文档视界 最新最全的文档下载
当前位置:文档视界 › 贵金属复合纳米粒子的研究进展

贵金属复合纳米粒子的研究进展

贵金属复合纳米粒子的研究进展
贵金属复合纳米粒子的研究进展

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

Ag ZnO纳米复合材料的制备

运城学院应用化学系 文献综述 Ag/ZnO纳米复合材料的制备 学生姓名王新光 学号2010080412 专业班级应用化学1004班 批阅教师 成绩 2013年06月

Ag/ZnO纳米复合材料的制备 1. 研究背景 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 2.制备方法 2.1采用沉淀法制备 周广、邓建成、王升文[1]采用配位均匀共沉淀法制备了平均粒径约为20 nm的Ag/ZnO纳米复合材料。利用XRD、TEM及UV-Vis等技术对样品进行了表征,并将其与用浸渍光分解法和光还原沉积法制备的样品在形貌结构及催化降解甲基橙溶液和工业废水性能方面进行了比较。结果表明,采用配位均匀共沉淀法制备的样品,表现出更加优异的催化降解性能。 庹度[2]采用沉淀法制备了纳米氧化锌,并以它为前驱物,采用高温分解法对纳米氧化锌进行了载银改性处理,制备了载银氧化锌复合纳米粒子,考察了载银前后纳米粒子的粒径与结构。研究发现,采用沉淀法制备的纳米氧化锌尺寸较为均匀,粒径约为170nm,分散性也较好;载银后的复合纳米粒子粒径略有增加,这来源于银在纳米氧化锌粒子外的成功包覆。 斯琴高娃、照日格图、姚红霞、嘎日迪[3]以ZnCl2.2H2O和无水(NH4)2CO3为原料,采用直接沉淀法制备了纳米氧化锌.TG-DTG-DTA、IR分析结果表明,前驱体为碱式碳酸锌[Zn5(OH)6(CO3)2].前驱体经300℃煅烧1 h、2 h、3 h后分别得到粒径不

聚合物刷保护的贵金属纳米粒子的制备进展_李爱香

第31卷第3期高分子材料科学与工程 Vol.31,No.32015年3月 POLYMERMATERIALS SCIENCE AND ENGINEERING Mar.2015 聚合物刷保护的贵金属纳米粒子的制备进展 李爱香1,2,李秋红1,吕滋建1,谭洪生 1 (1.山东理工大学材料学院,山东淄博255049; 2.聚合物分子工程国家重点实验室(复旦大学),上海200433) 摘要:近年来,贵金属纳米粒子由于在诸多领域的广泛应用而受到关注。聚合物刷稳定的金属纳米粒子稳定性好、溶解性好、 与聚合物相容性和可加工性好已成为研究热点。本文综述了聚合物刷保护的金属纳米粒子的制备方法,包括引发法、偶联法和配体交换法,并对高热稳定性交联壳和聚合物刷稳定的纳米复合粒子的制备进行了阐述,提出了聚合物刷保护的贵金属纳米粒子的研究面临的问题。 关键词:贵金属纳米粒子;聚合物刷;引发法;偶联法;配体交换法;高热稳定性中图分类号:TB383 文献标识码:A 文章编号:1000- 7555(2015)03-0185-06收稿日期:2014-01-03基金项目:国家自然科学基金资助项目(51303096);山东省自然科学基金资助项目(ZR2012BQ008);聚合物分子工程国家重点实验室(复 旦大学)开放课题(K2013-06);山东理工大学青年教师支持计划通讯联系人:李爱香,主要从事聚合物/无机纳米复合材料的制备及应用研究,E- mail :axl@sdut.edu.cn 近年来,金属纳米粒子,尤其是金(Au NPs )和银 (Ag NPs ),由于在纳米电子、纳米光学、催化、生物、传感器、 治疗学、标记、诊断和控制释放等领域的潜在应用而引起了广泛的研究兴趣 [1 7] 。含硫聚合物刷稳定的金属纳米粒子尤其受人关注。这是因为巯基、二硫 键、二硫代酯或三硫代酯基团中的硫原子与贵金属纳米粒子有较强的相互作用,而且聚合物刷作为壳层材料有很多优点,如可以增强纳米粒子的长期稳定性,调控纳米粒子的溶解性,提高纳米粒子与聚合物基体的相容性和可加工性等。 合成聚合物刷稳定的金属纳米粒子的主要方法有 偶联法(Grafting-Onto )、引发法(Grafting-From )和配体交换法等, 并已被广泛应用于聚合物刷保护的金属纳米粒子的制备。本文综述了聚合物刷保护的贵金属纳米粒子的制备研究进展,并介绍了含交联壳层和聚合 物刷保护的高热稳定性金属纳米粒子的制备方法。1 引发法 引发法是首先在纳米粒子的表面引入可以引发聚 合的官能团,然后采用适当的聚合方法引发单体聚合,从而得到聚合物刷保护的纳米粒子。引发法有以下优点:(1)通过改变聚合条件诸如单体浓度、温度、反应时间等可调控聚合物壳层的厚度;(2)可以设计结构明确的聚合物,如嵌段或梳形聚合物;(3)控制和实现较高的接枝密度。通常有3种方法将引发剂引入到金属纳米粒子的表面:(1)稳定剂本身就含有用来引发聚合的官能团;(2)先将羟基、 羧基等活性基团引入到粒子表面,再通过酯化反应引入引发基团;(3)用含有引发基团的配体交换原有的稳定剂 。 Fig.1Reaction steps for preparation of PNIPAM-coated Au clusters [8]

纳米复合材料发展与现状

纳米复合材料发展与现状 201041505118 李少军10材料一班 1 纳米复合材料 超细粒子(或纳米粒子)是指尺度介于原子、分子、离子与块状材料之间,粒径在1~100nm范围以内的微小固体颗粒。随着物质的超细化,产生了块状材料不具有的表面效应、小尺寸效应、量子效应,从而使超细粒子与常规颗粒材料相比具有一系列优异的物理、化学性质。纳米粒子经压制、烧结或溅射组合而成的具有某些特定功能的结构即纳米材料。它断裂强度高、韧性好、耐高温,纳米复合同时也提高材料的硬度、弹性模量、Weibull模数,并对热膨胀系数、热导率、抗热震性产生影响。[1] 纳米复合主要指在微米级结构的基体中引入纳米级分散相。纳米复合材料(复合超微细颗粒)表现出许多与模板核本质不同的性质,如不同的表面组成、磁性、光学性能、稳定性及表面积等。纳米复合材料涉及的范围广泛,它包括纳米陶瓷材料、纳米金属材料、纳米磁性材料、纳米催化材料、纳米半导体材料、纳米聚合材料等。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料也被人们誉为21 世纪最有前途的材料。由于纳米材料本身所具有的特殊性能。作为一种全新性能的先进复合材料,在微电子、信息、汽车、宇航、国防、冶金、机械、生物、医药、光学等诸多领域有极广泛的应用前景。 2 纳米复合材料的分类 研究纳米复合材料的一个重要目的是改进并提高块体材料的性能,或通过结构复合来发现块材料中并不存在的性能或效应。和块体材料相比,纳米复合材料的物理和化学性质将更多地依赖于材料的表面缺陷和量子尺寸效应。目前.纳米复合材料的种类繁多,可分为:固态纳米复合材料和液态纳米复合材料。基质材料对于纳米粒子的结构具有稳定作用;而基质材料的不同,又可将纳米复合材料区分为:无机基纳米复合材料和聚合物基纳米复合材料。聚合物基包括单聚合物、共聚合物和聚合物的混合;无机基则包括玻璃,如多孔玻璃、分子筛、溶胶一凝胶玻璃和陶瓷等。[2]还可根据纳米粒子的物理性质可将纳米复合材料区分为:半导体纳米复合材料、铁电体微晶复合材料、染料分子纳米复合材料、稀土纳米复合材料、金属(合金)纳米复合材料、光学纳米复合材料(非线性、发光、光折变等)、磁性纳米复合材料等。 3 纳米复合材料的制备 3.1 溶胶- 悬浮液混合法

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

纳米金催化剂及其应用

纳米金催化剂及其应用 一.纳米金催化剂的发展 早在1972年,Bond在一篇综述中就指出,第Ⅷ族金属,特别是钯、铂的催化活性都要远高于金的催化活性。金属催化剂主要使用第Ⅷ和ⅠB族的12个金属。用得最多的是3d金属元素Fe、Co、Ni、Cu,4d金属元素R h、Pd、Ag,以及5d金属元素Pt。因此在选用催化剂活性组分的时候,很少在第一时间考虑使用金。1985年Schwank的综述中则这样的评价金的催化剂性:尽管本身不具有反应活性,但金的存在,能够影响第Ⅷ族金属的活性和选择性。而到1999和2000年,Bond和Thompson就金的催化行为相继发表综述性的文章。这足以证明,金已经被作为一种具有优异催化性能的金属元素来使用。特别是在一些多相或者均相反应中,金的催化活性和选择性引起了人们的广泛注意。而这个有无到有、到丰富的过程,仅仅花了15年。在这15年的时间里,大量的研究工作彻底改变了改变了人们对金催化惰性本质的看法。 20世纪80年代中期,关于金催化剂的研究,相继出现了两个突破性进展。1985年发现,英国威尔士大学的Hutching教授,发现纳米金催化剂是催化乙炔氧氯化反应最好的催化剂:1987年,日本学士春田正毅博士发现,负载型纳米催化剂具有低温催化CO的功能。这些研究工作,在当时并没有引起高度重视,但是自从进入20世纪90年代,越来越多的人意识到将纳米金负载在氧化物载体上所产生的新的多相催化行为,对丰富催化剂的制备科学以及催化理论将产生重要影响。 20世纪90年代中期,有关纳米金的研究引起一些国家的注意。在日本美国英国以及意大利等发达国家,集中了相当的人力物力展开此方面的科学研究。有关纳米金方面的研究论文如雨后春笋般见诸各期期刊。关于金催化剂的研究呈现出不断深入逐步扩展的局面。目前,以纳米金作为主题的国际性催化会议,已经举办了三次,也进一步说明,学术界以及产业部门对金的催化作用给予极大的关注,并预示着金催化剂具有不断增长更广泛的应用前景。与此同时,我国在此方面的研究也逐步展开。 二.纳米金催化剂的性质 1.金的物理化学性质 在自然界中,金只以一种稳定的非放射性的同位素形式存在。在任何温度下,空气和氧气对金都不起氧化作用。在所有金属元素中,货币金属属于非稳定的一类,它们的稳定性按电离能力排列为金>铜>银。由于离子半径大,铜银金的金属晶体构型为立方面心晶格,具有熔点沸点高的特点。单组分金属得到的催化剂耐热性差,对使用温度的要求比较苛刻,因此,在工业上为了防止催化剂的失活,要求一定要有适当的助催化剂或载体。 金的熔点汽化热比银要大,较接近铜,这说明金原子之间的键强较强。精确测量表明,金原子金属半径比银稍小。金的电负荷性非常高,只比硫和碘稍稍电正性一点,其亲电子性比氧还强。事实上,金可以一-1价的稳定氧化态存在。另外,进容易于铜铝钛等形成一定组合的合金。 在所有元素中,金的收缩率最大,其半径比没有相对论影响的情况下收缩了15%。金的物理化学性质,可能与其特殊的6s价的电子的半径有关。由于6s价的电子的束缚能被加强,因此导致金很高的电负性和化学惰性。 2.金的催化特性 金的第一电离能力很大,很难失去电子,因此金与表面分子之间的互相作用力通常是很弱的。在低于200℃的温度下,在单晶金的表面,连极具反应活性的分子,如氢氧等,都不易吸附。由于分子在催化剂表面的吸附是催化反应的先决条件,因此可以认为单质金对氢化反应和氧化反应不具有很好的活性。金不具有很好的催化活性,事实上,金催化剂具有催化活性的前提是制备得到高分散的纳米级的金粒子。 3.纳米金粒子的吸附作用 传统方法制备的负载型金催化剂,活性较差,主要是因为它不像其它贵金属催化剂一样高分散。而现在制备得到的粒径在3mm-10mm的纳米催化剂,则显示了特别的优异的催化活性。 纳米粒子是指粒子尺寸为纳米数量级的超细粒子,它的尺寸大于原子簇,小于普通的粒子。纳米粒子是由有限数量的原子或分子组成的,是保持原来物质化学性质并处于亚稳态的原子团或分子团。纳米粒子的表面原子所处的的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和的性质,因而极易与其它原子相结合,所以,具有很高的化学活性,同时也容易吸附其它原子发生化学反应。这种表面原子的活性,不但引起纳米粒子表面构型的变化,同时,任何发生在表面的化学反应,都会因为纳米粒子的存在而表现不同。 随着粒径的减小,金催化剂表面的化学吸附及反应活性相比块体金出现了明显变化:①表面原子的比

金、银纳米复合材料基底的SERS检测中的应用

《近代分子光谱法》课程论文 化学化工学院 张卓磊MG1324086

基于金、银纳米复合材料基底在SERS检测 中的应用 Application of the gold, silver nano composite material in SERS detection 摘要: 本文介绍了拉曼光谱发展的历程,简略描述了拉曼光谱的增强机理,根据机理引出了运用纳米技术来增强拉曼信号的纳米材料的制备。在纳米粒子中,金银有序金属纳米壳结构,特别是有序的空心纳米壳和大孔结构,它兼有光子晶体和纳米金属外壳的光学性质,引起了国内外学者们的广泛关注。本文介绍了有序纳米金属外壳材料的制备方法和步骤,主要包括胶体晶体模板的制备、所需的金属外壳的制备,胶体晶体模板拆除这三个步骤,并对每一步的方法和特征进行了描述,且介绍了其在SERS的应用进行了相关介绍。最后展望了这种材料未来的研究方向的前景。 Abstract This paper introduces the development course of Raman spectroscopy, and briefly describes the mechanism of enhanced Raman spectroscopy,so as referance to prepare nano material by using nanotechnology . With gold and silver nanoparticles, ordered nano metal shell structure especially the optical properties of nanometer hollow shell orderly and macroporous structure with photonic crystal and nano metal shell, atracted the great attention all over the would. In this paper, we introduce the method and main processes of fabricating these metal structure which mainly includes preparation of colloidal crystal templates, colloidal crystal template removal of these three steps, methods and characteristics of each step are https://www.docsj.com/doc/919634790.html,st but not least,we introduce its introduced in the SERS application. Finally, the future research direction of the material prospect.

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

纳米催化剂及其应用(可编辑修改word版)

纳米催化剂及其应用 四川农业大学化学系应用化学201401 徐静20142672 摘要:近年来,纳米科学与技术的发展已广泛地渗透到催化研究领域,其中最典型的实例就是纳米催化剂(nanocatalysts——NCS)的出现及与其相关研究的蓬 勃发展。纳米材料具有独特的晶体结构及表面特性,其催化活性和选择性大大高于传统催化剂,目前已经被国内外作为第 4 代催化剂进行研究和开发。本文简要 介绍了纳米催化剂的基本性质、独特的催化活性等;并较详细地介绍了纳米催 化剂分类以及常见的制备方法;最后对其研究动态进行了分析,预测了其可能 的发展方向。 关键词:纳米催化剂材料制备催化活性应用 Nano - catalyst and its application Abstract: In recent years, the development of nano-science and technology has been widely penetrated into the field of catalysis research. The most typical example is the emergence of nanocatalysts (NCS) and the flourishing of related research. Nanomaterials have unique crystal structure and surface characteristics, and their catalytic activity and selectivity are much higher than those of traditional catalysts. At present, they have been researched and developed as the 4th generation catalyst at home and abroad. In this paper, the basic properties of nanocatalysts and their unique catalytic activity are briefly introduced. The classification of nanocatalysts and their preparation methods are introduced in detail. At the end of this paper, the research trends are analyzed and the possible development trends are predicted. Key words: nanocatalyst material preparation catalytic activity application 催化剂又称触媒,其主要作用是降低化学反应的活化能,加速反应速率, 因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动 这些行业发展的最有效的动力之一。一种新型催化材料或新型催化剂工业的问世,往往引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913 年,

氧化石墨烯与金属纳米粒子复合材料的制备与应用进展研究

龙源期刊网 https://www.docsj.com/doc/919634790.html, 氧化石墨烯与金属纳米粒子复合材料的制备与应用进展研究 作者:韩春淼李冰王蕙尧 来源:《科学与信息化》2018年第21期 摘要论文对氧化石墨烯与金属纳米粒子复合材料的制备及其性质和应用进行了详细的综述。 关键词氧化石墨烯;金属纳米粒子;性质和应用 前言 石墨烯材料优异的电学,力学(极好的柔性)性质已经使其在柔性透明导电材料领域崭露头角,成为新一代最有潜力的透明电极的候选材料。目前机械剥离法制备的石墨烯电子迁移率高达40,000 cm2 V-1 s-1,远远高于TCO薄膜材料的迁移率(10-40 cm2 V-1 s-1),它的一个优点就是,在具有同样电导率的情况下石墨烯薄膜的载流子浓度较低,可以摆脱传统的TCO 薄膜由于高载流子浓度所引起的问题,提高其在可见区尤其是红外区域的透过率。理想的石墨烯薄膜在可见区以及红外区域的透过率高达97.7%。同时,石墨烯具有较好的热稳定性、化学稳定性,P型导电以及低温稳定的电导率。另外,石墨烯在紫外区也有较高的透过率。以上的诸多优点使得石墨烯有望成为ITO的替代品,应用于柔性电子学领域。 由于氧化石墨烯具有较好的水溶性、高比表面积、表面含有大量的亲水氧化官能团等特点,使其在制备复合材料方面具有巨大的优势。因氧化石墨烯和金属纳米粒子的复合,在光催化、电化学、生物检测、热敏材料、透明导电等领域具有广泛应用而受到关注。本文将针对氧化石墨烯与金属复合材料的制备方法及其性质与应用展开一系列的综述。 1 氧化石墨烯与金属复合材料的制备方法 1.1 水相法 在氧化石墨烯与金属粒子复合材料的制备过程中,水相法是最常见的方法。工作组在利用GO的碱溶液制备其与Li粒子的复合材料时就采用了这种方法。水相法不仅可以将钯纳米粒子复合至氧化石墨烯上,金、银、铂等,也可以在水相环境下修饰到其片层结构上[1]。 1.2 有机相法 有机相法同样也是制备氧化石墨烯与金属纳米粒子复合材料的常用方法。在混合有机体系中,可以采用微波辐照的方法将银、铜的纳米粒子沉积到氧化石墨烯的片层结构上。

卟啉—磁性四氧化三铁纳米粒子复合物研究进展

卟啉—磁性四氧化三铁纳米粒子复合物研究进展 摘要:卟啉-磁性四氧化三铁纳米粒子复合物是一种新型多功能材料,同时具有卟啉的生物功能特性和四氧化三铁纳米粒子的磁特性,如利用磁分离方便地解决纳米催化剂难以分离和回收的问题,提高催化剂寿命。合成了众多卟啉一磁性四氧化三铁纳米粒子复合物,它们在诸多领域有着潜在的应用前景。结合文献,综述了近年来该类复合物的研究成果,概述了合成方法,及其在非均相催化氧化、光动力治疗及磁热疗等多个领域的进展,并展望了此类复合物的发展方向。 关键词:卟啉;Fe3O4纳米粒子;催化;光动力疗法;磁热疗;吸附剂 卟啉是卟吩外环带有取代基的同系物和衍生物的总称,是一类特殊的大环共轭芳香体系,因其特定的π共轭体系和配位功能,可应用于有机反应催化剂、治疗剂、光储存器件以及超分子化学等诸多领域。单纯的卟啉化合物应用于催化体系时,存在催化剂不易分离、回收困难、稳定性差等问题;应用于光动力治疗时,也存在靶向性不高、输运效率低等缺陷。解决上述问题的有效途径是将金属卟啉同载在有机或无机载体上,一方面载体的配位或吸附作用可延长催化剂寿命,另一方面病变细胞可能对某些载体产生选择性吸收,可提高了卟啉作为治疗剂的靶向性。 纳米粒子指尺寸在1~100nm之间的粒子,它所具有的独特的光、电、热、磁和化学性质,使其在新能源材料、生态环境材料、功能涂层材料以及高性能电子材料等领域发挥着不可替代的作用。磁性纳米粒子在无外加磁场时,对外不显示宏观磁性;在有外加磁场时,显示出一定的宏观磁化强度,这种特性使其在磁记录材料、磁性液体、催化以及生物医用领域有着广泛的应用前景。四氧化三铁(Fe3O4)纳米粒子是一种常见的磁性纳米粒子,含有该粒子的纳米磁性液体已在栓塞磁热疗、磁靶向药物输运、磁性免疫细胞的分离等方面广泛应用。 卟啉-磁性四氧化三铁纳米粒子复合物是将金属卟啉固载到四氧化三铁纳米粒子上的一类复合物,一方面,此类复合物仍具有卟啉化合物特定的π共轭体系和配位功能;另一方面,复合后的化合物具有优良的磁分离和靶向药物等性能,提高了催化剂的使用寿命,增强了药物治疗准确性。多年来,我们一直致力于磁性纳米粒子及铁卟啉复合物的制备及性质研究,在此,作者就该研究领域的研究成果及此类复合物的发展方向做一概述。 1 卟啉-磁性四氧化三铁纳米粒子复合物的制备方法 磁性Fe3O4纳米粒子制备的基本原理是二价铁盐和三价铁盐的化学共沉淀。在氮气保护下,将氨水滴入二价和三价铁盐混合溶液中,使其同时沉淀出来,形成Fe3O4纳米粒子。一般而言,纯的Fe3O4纳米粒子容易形成坚硬的聚集体,结构的变化会导致磁性质的改变。因此,通常需要对磁性Fe3O4纳米粒子进行保护。根据卟啉与磁性Fe3O4纳米粒子不同的连接方式,本文将卟啉一磁性Fe3O4纳米粒子复合物的制备方法归纳为以下几种:

贵金属纳米材料的特性

贵金属纳米材料的特性 尺寸在纳米级的贵金属材料,其光学、热学、电学、磁学、力学及化学各方面的性质发生了显著的变化,同时具有许多新奇的性能是传统理论无法预知的,主要体现在表面与界面效应!体积效应!量子尺寸效应和宏观量子隧道效应 表面与界面效应: 纳米粒子的粒径随粒子表面原子数与总原子数之比变化而引起性质上的变化称为 表面效应或界面效应"纳米材料的颗粒尺寸越小,表面原子所占的体积比表面积分数越大,产生的表面能就越大"例如,纳米粒子的粒径为时,表面原子所占比例为,比表面积为当粒径为时,表面原子所占比例为,比表面积为"由于表面原子所占比例增多,比表面积增大,价态严重失匹,出现不饱和键,致使纳米颗粒表现出很高的活性,很容易吸附其它原子发生化学反应"据文献报道,具有很高活性的超细颗粒在空气中会迅速氧化而燃烧"而当粒子的直径大于时,不具有表面效应,不会出现燃烧的现象"因此利用颗粒的表面效应,金属纳米材料有望成为新一代的高效催化剂和储氢材料" 体积效应: 当光波波长!波长!超导态的相干波长度与纳米材料的晶体尺寸相当或纳米粒子比它们小时,周期性的边界条件将被破坏,与普通粒子相比,纳米粒子的熔点、磁性、光吸收、热阻、化学活性、催化性均发生了很大的变化,这就是体积效应"例如,固体银的熔点为,纳米银的熔点为铁颗粒的韧性要比普通铁好得多"对所有的金属超细颗粒而言,都呈现黑色,粒径越小,颜色越黑"这是因为纳米级别的粒子,决定它们性质的不是传统观念上的原子和分子,而是由这个层次的分子或原子组装起来的集合体"这种效应改变了材料的物理和化学特性,为纳米粒子的应用开拓了新领域。 量子尺寸效应: 量子尺寸效应又被称为小尺寸效应,在年代初,由日本科学家提出定义:它是指当纳米颗粒的尺寸下降到某一固定的值时,金属费米能级附近的电子能级由准连续变成离散能级的现象"对于金属超细微粒,其所含的电子数较少,包含的原子数有限,分立的能级间距大于磁场能!热能或电能,因此引起了光学吸收值向短波方向移动,从宏观上看,可以看到样品颜色的变化"如,当黄金颗粒的粒径足够小时,黑色替代了原有的金黄色"纳米颗粒由亮黄色逐渐呈现淡黄色"与此同时,还为纳米材料带来一系列新奇的性质,如光催化性质、特异性催化、强氧化性和还原性等。宏观量子隧道效应贵金属纳米材卡勺可控合成与表祖电子的波粒二象性引起了隧道效应"该效应从微观角度出发,发现粒子能够贯穿比总能量高的能垒的现象,粒子所具备的这种能力称为隧道效应"近年来,科学家们发现一些宏观物理量,例如,量子相干器的磁通量和超微粒的磁化强度等都显示出隧道效应,称之为纳米颗粒的宏观量子隧道效应"它是是研究光电子!微电子器件的基础,用这一概念在理论和实践上具有重要的指导意义"年诺贝尔物理奖的获得者宾尼和罗雷尔博士发明的具有高分辨率并能直接观察到物质表面原子结构的扫描隧道显微镜,分辨率可高达 贵金属纳米材料的应用 目前,由于金属纳米材料的特殊性能,将人们对材料的认识提升到新的境界"对于其优异的性质,展示了广阔的应用前景。较贵金属催化剂而言,更具有自己独特的性能,下面简单介绍一下贵金属纳米材料的应用"贵金属纳米材料在催化领域的应用能够加速反应,并且在反应过程中自身不被消耗的物质被称为催化剂。催化剂主要有三个方面的用途提高反应效率,缩短反应时间通常催化剂具有选择性,能够优化反应,选择合适的反应路径降低反应的温度"金属纳米颗粒作为催化剂,有着粒径小、比表面积大、催化效率高的优点,在医药、食品、环保、化肥、塑料、精细化工等均被使用为催化剂,其中贵金属催化剂就占了,而铂族金属更是独占鳌头"

贵金属纳米粒子的制备进展

贵金属纳米粒子的制备进展 2016-04-27 12:50来源:内江洛伯尔材料科技有限公司作者:研发部 贵金属纳米材料的制备 现阶段合成聚合物刷贵金属纳米粒子的方法主要有偶联法,引发法和配体交换法,制备的贵金属纳米粒子稳定,粒度均匀可控,用途广泛。现阶段贵金属主要应用区域主要在纳米电子、纳米光学、催化、生物、传感器、治疗学、标记、诊断和控制释放等领域。其中含硫聚合物刷稳定的贵金属纳米粒子尤为引人注目,因为巯基二硫键、二硫代酯或三硫代酯基团中的硫原子与贵金属纳米粒子有较强的相互作用,而且聚合物刷作为壳层材料有很多优点,如可以增强纳米粒子的长期稳定性,调控纳米粒子的溶解性,提高纳米粒子与聚合物基体的 相容性和可加工性等。 1.引发法: 首先在纳米粒子的表面引入可以引发聚合的官能团,然后采用适当的聚合方法引发单体聚合,从而得到聚合物刷保护的纳米粒子。引发法有以下优点: ( 1) 通过改变聚合条件诸如单体浓度、温度、反应时间等可调控聚合物壳层的厚度; ( 2) 可以设计结构明确的聚合物,如嵌段或梳形聚合物; ( 3) 控制和实现较高的接枝密度。通常有 3 种方法将引发剂引入到金属纳米粒子的表面: ( 1) 稳定剂本身就含有用来引发聚合的官能团; ( 2) 先将羟基、羧基等活性基团引入到粒子表面,再通过酯化反应引入引发基团; ( 3) 用含有引发基团的配体交换原有的稳定剂。 2.偶联法: 首先在纳米粒子的表面引入可以引发聚合的官能团,然后采用适当的聚合方法引发单体聚合,从而得到聚合物刷保护的纳米粒子。引发法有以下优点: ( 1) 通过改变聚合条件诸如单体浓度、温度、反应时间等可调控聚合物壳层的厚度; ( 2) 可以设计结构明确的聚合物,如嵌段或梳形聚合物; ( 3) 控制和实现较高的接枝密度。通常有 3 种方法将引发剂引入到金属纳米粒子的表面: ( 1) 稳定剂本身就含有用来引发聚合的官能团; ( 2) 先将羟基、羧基等活性基团引入到粒子表面,再通过酯化反应引入引发基团; ( 3) 用含有引发基团的配体交换原有的稳定剂。 3.配体交换法: 配体交换法首先用小分子配体合成金属纳米粒子,然后用含硫聚合物对小分子配体进行替代交换,即可得到聚合刷保护的金属纳米粒子。这种配体交换有时需要纳米粒子合成后在极性和非极性溶剂中进行相转移,尤其是从非极性溶剂到水中的

金属基纳米复合材料的研究现状与发展前景

金属基纳米复合材料的研究现状与发展前景 摘要:本文综述了金属基纳米复合材料的制备方法和金属基纳米复合材料的特性,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。文中指出了金属基纳米复合材料现阶段研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。 关键词:纳米材料;金属基纳米复合材料;机械合金化;微观结构;塑性流动;断裂行为;碳纳米管 1.发展历史 1.1概述 纳米材料是由纳米量级(1-100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。 []3-1。 由于纳米材料的特异性能,纳米材料有着广泛的应用 金属基纳米复合材料用颗粒、晶须、纤维增强金属基体,具有原组分不具有的特殊性能或功能,为设计和制备高性能的功能材料提供了新的机遇[]4。所以,金属基纳米复合材料已成为纳米材料工程的重要分支,世界上各发达国家已经把纳米复合材料的研究放在重要地位。 1.2分类

纳米复合材料按基体材料类型可以分为金属基纳米复合材料、陶瓷基纳米复合材料、聚合物基纳米复合材料。金属基复合材料兼具金属与非金属的综合性能,在韧性、耐磨性、热膨胀、导电性等多种机械物理性能方面比同性材料优异得多。金属基纳米复合材料是由纳米级的金属或非金属粒子均匀地弥散在金属及合金基体中而成,较之传统的金属基复合材料,其比强度、比模量、耐磨性、导电、导热性能等均有大幅度的提高。因此,金属基纳米复合材料在航空航天、汽车,电子等高科技领域有极大的应用前景。如碳化硅纤维与颗粒增强钛合金用于大推力飞机压气机部件,颗粒增强铝基复合材料广泛用于航空、航天及汽车、电子领域。 2.制备工艺 2.1机械合金化法 制备金属基纳米材料的MA 法:将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到 m 1μ 以下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小[]5 ,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。实验研究表明,在球磨阶段元素粉末晶粒度达到20-50nm 左右,甚至几个纳米,球磨温升在30-40K 左右[]6 可使互不相溶的W ,Cu 等合金元素、或溶解度较低的合金粉末如W ,Ni ,Fe 等发生互扩散,形成具有一定溶解度或较大溶解度的 W-Cu ,E-Ni-Fe 超饱和固溶体和Ni 非晶相。 最近,黄等[]7用行星式高能球磨机制备了)(30-20Fe Cu Al 20-80=χχχ三元非晶纳米合金粉末,发现成分为204040Fe Cu Al 的粉末球磨时逐步非晶化,球磨33h 后,非晶化程度最大,最小颗粒尺寸达到5.6进一步球磨,非晶晶化,颗粒尺寸

金属基纳米复合材料

金属基纳米复合材料 摘要:综述了复合材料的重要作用和金属基纳米复合材料作为复合材料材料中的一种,它的力学和磁学性能,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。主要指出了金属基纳米复合材料的制备方法,在此基础上提出了研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。 关键字:复合材料;金属基纳米复合材料;微观结构;性能;应用。 1. 引言 现代高科技的发展更紧密地依赖于新材料的发展,同时也对材料提出了更高、更苛刻的要求,高温、高压、高强度、低密度、耐磨、柔韧性……。当前作为单一的金属、陶瓷、聚合物等材料各自固有的局限性而不能满足现代科学技术发展的需要。复合材料特别是先进复合材料就是为了满足以上高技术发展的需求而开发的高性能的先进材料〔1〕。复合材料是应现代科学技术而发展出来的具有极大生命力的材料。 复合材料是两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。而金属基纳米复合材料是复合材料中的一种。纳米材料是由纳米量级的纳米粒子组成的固体材料。纳米微粒有基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应〔2〕。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑和超塑性等。金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、不吸湿、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业。 2. 复合材料的历史 6000年前人类就已经会用稻草加粘土作为建筑复合材料。近代,水泥复合材料已广泛地应用于高楼大厦和河堤大坝等的建筑,发挥着极为重要的作用。现在,先进复合材料包括有树脂基复合材料、CC复合材料陶瓷和金属基复合材料和纳米复合材料,在各个领域有广泛的应用。现

纳米催化剂综述

纳米催化剂综述 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术 纳米催化剂由于其高效的还原或氧化作用,在催化领域的应用非常广泛,与普通商用催化剂相比,表现出高活性和高选择性等优异的催化性能。在反应中,纳米催化剂的尺寸、形貌、表面性质等对其活性和选择性起到了关键的作用。纳米颗粒由于尺寸小,表面所占的体积分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等,导致表面的活性位置增加,这就使纳米颗粒具备了作为催化剂的基本条件。随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这就增加了化学反应的接触面。 纳米催化剂性质 ⒈表面效应 描述催化剂表面特性的参数通常包括颗粒尺寸、比表面积、孔径尺寸及其分布等。有研究表明,当微粒粒径由10nm减小到1nm时,表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加[,同时还会引起表面张力增大,使表面原子稳定性降低,极易结合其它原子来降低表面张力。此外,Perez等认为N Cs的表面效应取决于其特殊的16种表面位置,这些位置对外来吸附质的作用不同,从而产生不同的吸附态,显示出不同的催化活性。 ⒉体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时,晶态材料周期性的边界条件被破坏,非晶态纳米颗粒的表面附近原子密度减小,使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 ⒊量子尺寸效应 当纳米颗粒尺寸下降到一定值时,费米能级附近的电子能级将由准连续态分裂为分立能级,此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化活性等性质。量子尺寸效应可直接影响到纳米材料吸收光谱的边界蓝移,同时有明显的禁带变宽现象;这些都使得电子/空穴对具有更高的氧化电位从而可以有效地增强纳米半导体催化剂的光催化效率,应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。近年来在纳米催化剂的研究方面已取得一些成果,体现了纳米催化剂的优越性。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发 目前,关于纳米粒子的催化剂有以下几种,即纳米金属催化剂,主要以贵金属为主,如Pt、Rh、Ag、Pd,非贵金属有Fe、Co、Ni等。第二种以氧化物为载体,把粒径为lnm-10nm的金属粒子分散到这种多孔的衬底上。衬底的种类很多,有氧化铝、氧化硅、氧化镁、氧化钛、沸石等。第三种是WC、γ-Al2O3、γ-Fe2O3等纳米聚合体或者是分散于载体上。 纳米催化剂在能源化学方面的一些应用 (1)燃煤纳米催化剂 我国是一个产煤大国,同时也是一个用煤大国,建国以来,煤炭在我国一次能源消费构成中占75%左右,预计到2050年这一比例仍将高达50%以上。在一个较长的时期内,煤炭仍将是我国能源中最主要的角色。建设资源节约型,环境友

相关文档