟踪生物体内的单个纳米颗粒(见图2 ),可以使生物学和医学科学领域产生革命性的进 展。例如,可以提供有关注入到病人体内的药用纳米颗粒的摄入途径和分布的重要信息。镧系掺杂的纳米颗粒为常规的量子点提供 了利好。它们不闪烁,即使以大功率激发数小时仍是稳定的。因此可以以高空间分辨、高时间分辨和高灵敏度进行跟踪。 此外,与用于激发量子点的紫外光和蓝光相比,激发上转换纳米颗粒的近红外光可穿透到更深的组织中(多于1cm ),对细胞造成的光损害少,不会引起自荧光。上转换纳米颗粒本身显示出高的光化学稳定性和低的细胞毒性。 为使上转换纳米颗粒不仅发光而且是生物相容的,其表面可以采用各种配体(如小分子、树状大分子、聚合物以及生物分子)进行官能化。表面的官能性使纳米颗粒具有生物传感所需要的生物选择性或特 图1 核—壳纳米颗粒结构示意图。核心掺杂离子(称作敏化剂) 吸收入射的激光光子。所吸收的能量通过一系列步骤转移给壳掺杂离子(称作激活剂) ,后者发射上转换辐射 · ·623

磁性纳米粒子的制备与应用.

磁性纳米粒子的制备与应用 孙超 (上海大学环境与化工工程学院,上海200444) 摘要:磁性纳米材料(magnetic nanoparticle)是由Fe,Co,Ni等过渡金属及其氧化物组成的打下尺度介于1~100nm间的一种新型功能材料,磁性纳米材料具有磁性特征,还具有纳米材料的独特效应和生物亲和性,因而成为目前生物医学研究的热点之一。本文简要介绍了磁性纳米颗粒的制备方法,和目前磁性纳米颗粒在医用载药方面的研究进展。 关键词:磁性纳米材料;氧化铁;载药 Preparation and Application of Magnetic Nanoparticles Sunchao (School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China) Abstract: Magnetic nanoparticles are a kind of magnetic material with diameter of l~1 00nm,which are made of transition metal and their oxide such as Fe、Co、Ni and so on.They are new type of functional materials with characterization of special effect,magnetic responsibility and bioaffinity,and have been one of hot spots in recent biomedicine research.This paper introduces the preparation of magnetic nanoparticles and some recent studies about drug loading of magnetic nanoparticles in medicine。 Key words: Magnetic nanoparticles;Iron oxide;Drug loading 1.引言

超顺磁性纳米颗粒治疗肿瘤的应用进展_李慧

中国组织工程研究与临床康复 第13卷 第51期 2009–12–17出版 Journal of Clinical Rehabilitative Tissue Engineering Research December 17, 2009 Vol.13, No.51 ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH 101331 Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China; 2 Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu Province, China Li Hui ★, Studying for master’s degree, Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China lh99beautiful@ https://www.docsj.com/doc/9210904614.html, Correspondence to: Wang Da-xin, Doctor, Professor, Chief physician, Yangzhou University Medical College, Yangzhou 225001, Jiangsu Province, China daxinw2002@ https://www.docsj.com/doc/9210904614.html, Received: 2009-10-11 Accepted: 2009-11-21 超顺磁性纳米颗粒治疗肿瘤的应用进展★ 李 慧1,王大新1,顾 健2 Application of superparamagnetic nanoparticles for cancer treatment Li Hui 1, Wang Da-xin 1, Gu Jian 2 Abstract BACKGROUND: In recent years, nanoparticles has been rapidly developing in tumor hyperthermia, genophore research, and targeted drug therapy, particularly nanoparticle containing drug delivery systems will become another breach in tumor therapy. OBJECTIVE: To summarize the application and mechanism of superparamagnetic nanoparticles for cancer treatment in the medical field. METHODS: A computer-based online search was conducted in Medline for English language publications containing the key words of “superparamagnetic, nanoparticles, targeting” from January 2000 to October 2009. Relevant articles were also searched from CNKI with the same key words in Chinese from January 2005 to October 2009. RESULTS AND CONCLUSION: A total of 123 articles about targeting role of magnetic nanoparticles were included, and there were 24 in Chinese and 108 in English. Articles published earlier, duplicated, and similarly were excluded, and 30 references were finally included. Superparamagnetic nanoparticles characterized by targeting role under external magnetic field, and crystal of ferroso-ferric oxide did not has toxicity to cells. As a gene carrier and drug carrier, superparamagnetic nanoparticles were widely used in medical research and they also provided novel evidences for cancer treatment. By an external magnetic field, how to avoid a comprehensive system of phagocytic endothelial phagocytosis and prevent the course of treatment such as drug-induced thrombus is still inadequate. Li H, Wang DX, Gu J.Application of superparamagnetic nanoparticles for cancer treatment. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2009;13(51):10133-10136. [https://www.docsj.com/doc/9210904614.html, https://www.docsj.com/doc/9210904614.html,] 摘要 背景:近年来纳米颗粒在肿瘤热疗、基因载体研究、靶向药物治疗等方面得到迅速发展,特别是纳米颗粒载药系统已成为肿瘤治疗的又一突破口。 目的:对超顺磁性纳米颗粒在医学领域特别是肿瘤治疗方面的应用及其机制进行概述。 方法:应用计算机检索Medline 数据库(2000-01/2009-10),以“Superparamagnetic ,Nanoparticles ,Targeting ”为检索词;应用计算机检索中国期刊网(CNKI)(2005-01/2009-10),万方数据库(2005-01/2009-10),以“磁性、纳米颗粒、靶向”为检索词。 结果与结论:共收集123篇关于磁性纳米颗粒靶向作用的文献,中文24篇,英文108篇。排除发表时间较早、重复及类似研究,纳入30篇符合标准的文献。超顺磁性纳米颗粒是指具有磁响应性的纳米级粒子,其直径一般小于30 nm ,当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超磁性状态。超顺磁性纳米颗粒除了通过血液循环进入炎症肿瘤相关部位外,还可被广泛存在于肝脏、脾脏、淋巴结的网状细胞-内皮吞噬系统(reticulo -eneothelial system ,RES)的细胞所识别。研究发现经过表面修饰的载药纳米颗粒,可跨血脑屏障转运,其机制可能与血脑屏障的连接结构——毛细血管,其内皮细胞通过低密度脂蛋白介导的胞吞作用有关。目前合成生物相容性磁性纳米颗粒的方法有很多,但最常用的合成生物相容Fe 3O 4磁性纳米颗粒的方法为共沉淀法。超顺磁性纳米颗粒在外加磁场的作用下可具有靶向性,且四氧化三铁的晶体对细胞无毒,其作为基因载体及药物载体被广泛应用于医学研究,为肿瘤的治疗开辟了新的途径。但对于外置磁场,如何全面的避开内皮吞噬系统的吞噬,防止治疗过程中药物性血栓的生成等尚存在不足。 关键词:超顺磁性;四氧化三铁;纳米颗粒;靶向;生物材料 doi:10.3969/j.issn.1673-8225.2009.51.028 李慧,王大新,顾健.超顺磁性纳米颗粒治疗肿瘤的应用进展[J].中国组织工程研究与临床康复,2009,13(51):10133-10136. [https://www.docsj.com/doc/9210904614.html, https://www.docsj.com/doc/9210904614.html,] 综 述

上转换荧光纳米探针的制备及其在染料检测上的应用

上转换荧光纳米探针的制备及其在染料检测上的应用 【摘要】本文通过溶剂热法,成功地制备了Yb3+和Er3+共掺杂的NaGdF4上转换纳米晶。它具有特殊的发光性能,经过表面修饰后,该纳米晶具有良好的生物兼容性,被应用到检测罗丹明B染料上。结果表明,上转换纳米晶和罗丹明B结合,发生共振能量转移,为检测染料提供了一种新的高效途径。 【关键词】上转换纳米晶;制备;染料 0 引言 随着生物物理、生物化学、生命科学和医学的不断发展,依赖成像技术进行初步地诊断病情和科学研究的程度越来 越深[1]。由于X射线等成像技术存在辐射大、仪器昂贵等缺点,这就促使了纳米探针的发展。在纳米探针中,上转换纳米探针是目前国内外研究热点,它所具有的特殊的发光性能。在生物成像和检测领域都有巨大的应用价值。 近些年,有机染料污染对一些水生物来至人类的健康生活构成极大的威胁,因此找到一种快速且高效的检测有机染料的方法十分必要且价值巨大。本文主要应用NaGdF4:Yb,Er上转换纳米晶对有机染料罗丹明B进行检测,并对其形态和结构进一步地进行了研究。

1 实验制备和结构表征 1.1 试剂与仪器 实验中使用的氯化钆(99.9%),氯化镱(99.9%),氯化铒(99.9%),氢氧化钠(≥98%),氟化铵(≥98%),甲醇(99.5%),十八烯(90%),油酸(90%)是从Sigma Aldrich 购买。所有的试剂都直接用于化学反应,未经进一步的提纯处理。 1.2 样品制备 采用热溶剂法制备稀土离子Yb3+和Er3+掺杂的NaGdF4纳米晶:2mL RECl(0.2 M,RE= Lu,Yb and Er)的水溶液被添加3到12ml 十八烯和4ml油酸的混合液中。混合物在加热30min后被加入5ml NH4F (1.5mmol)和NaOH (1mmol)甲醇溶液,随后加热蒸发掉甲醇和水,再加热到310°C 持续加热60min 后冷却。将产物用乙醇清洗3 次后分散在环己烷溶液中保存。 1.3 结构表征 采用H-7650c 型透射电子显微镜来观察纳米颗粒的大小和形貌;采用Hitachi F-2700 荧光光谱仪测试上转化发光性能;测试所用的光源是980nm的红外光、功率可调节的激光器。所有的测试均在室温下进行的。 2 结果与讨论 2.1 光谱特性

磁性纳米材料制备

合肥学院 Hefei University 化学与材料工程系 题目:磁性纳米材料的合成 班级:13化工(3)班 组员:赵康智、蒋背背、朱英维、高宗强、 1303023045、1303023004、1303023039、学号: 1303023036、13030230

摘要 磁性纳米材料由于具有表面效应、量子尺寸效应,以及超顺磁性等优异的特性,引起了世界各国研究工作者的高度重视。磁性纳米材料的性能与其组成、结构及纳米粒子的稳定性密切相关,因此制备粒径均匀,组成、结构稳定的纳米粒子是其应用的关键。 关键词: 磁性纳米材料;化学合成 正文 一、磁性纳米材料的性能 磁性纳米材料具有纳米材料所共有的表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等。同时由于与磁相关的特征物理长度恰好处于纳米量级,如磁单畴尺寸、超顺磁性临界尺寸、交换作用长度、以及电子平均自由路程等。当磁性材料结构尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质,从而体现出与块体材料和原子团簇不同的特性。磁性纳米材料主要的磁特性可归纳如下:(1)饱和磁化强度;(2)矫顽力;(3)单磁畴结构;(4)居里温度;(5)超顺磁性。 二、磁性纳米材料的合成制备方法 当粒子尺寸减小到纳米量级时,颗粒的尺寸、形貌和晶体结构都会影响材料的性能和应用。而能够制备出尺寸、形貌和晶体结构可控的磁性金属纳米颗粒一直是人们研究的重点和难题。因此,探索通过简单的方法制备出满足应用需要的,尺寸、形貌及晶体结构可控的金属磁性纳米材料对推动纳米科技的发展的具有重要意义。常用的制备磁性金属纳米粒子的方法主要包括:溅射法、机械研磨法和化学合成方法。机械研磨法往往需要要高纯度的金属原材料,并消耗大量能量用于均匀化反应物,反应时间长,而且易引入杂质,所得晶粒不够完整,分散性不够好。同时,为弥补金溅射法属在熔化过程中的挥发损失,往往需要过量的稀土元素。化学方法在制备金属磁性纳米材料方面却能够有效减少成本,反应物易于均匀化,反应过程易于操作,且显著降低了反应所需温度。另外,化学合成法在控制产物组成和颗粒尺寸方面也具有一定的优越性。因此,化学合成法成为合成纳米材料的重要方法。

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

憎水性三金属纳米粒子的合成_表征及磁性

研究论文 憎水性三金属纳米粒子的合成、 表征及磁性 戴兢陶1,2,王新红2,孙玉凤2,沈 明1,3 (1.盐城师范学院江苏省滩涂生物资源与环境保护重点建设实验室,江苏盐城224051; 2.盐城师范学院化学化工学院,江苏盐城224051; 3.扬州大学化学化工学院,江苏扬州225002) 摘 要:以磺基琥珀酸二辛酯钠盐(AOT)为表面活性剂,采用反胶束法合成了憎水性CoFe/Au 纳米粒子,利用配体交换、水洗等去除AOT 并使纳米粒子分级.采用紫外 可见光谱(UV Vis)、透射电镜(TEM)、X 射线衍射(XRD)、X 射线电子能量散射(EDX)及等离子发射光谱(ICP)等对产物进行了表征,通过超导量子干涉仪(SQIUD)研究了纳米粒子的磁性质.结果表明,反胶束法合成的CoFe/Au 三金属纳米粒子具有较好的单分散性和稳定性,平均粒径约为4nm.当外磁场强度为 1.59 104A/m 时,阻塞温度T b 为65K,温度高于T b 时纳米粒子显示出超顺磁性,低于T b 时呈铁磁性,在5K 时其矫顽力(Hc)达4.67 104A/m. 关键词:反胶束;配体交换;CoFe/Au 纳米粒子;磁性质 文章编号:1674 0475(2010)03 0173 09 中图分类号:O61 文献标识码:A 磁性纳米合金复合材料因其独特的结构和磁性能,不仅在基本物理理论方面具有特殊的学术意义,而且在信息存储、石油化工、冶金、生物、医学、环保以及军事工业等领域都具有广泛的应用前景[1] .如在磁记录材料方面,磁性纳米颗粒可取代传统的微米级磁粉用作高密度、抗干扰磁记录介质[2];在生物技术领域,用磁性纳米颗粒制成的磁性液体可广泛用于磁性免疫细胞分离、核磁共振的造影成像,以及药物控制释放等[3].所以,有关磁性纳米颗粒的制备方法及性质研究受到广泛的重视. 近年来,关于磁性纳米颗粒研究主要集中在铁族金属纳米颗粒的制备、结构以及磁性方面[4],尤其是铁系金属及其合金纳米颗粒,因被认为是未来最有希望的高密度磁记录及吸波材料而备受关注[5,6].但由于含钴、铁纳米材料巨大的比表面和钴、铁的化学活收稿日期:2010 01 06;修回日期:2010 02 09.通讯联系人:沈 明,E mail:shenming@https://www.docsj.com/doc/9210904614.html,. 基金项目:江苏省高校自然科学基础研究项目资助(08KJD150020);江苏省滩涂生物资源与环境保护重点建设 实验室项目资助(JLCBE09025,09003). 作者简介:戴兢陶(1964 ),女,博士,副教授,主要从事纳米材料的合成和性能研究,E mail:ycjtdai@https://www.docsj.com/doc/9210904614.html,.173 第28卷 第3期 影像科学与光化学Vo l.28 N o.3 2010年5月Imaging Science and Photochemistry M ay,2010

(生物科技行业类)纳米磁性颗粒分类和选用

纳米磁性颗粒分类和选用(Ademtech) (Carboxyl-Adembeads) Ademtech 是法国一家研究并生产适用于体外诊断和生命科学领域的超顺磁性纳 米微粒(superparamagnetic nanoparticles)。在物理化学、多聚体化学、免疫学、细胞生物学以及病毒学多学科互补技术紧密结合的基础上,Ademtech公司研发了具有独特性状的纳米材料供世界高科技领域选用。Ademtech 提供的高质量多用途纳米磁性颗粒可使您应用于各个相关领域中用新技术进行蛋白磁性分离。 磁粒分类及应用 : 标准磁粒 : ?羧基纳米磁性颗粒(Carboxylic-Adembeads): 磁性直径包括200和300 nm两种,和蛋白,寡核苷酸及其它生物靶分子进 行高效偶联,表面羧酸功能基团活化 ?氨基纳米磁性颗粒(Amino-Adembeads): 磁性直径包括200和300 nm两种,和蛋白,寡核苷酸及其它生物靶分子进 行高效偶联,表面氨基功能基团活化 主要磁粒 : ?羧酸纳米磁性颗粒(MasterBeads Carboxylic Acid): 磁粒直径500nm和蛋白,寡核苷酸及其它生物靶分子进行高效偶联,表面氨 基功能基团活化 ?链霉亲和素磁性颗粒(MasterBeads Streptavidin) : 磁粒直径500nm,用来进行磁性分离或纯化生物素化的蛋白及核酸生物磁粒 : ?生物磁性颗粒蛋白A ( Bio-Adembeads Protein A) : ?适于小规模免疫球蛋白提取和免疫沉淀 ?开始样本可以是唾液, 血浆, 腹水和组织培养液或杂交瘤上清液 ?磁性技术产生一高特异性 (= 无色谱柱, 无离心) ?快速步骤 (<1小时) ?重组蛋白形式的蛋白A 不伴有白蛋白结合部位, 减少了共同纯化污染蛋 白, 只有Fc 片断结合部位存在 ?适用于大量免疫沉淀: 至 100/ ml ?生物磁性颗粒蛋白G ( Bio-Adembeads Protein G) : ?适于小规模免疫球蛋白提取和免疫沉淀 ?开始样本可以是唾液, 血浆, 腹水和组织培养液或杂交瘤上清液 ?磁性技术产生一高特异性 (= 无色谱柱, 无离心) ?快速步骤 (<1小时) ?重组蛋白形式的蛋白G无白蛋白结合部位和Fab结合和部位. ?适用于大量免疫沉淀: 至 100/ ml ?生物链霉亲合素纳米磁性颗粒:(Bio-Adembeads Streptavidin) 与重组蛋白形式的链霉亲合素相连接,作为多种应用的方便工具 : 免疫测定, 蛋白提纯, 细胞筛选, 或分子生物提纯 (如 mRNA 分离) 等. 细胞磁粒 ?人CD4+细胞磁性颗粒 (Human CD4+ Cell-Adembeads) :

稀土掺杂上转换发光纳米颗粒的合成及其在生物分析中的应用

附件2 论文中英文摘要 作者姓名:王猛 论文题目:稀土掺杂上转换发光纳米颗粒的合成及其在生物分析中的应用作者简介:王猛,男,1983年1月出生,2007年3月师从于东北大学徐淑坤教授,于2011年1月获博士学位。 中文摘要 稀土掺杂上转换发光纳米颗粒是一类重要的发光材料,它可以通过双光子或多光子机制将低频率的激发光转换成高频率的发射光。近年来,上转换纳米颗粒作为一种新型的生物标记物在生物方面的应用倍受人们关注。与传统的荧光标记物(如有机染料、量子点等)所不同,上转换纳米颗粒的激发光为红外光,可以有效避免生物体自体荧光的干扰,从而提高检测的灵敏度及信噪比。红外光对生物组织还有良好的穿透能力,对生物样品造成光损伤也较小。另外,上转换纳米颗粒还具有毒性低、稳定性好、发光强度高、Stokes位移大等优点,在生物标记和生物检测等领域有着非常好的应用潜力。迄今为止,Yb3+-Er3+、Yb3+-Tm3+离子掺杂的β-NaYF4上转换材料被公认为是所有上转换材料中发光效率最高的。因此,合成出高质量的稀土掺杂β-NaYF4上转换纳米颗粒是使其在生物等领域广泛应用的前提,具有十分重要的研究意义。 本项研究分别采用络合共沉淀法、热分解法以及溶剂热法合成了β-NaYF4:Yb,Er上转换纳米颗粒,并对反应机理进行了探讨。考察了反应条件对纳米颗粒的粒径、晶体类型以及发光强度等性能的影响。其中,采用溶剂热法合成的纳米颗粒具有粒径较小、晶型较纯、发光强度高等优点,在生物标记等应用中更具优势。又将NaYbF4作为发光基质材料,合成了Er3+、Tm3+、Ho3+离子单掺杂以及双掺杂的β-NaYbF4上转换纳米颗粒。这些纳米颗粒在980 nm红外光的激发下能够产生橙、黄、绿、青、蓝、紫六种颜色的发光,在多色标记和多元分析中有着广阔的应用前景。另外,将几种亲水性的聚合物作为配体,利用溶剂热法合成了表面聚合物包覆的亲水性β-NaYF4:Yb,Er上转换纳米颗粒。 采用经典的St?ber法将合成的上转换纳米颗粒表面包覆SiO2并氨基化修饰,使其具有良好的水溶性和生物相容性。将氨基修饰纳米颗粒与兔抗人CEA8抗体偶联,通过HeLa细胞表面的CEA抗原与兔抗人CEA8抗体之间的特异性结合,实现了上转换纳米颗粒对HeLa活细胞的免疫标记与成像。该免疫标记具有特异性良好、时效性高、无自体荧光干扰等优点。

纳米磁性(1)

纳米磁性 1.磁性材料一直是国民经济、国防工业的重要支柱与基础,广泛地应用于电信、自动控制、通讯、家用电器等领域,在微机、大型计算机中的应用具有重要地位。信息化发展的总趋势是向小、轻、薄以及多功能方向进展,因而要求磁性材料向高性能、新功能方向发展。纳米磁性材料是指材料尺寸限度在纳米级,通常在1~100nm的准零维超细微粉,一维超薄膜或二维超细纤维(丝)或由它们组成的固态或液态磁性材料。当传统固体材料经过科技手段被细化到纳米级时,其表面和量子隧道等效应引发的结构和能态的变化,产生了很多独特的光、电、磁、力学等物理化学特能,有着极高的活性,潜在极大的原能能量,这就是“量变到质变”。纳米磁性材料的特殊磁性能主要有:量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。 2纳米磁性材料的研究概况 纳米磁性材料根据其结构特征可以分为纳米颗粒型、纳米微晶型和磁微电子结构材料三大类。 2.1纳米颗粒型 磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提升。纳米磁性微粒因为尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提升信噪比,改善图像质量。 纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提升密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。

磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫 在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁 体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束 在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿 命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在 电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已 普遍采用磁性液体的防尘密封。磁性液体还有其他很多用途,如仪器 仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造 影剂等等。 纳米磁性药物:磁性治疗技术在国内外的研究领域在拓宽,如治疗癌症,用纳米的金属性磁粉液体注射进人体病变的部位,并用磁体固定 在病灶的细胞附近,再用微波辐射金属加热法升到一定的温度,能有 效地杀死癌细胞。另外,还可以用磁粉包裹药物,用磁体固定在病灶 附近,这样能增强药物治疗作用。 电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。 因为纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这 种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得 红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测 器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标, 起到了隐身作用。 2.2纳米微晶型 纳米微晶稀土永磁材料:稀土钕铁硼磁体的发展突飞猛进,磁体磁性 能也在持续提升,目前烧结钕铁硼磁体的磁能积达到50MGOe,接近理 论值64MGOe,并已进入规模生产。为进一步改善磁性能,目前已经用 速凝薄片合金的生产工艺,一般的快淬磁粉晶粒尺寸为20-50nm,如作为粘结钕铁硼永磁原材料的快淬磁粉。为克服钕铁硼磁体低的居里温度,易氧化和比铁氧体高的成本价格等缺点,目前正在探索新型的稀

小动物磁性纳米颗粒磁共振成像

MagImaging?小动物磁共振/磁粒子成像造影剂 NanoEast?的背后是一个科学家团队,有来自化学、生物医学工程、临床医学、医学电子学等领域的专家和教授,东纳生物专注于生物医学纳米材料与纳米技术的研发, 致力于纳米材料与纳米技术的生物医学应用。NanoEast?已成为生命科学领域重要的 纳米材料及纳米技术的优质服务商。 MagImaging?是一个拥有完整磁共振成像(MRI)/磁粒子成像(MPI)造影剂系列产品的影像学试剂,可以用于科研及临床前的小动物体内成像研究。MagImaging?试剂的发明得益于东纳生物的科学家长期的纳米材料研制及其医学应用的研究进展,完全 符合动物成像实验研究的标准,具有突出的成像质量,并且所有的MagImaging?造 影剂都采用经过大量实验验证的安全剂量,在小动物的耐受计量范围。 磁共振成像(MRI)是利用氢核的磁共振弛豫信号进行成像,磁性纳米颗粒造影剂通 过静脉注射在血液系统及相关组织分布或靶向到特定器官中,形成局部磁场微扰并改 变氢核弛豫信号,从而实现对比增强。磁粒子成像(MPI)系统由布鲁克与飞利浦公司合作开发,相关研究2005年首次在《自然》杂志上发表,其断层扫描成像技术通过直接探测注入体内的磁性纳米颗粒而获得快速和高分辨成像,是磁成像领域又一项突破 性创新。 MagImaging?小动物磁共振/磁粒子成像造影剂系类是专为MRI和MPI系统设计的磁性四氧化三铁(Fe3O4)纳米颗粒对比增强试剂。具有如下优势: l 采用纳米材料合成领域先进的高温热解法制备,具有均一的尺寸、高的饱和磁化强 度和对比增强成像效果; l 纳米颗粒表面采用生物相容性的PEG或磷脂PEG进行高密度修饰,因而具有较长的体内血液循环时间和肿瘤被动靶向能力,并且PEG末端具有甲氧基、羧基、氨基等基团,方便与特异性靶向识别分子(如抗体、适配体、靶向肽等)偶联,从而构建靶向 纳米探针; l PEG末端或者磷脂层内可以通过化学偶联或疏水相互作用引入荧光、化疗药物等分子,从而构建多模态或多功能诊疗纳米探针; l 优化的控制制备技术可以提供多种尺寸的磁性纳米颗粒,包括5nm、10nm、25nm、50nm,为客户研究纳米颗粒体内行为和成像的尺寸依赖性提供了手段。

磁性纳米颗粒的合成及生物应用

磁性纳米颗粒的合成及生物应用L. Harivardhan Reddy,Jose?L. Arias,Julien Nicolas,?and Patrick Couvreur*,? 目录1。目录 2。设计磁性胶体 2.1。合成策略 2.1.1。电子束光刻技术 2.1.2。气相沉积 2.1.3。索尔?凝胶方法 2.1.4。氧化法 2.1.5 化学共沉淀 2.1.6。水热方法 2.1.7。流动注射方法 2.1.8。电化学方法 2.1.9。气溶胶/气相方法 2.1.10。声化学的分解方法 2.1.11。超临界流体法 2.1.12。综合使用Nanoreactors 2.1.13。微生物方法 2.1.14。合成Metal-Doped氧化铁纳米粒子 2.2。稳定的程序 2.2.1。使用稳定表面涂层 材料

2.2.2。封装成聚合物壳 2.2.3。封装成脂质体 1。介绍 近年来,相当大的努力一直在发展的磁性纳米颗粒(基于),他们的行为的理解,提高其适用性在许多不同的领域。1、2精确控制的合成条件和表面功能化和基于是至关重要的,因为它支配他们的物理化学性质,胶体稳定性、生物行为/命运。用于制药和生物医学、磁平台应具有非常小的尺寸和尺寸分布窄和高磁化强度值。此外,这些纳米颗粒(NPs)必须结合高磁化率的最佳磁富集和损失磁场磁化后切除。最后,他们需要最佳的表面涂层,以确保宽容和生物相容性,以及在生物目标站点特定的本地化。基于拥有适当的物理化学和定制的表面性质都进行了广泛的调查为各种应用,如药物输送、高热, 磁共振成像(MRI)、组织工程和维修,若,生化分离和生物分析法。在疾病治疗领域,“开展”的发展, ,同时促进药物递送和成像,代表MNP技术的一个重要突破。3目前,各种临床试验正在进行中,调查不同的磁性纳米药物的潜力 和生物医学应用 本文将全面描述和基于的合成、物理化学特性,及其生物制药的表演,包括药物动力学、生物分布和毒性。特别强调将他们的应用程序在治疗,诊断,组织工程,和其他生物医学的应用,如传感与分离细胞,细菌和病毒,生化药剂和重金属的分析。 2。设计磁性胶体 2.1。合成策略 铁氧体胶体,磁铁矿(Fe3O4)和磁赤铁矿(γ-Fe2O3),是主要的代表和基于,迄今已收到相当大的注意力在医学和制药等领域,因为他们的生物相容性和生物降解性。1、5这些铁氧体胶体具有尖晶石晶体结构与氧离子形成一个拥挤不堪的立方晶格和铁离子位于间隙。Fe3O4来自反铁磁耦合的磁化(超交换虽然氧)之间Fe3 +离子在八面体和四面体间隙,离开价离子的磁矩(八面体位置)负责单位的磁化单元。主要的合成途径提出了制备Fe3O4 NPs报道如下:

11.2 磁性Fe304纳米粒子

磁性Fe304纳米粒子 1 磁性Fe304纳米粒子的表面修饰及功能化 与磁性Fe304纳米粒子尺寸相关联的一个不可避免的问题是其在较长一段时间内固有的不稳定性,这主要表现在两个方面:(1)分散性的降低,小粒径的纳米粒子聚集并形成大的颗粒以降低表面能,从而降低了粒子的分散性能;(2)磁性能的损耗,裸的磁性Fe304纳米粒子由于其高化学活性容易在空气中氧化,进而损失部分磁性能。因此,在Fe304纳米粒子的应用中(后)重要的是要制定一个保护策略来保护Fe304不受损坏。尤其在生物医学应用方面,需要获得亲水性的纳米Fe304颗粒,因为大多数生物介质是接近中性的水溶液,因此更有必要对Fe304颗粒表面进行有效的修饰及功能化。近年来,各种材料已被用来对Fe304颗粒表面进行修饰及功能化,主要分为有机材料和无机材料(图3.1)。 图3.1 Fe304颗粒表面修饰及功能化材料分类图 1.1 有机材料修饰 表面经一些有机材料修饰后的磁性纳米粒子主要用于磁记录,电磁屏蔽,磁共振成像,尤其是生物领域的药物靶向,磁性细胞分离,生物监测等。外加高磁场下磁性纳米粒子的稳定性对其在生物体内应用以及其他领域的应用是非常重要的。采用有机材料对磁性纳米粒子的表面修饰及功能化的方法有很多,包括原位涂层法和合成后涂层法。此外,为防止团聚及确保纳米粒子具有好的生物相容性,使用不同的有机材料对磁性纳米粒子表面进行修饰,比如葡萄糖,淀粉,聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),聚乙烯亚胺(PEI),特别是一些亲水性的有机材料。 1.1.1 小分子及表面活性剂

经适当的表面改性后,磁性纳米粒子的表面带有一些特殊官能团(例如-OH,-COOH,-NH2,-SH),有利于通过连接不同的生物活性分子做进一步修饰从而适应各种应用。 作为小分子,硅烷常被用来修饰磁性纳米粒子及对裸露的磁核表面有效官能团化,常见的硅烷修饰剂有3-氨基丙基三乙氧基硅烷(APTES),p-氨基苯基三甲氧基硅烷(APTS)及巯基丙基三甲氧基硅烷(MPTES)。Shen等人报道了采用一步水热法将APTS加入到含有Fe2+的溶液中,134℃下反应3h制备了可用于生物医学领域的APTS修饰的磁性氧化铁纳米粒子(Fe304@APTS)。细胞毒性和溶血分析结果表明氧化铁纳米粒子表面上的氨基基团乙酰化后显著改善了粒子的细胞相容性和血液相容性。此外,Wu等人研究发现,APTES在对Fe304纳米粒子进行表面修饰的过程中能够有效维持纳米粒子的形貌,而MPTES修饰时会导致磁化强度值的减少。 此外,对于亲油性磁性纳米粒子一般都具有很好的单分散性,而常见的赋予磁性纳米粒子亲油性的表面修饰剂主要有油酸及油胺。通常情况下,油酸及油胺用在高温热分解反应过程中,例如,Salas等人研究发现,高温分解油酸铁化合物能够得到超顺磁性纳米晶体,且粒子的尺寸约为10nm,能稳定地分散在非极性溶剂中。 为直接获得亲水性磁性纳米粒子,一种方法就是在反应过程中加入小分子(如氨基酸,柠檬酸,维生素,环糊精等)。比如,Gao等人使用改进的一步溶剂热法制备了平均粒径为195nm的亲水性超顺磁性纳米团簇凝胶。反应中含有磺酸酯和羧酸酯基的阴离子聚电解质聚(4-苯乙烯磺酸-共-马来酸)钠盐(PSSMA)作为稳定剂,经PSSMA修饰的磁性纳米团簇能够很好的分散在水溶液、磷酸盐缓冲溶液(PBS)及乙醇中。 1.1.2 聚合物 与小分子及表面活性剂相比,聚合物不仅能够提供多官能团以及更好的胶体稳定性,还能对有关磁性纳米粒子在生物学(即药代动力学和生物分布)方面的应用起到了显著的作用。此外,大量的天然及合成的生物可降解的聚合物,如聚天冬氨酸盐,多糖,明胶,淀粉,藻酸盐,聚丙烯酸(PAA),聚乙二醇(PEG),聚(D,L-丙交酯)(PLA),壳聚糖以及聚甲基丙烯酸甲酯(PMMA)等,是目前使用较多的用于磁性纳米粒子表面功能化的聚合物。 Dresco等人报道了采用单个反相微乳液法制备了聚合物包覆的磁性纳米粒子。首先,在含有水/双(2-乙基己基)钠/甲苯的反相微乳液中合成Fe304纳米粒子,然后将水,单体(甲基丙烯酸和羟乙基甲基丙烯酸酯),交联剂(N,N’-亚甲基二(丙烯酰胺))及引发剂(2,2’-偶氮二(异丁腈))加入到反应体系中,55℃下通氮气反应。聚合反应结束后,经过量丙酮/甲醇混合物(9:1)析出收集。所制得的产物具有超顺磁性性能,粒径约为80nm且粒径分布窄,

相关文档
相关文档 最新文档