文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米纤维技术介绍

纳米纤维技术介绍

纳米纤维技术介绍
纳米纤维技术介绍

纳米纤维技术介绍

1.纳米纤维

纳米纤维是指直径为纳米尺度而长度较大的线状材料,纳米是一个长度单位,其符号为nm,为1毫米的百万分之一(l nm=1×10-6 mm)。图1可以直观的比较人类头发(0.07-0.09 mm)与纳米纤维直径的差别。

图1 纳米纤维直径尺度示例

2 纳米纤维的应用与优势

纳米纤维在众多领域都有应用的优势,这些优势被近年来大量的学术论文报导,同时受到了产业界的重视,一些产品已经在市场上广泛的应用。这些领域包括:空气过滤、液体过滤、能源/电池隔膜、生物医学、药物缓释控释、健康和个人防护、环境保护、吸声材料、食物和包装等等。

纳米纤维作为过滤材料的优势:纳米纤维在空气过滤和液体过滤材料领域已有市场化的产品,其进入中国市场的方式均为原装进口。为确保技术壁垒相关企业虽在国内建立了全资子公司,但不设纳米纤维过滤材料生产线。相关产品有唐纳森公司Torit? DCE?除尘器、燃汽轮机过滤器GDX?、汽车引擎过滤器PowerCore?,唐纳森公司宣称其产品具有无可替代的性能。另有美国贺氏(H&V)公司FA6900NW、FA6901NW、FA6900NWFR系列空气过滤滤料,以及H&V公司一些型号不明的滤料也

有使用纳米材料。

纳米纤维非织造材料对亚微米颗粒的过滤效率是常规的微米纤维非织造材料(无纺布)所无法比拟的。这一特性决定了纳米纤维在空气中颗粒污染物的分离(电子工业、无菌室、室内环境净化、新风系统、工业高效除尘等)和液体中颗粒污染物的分离(燃油滤清器、水处理等)相关领域具有广阔的应用前景。

(1)纳米纤维直径小——孔隙尺寸小、过滤效率高

过滤材料通常为纤维平面非织造材料(纤维无纺布),随着纤维直径的减小,单位面积内的纤维根数显著增加,纤维未搭接处形成的孔隙尺寸显著减小,过滤效率明显提升(如图2所示)。对于常规过滤材料很难拦截的PM 2.5污染物有很高的拦截效率。

图2 纤维直径与孔隙尺寸和过滤效率之间的关系(2)纳米纤维比表面积大——对细微颗粒的吸附能力强

纤维直径减小,纤维比表面积增大。相同的聚合物形成纤维后,比表面积(s)与纤维直径(d)的关系式为:ds1∝,其关系服从图3中的曲线。可知,纤维直径从10 μm减小到100 nm(0.1 μm)时,纤维的比表面积增加至原来的1000倍。

比表面积的增大,增加了颗粒与纤维接触而被吸附的几率,特别是对常规过滤材料无法过滤的100-500 nm的微细颗粒的捕捉与分离,纳米纤维滤料是常规滤料无法比拟的,可以捕获PM2.5污染物中粒径最细小的颗粒。

图3纤维比表面积与直径的关系

(3)纳米纤维孔隙率高——透气性好

纳米纤维无纺布孔隙率高达70-90 %,而常规微米纤维无纺布孔隙率在40 %左右。

(4)纳米纤维过滤机理为“面过滤”——易清灰、清灰后过滤性能回复率高、使用寿命长

常规滤料是“体过滤”(如图4所示),起初过滤效率很低,灰尘先进入滤料的内部,堵塞部分孔隙,过滤效率才有所提升。但是,这种方式有如下弊端:①增大了过滤阻力,运行能耗高;②在清灰过程不太可能被清除,降低滤料使用寿命;③污染物容易在风压的作用下,脱落到清洁区,影响过滤效果。

纳米纤维滤料是“面过滤”(如图5所示),颗粒污染物被截留在滤料表面,

这些表层积灰尘很容易清除。

图4 微米纤维的“体过滤”原理示意图

图5 纳米纤维表面过滤原理示意图

(5)纳米纤维滤料具有更长的使用寿命和更低的能耗——节约运行成本

表1给出了使用唐纳森公司Ultra-web?滤芯工业除尘器每年节约能耗数据,描述了使用该设备有50 %的能耗折扣:“更高过滤效率=更洁净空气;更低压降=更显著降低能耗=降低能耗成本;更低的清灰频率=更高的使用寿命”唐纳森这款纳米纤维滤料的寿命是普通过滤材料的4倍。同样,在车用空气滤清器中,没有反吹清灰设计,空气阻力升高到一定值应更换滤清器,纳米纤维滤料阻力升高水平明显低于普通滤料,寿命可达普通滤料的2倍。

表1 唐纳森使用Ultra-Web?滤芯工业除尘器节约能耗(数据来自唐纳森网站)

3.本项目的纳米纤维滤料产品与国外高端品牌产品的对比

本项目的纳米纤维滤料是高性能复合滤料的一种,可以简单地表述为在普通滤料(基材)上制造一层纳米纤维功能层,形成具有高过滤效率的纳米纤维复合滤料。

材料高性能的核心在于纳米纤维的形貌——(1)基材表层是否被纳米纤维功能层铺满?(2)表层功能纳米纤维层的纤维直径是否足够小?是多少纳米?——这些要借助电子显微镜观察。

3.1 本项目中试产品与国外高端品牌产品的纳米纤维形貌比较

用扫描电子显微镜(SEM)研究了国内市场上最高端的进口滤料(A)贺氏(H&V)普通滤料、(B)H&V纳米滤料H&V Nanoweb?、(C)唐纳森纳米滤料Ultra-web?、(D)本项目中试的纳米滤料样品的纤维形貌。

(A)为H&V普通滤纸,纤维直径在10-20 μm,过滤效率等级较低;(B)为H&V Nanoweb?纳米滤纸,其利用某种工艺在滤纸的表面复合了一层0.5-1.5 μm的亚微米纤维,有MERV 13和MERV 15两个过滤效率等级的产品;(C)为唐纳森的

Ultra-web?滤纸,滤纸表面复合的纳米纤维直径为100 nm有MERV13、MERV14、MERV15三个过滤效率等级的产品。(D)为本项目中试的纳米滤料产品,纳米纤维直径80-100 nm过滤效率等级为MERV13、MERV15。

可见,本项目中试生产的纳米纤维直径与本领域国际巨头唐纳森公司的Ultra-web?相当,且比H&V的纳米纤维Nanoweb?直径小,从过滤效率的角度势必优于H&V的纳米纤维产品(这在表2.2中有充分的说明),而与唐纳森的滤料过滤效率相当(唐纳森不单独销售滤料,因此我们无法获得样品来测试效率)。

3.2 本项目中试产品与国外高端品牌产品的性能测试结果比较

表2中列举了本项目中试阶段定型的2款纳米纤维滤纸性能数据,并对比了未复合纳米纤维前的普通滤料,以及H&V的纳米滤纸Nanoweb?的性能。

可以看出,在同样的测试环境下,本项目制备的纳米滤料效率高于H&V Nanoweb?,远高于普通滤料的17.55%,这些过滤效率的优势均源于本项目将纤维直径缩小到90 nm,这与唐纳森公司的Ultra-web?的100 nm有同样的水平,参考图6。过滤性能分级也与唐纳森公司的Ultra-web?处于同样的水平,且初阻力相似。

4.纳米纤维的工业化大规模制造

纳米纤维制备的有效方法是静电纺丝技术,它起源于1902年Cooler等人的发明,经过百余年的发展,其物理本质和形成过程已经被多个学科的研究成果所揭示和证明。随着纳米科技的兴起,特别是20世纪90年代和21世纪初,静电纺丝技术获得了飞速的发展,学术论文呈几何级数增长。

4.1 纳米纤维制造原理与过程

如图7所示,静电纺丝基本装置主要包括高压电源、喷丝头和接收装置三个

部分。具体工作过程为:

(1)在高压电源的作用下,针尖与接收装置之间形成高压静电场;

(2)聚合物溶液通过注射器一滴一滴地从针尖送入静电场;

(3)溶液在电场力作用下,形成“泰勒锥”,随着电场力的增加,克服表面张力,形成射流,聚合物分子链簇被电场力不断牵伸并从溶液中析出,形成纳米纤维,沉积在接收装置上。

图7 针头静电纺丝装置示意图

4.2 国内静电纺丝设备及问题

图8 国内针头法静电纺丝设备

针头法静电纺丝原理简单,易于实现。图8给出了2台国内企业制造的电纺丝设备图片,这些设备包含:可平移的针头、连续注液系统等。为了提高制造效率,很多设备中采用了多针头系统。

生产类似设备的企业包括:北京富友马科技有限公司、深圳市通力微纳科

技有限公司、济南米莱仪器有限公司、大连鼎通科技发展有限公司、济南良睿科技有限公司……

但是,由于纺丝溶液需要通过注射器一滴一滴地供入电场,采用针头法静电纺丝的这些设备生产效率是十分低下的,基本不具备工业化生产潜力。

4.3 本项目纳米纤维工业化生产线

本项目结合多年对纳米材料物理、化学的研究和静电纺丝原理、工艺参数的研究,开发了幅宽1 m的静电纺丝中试生产线,彻底打破了国外封锁,生产设备专利已获授权,生产方法的发明专利处于公开期。完全解决了国内所用的针头法(单针头、多针头、多针头阵列)静电纺丝技术在工业化制备纳米纤维中的①产率低、②针头易堵塞、③各针头之间电场分布不均带来的产品质量不稳定的问题。

(1)生产线及生产过程

图9示例性地给出了本项目的生产过程,在纺丝设备一端通过退绕机构将基材送入纺丝设备;在静电纺丝区,纳米纤维被制备并沉积到基材上;通过设备另一端的卷绕机构将产品收卷。

图9 生产过程示意图

(2)生产效率

通过调节基材在纺丝区域停留时间,可以控制单位面积纳米纤维的沉积量,形成不同规格的产品。纳米纤维层越厚,产品过滤效率越高,相应地初阻力也会一定程度提高;纤维越细,对更微小的粒子有更高的过滤效率。

用本项目1.6m幅宽生产线生产MERV 13等级的滤料产品生产效率约1000

m2/h,按年产5000小时计算,年产500万m2,(按照克重135 g/m2和年产量约675吨)。生产更高等级产品生产效率虽然有所降低,但仍然是目前最高效的生产线,

可根据市场需求量随时调整产能利用率,具有规模效应。

(3)生产条件决定因素

纳米纤维技术属于微观技术,在产品开发、材料选择、工艺条件确定等方面包含了化学、材料学、超分子科学、纳米科学等前沿科学领域,成功转化为产品需要对这些领域的深入理解和研究。

因本项目的核心技术团队在纳米材料、化学以及超分子自组装等领域有着多年的研究经历,充分地掌握了生产工艺中各种细节问题的原理和解决方案,从实验室小样开发到1m幅宽生产线中试成功也付出了艰辛的努力。通过中试生产线的研究,已完全掌握了大规模纳米纤维静电纺丝相比常规静电纺丝的各种不同参数及相应的机理。

大规模纳米纤维静电纺丝的发生、纳米纤维的直径、分布、产品质量等主要由如下因素决定的。

a) 聚合物参数:聚合物结构、相对分子量、分子量分布、溶解性等;

b) 溶剂参数:溶剂种类、与其他溶剂复配、沸点、挥发性等;

c) 溶液参数:浓度、粘度、表面张力等;

d) 电压、接收距离等。

4.4 本项目工艺对材料的适应性

本项目工艺方法对基材适应性强,基材可选择的范围广。在中试阶段只选择了在空气过滤、除尘领域应用广泛、占有较大市场份额的几种普通滤料作为基材。这些基材包括:(A)纤维素滤料(滤纸)、(B)玻璃纤维滤料(Glass)、(C)聚酯纤维滤料(PET)、(D)聚苯硫醚纤维滤料(PPS),以这些为基材制备的纳米纤维复合滤料扫描电子显微镜(SEM)照片见如图10。

可以看出,所得材料均为连续纤维组成的三维网状结构,纤维之间相互缠绕、纵横交错,纳米纤维之间的孔隙明显小于微米纤维之间的孔隙。通过图像软件对SEM照片分析,纤维平均直径87.5 nm分布区间从70-100 nm。

图10 在几种基材上制备纳米纤维的SEM照片,基材:(A)纤维素、(B)玻璃纤维(Glass)、(C)聚酯纤维(PET)、(D)聚苯硫醚(PPS)

基材附注:

(A) 纤维素滤纸:是市场上最常用的一类空气过滤材料,但过滤效率低(参见前表2.2的性能数据),通常不在产品说明书中报告过滤效率和过滤效率等级,不满足对效率要求高的使用场合。也正因为这样,国内高端滤纸市场完全有外企控制。

(B) 玻璃纤维滤纸:通常用湿法成型技术制造。广泛用于医疗、医药、电子产品制造等环境的空气过滤系统。在高温用途上表现很突出,能经得起在260℃下连续暴露,亦能抵抗除氟氢酸以外的大部分酸,但室温下的强碱及高温下的中等碱性能够侵蚀玻璃纤维。玻纤抵抗弯折磨损的能力极差,如果有脉冲或清灰剧烈,很快就坏了。

(C) 聚酯纤维(PET)滤料:聚酯纤维也叫涤纶,纤维在135 ℃以下有很好的使用性能,在中低温滤料领域占有重要地位,但其不耐强碱,容易水解。

(D) 聚苯硫醚纤维(PPS)滤料:PPS是一种耐高温合成纤维,它良好的耐温性和化学稳定性。典型用途是市政废物焚烧炉、公用工程锅炉、烧煤锅炉、医

院焚烧炉、热电联产锅炉上用的脉冲袋滤器。它能连续经受住190 ℃的温度,并抵抗许多酸、碱和氧化剂的化学腐蚀。也可用它来取代别的经不住高温或存在化学品及不耐潮湿的合成纤维。

纳米纤维的技术进展

纳米纤维的技术进展 赵婷婷 张玉梅 (东华大学纤维材料改性国家重点实验室,上海,200051) 崔峥嵘 (辽阳石化分公司,辽阳,111003) 王华平 (东华大学纤维材料改性国家重点实验室,上海,200051) 摘 要:本文简单介绍了纳米纤维的定义、特点和应用,主要讨论了纳米纤维的制备方法,包括传统纺丝方法(如:静电纺丝法、复合纺丝法和分子喷丝板法)的改进以及新兴的生物合成法和化学合成法。 关键词:纳米纤维,技术,进展,生物合成,化学合成 中图分类号:TS1021528 文献标识码:A 文章编号:1004-7093(2003)10-0038-05 1 前言 纳米纤维是直径1nm~100nm的纤维,此为狭义的纳米纤维的定义。广义地说,零维或一维纳米材料与三维纳米材料复合而制得的传统纤维,也可以称为纳米复合纤维或广义的纳米纤维。更确切地说,这种复合纤维应称为由纳米微粒或纳米纤维改性的传统纤维。纳米纤维最大的特点就是比表面积大,导致其表面能和活性的增大,从而产生了小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理(热、光、电磁等)性质方面表现出特异性。纳米纤维广泛应用在服装、食品、医药、能源、电子、造纸、航空等领域。 一方面,纳米纤维的广泛应用,对纳米纤维的制备技术提出了新的要求,同时也为纳米纤维制备技术的发展提供了新的发展空间;另一方面,纳米纤维制备技术的不断创新与发展,也使得纳米纤维的种类不断推陈出新,其性能和功能也得以进一步的体现和应用。本文主要讨论一维纳米纤维制备技术的进展情况。 收稿日期:2003-05-20 作者简介:赵婷婷,女,1980年生,在读硕士研究生。主要从事细菌纤维素的研究。2 传统纺丝方法的改进 2.1 静电纺丝法[1~4] 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心,是使带电荷的高分子溶液或熔体在静电场中流动并发生形变,然后经溶剂蒸发或熔体冷却而固化,于是得到纤维状物质,这一过程简称电纺。 目前电纺技术已经用于几十种不同的高分子,即包括大品种的采用传统技术生产的合成纤维,如:聚酯、尼龙、聚乙烯醇等柔性高分子的电纺,包括聚氨酯弹性体的电纺以及液晶态的刚性高分子聚对苯二甲酰对苯二胺等的电纺。此外,包括蚕丝、蜘蛛丝在内的蛋白质和核酸(DNA)等生物大分子也进行过电纺实验。尽管所用的材料十分广泛,但是目前电纺纤维总是以在收集板负极上沉积的非织造布的形式而制得的,其中单纤维的直径可以随加工条件而变化,典型的数值为40nm~2μm,甚至可以跨越10nm~10μm的数量级,即微米、亚微米或纳米材料的范围。 电纺纤维最主要的特点是所得纤维的直径较细,新形成的非织造布是一种有纳米微孔的多孔材料,因此有很大的比表面积,有多种潜在用途。但是,目前的电纺技术在推广上存在一定技术问题:第一,由于静电纺丝机设计的构型,此法得到的只能是非织造布,而不能得到纳米纤维彼此可

纳米材料的概述

“纳米材料”—开启微观世界之门 1.纳米材料及纳米技术 纳米技术界定为:在1nm~100nm尺度空间内研究电子、原子和分子运动规律和特性,通过直接操纵原子、分子或原子团和分子团使其形成所需要的物质的新技术。 纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。2.纳米材料的发展 人类对物质的认识分为两个层次:一个是宏观,另一个是微观。人们对宏观物质的研究已经很深人,研究的历史也较悠久。对于微观物质的研究,到20世纪60年代出现了团簇科学,成为凝聚态物理研究的热点。在团簇物理研究中,人们在团簇和亚微米体系之间又发现了一个十分令人注目的新体系,即纳米体系。这个体系通常研究的范畴为1~100nm,其中典型的代表是纳米粒子。由于纳米粒子的尺寸小、比表面积大和量子尺寸效应使其具有不同于常规固体的新特性,而成为材料科学、物理学和化学等学科的前沿焦点。 1959年著名的美国物理学家理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲,预言说:“我不怀疑,如果我们对物质微小规模上的排列加以某种控制的话,我们就能使物质得到大量的可能的特性。”虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer 发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1984年Gleiter 首次采用气体冷凝的方法,成功地制备了Fe纳米粉。随后,美国、西德和日本先后研制成纳米级粉体及块体材料。 1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使

(完整版)纳米纤维技术介绍

纳米纤维技术介绍 1.纳米纤维 纳米纤维是指直径为纳米尺度而长度较大的线状材料,纳米是一个长度单位,其符号为nm,为1毫米的百万分之一(l nm=1×10-6 mm)。图1可以直观的比较人类头发(0.07-0.09 mm)与纳米纤维直径的差别。 图1 纳米纤维直径尺度示例 2 纳米纤维的应用与优势 纳米纤维在众多领域都有应用的优势,这些优势被近年来大量的学术论文报导,同时受到了产业界的重视,一些产品已经在市场上广泛的应用。这些领域包括:空气过滤、液体过滤、能源/电池隔膜、生物医学、药物缓释控释、健康和个人防护、环境保护、吸声材料、食物和包装等等。 纳米纤维作为过滤材料的优势:纳米纤维在空气过滤和液体过滤材料领域已有市场化的产品,其进入中国市场的方式均为原装进口。为确保技术壁垒相关企业虽在国内建立了全资子公司,但不设纳米纤维过滤材料生产线。相关产品有唐纳森公司Torit? DCE?除尘器、燃汽轮机过滤器GDX?、汽车引擎过滤器PowerCore?,唐纳森公司宣称其产品具有无可替代的性能。另有美国贺氏(H&V)公司FA6900NW、FA6901NW、FA6900NWFR系列空气过滤滤料,以及H&V公司一些型号不明的滤料也

有使用纳米材料。 纳米纤维非织造材料对亚微米颗粒的过滤效率是常规的微米纤维非织造材料(无纺布)所无法比拟的。这一特性决定了纳米纤维在空气中颗粒污染物的分离(电子工业、无菌室、室内环境净化、新风系统、工业高效除尘等)和液体中颗粒污染物的分离(燃油滤清器、水处理等)相关领域具有广阔的应用前景。 (1)纳米纤维直径小——孔隙尺寸小、过滤效率高 过滤材料通常为纤维平面非织造材料(纤维无纺布),随着纤维直径的减小,单位面积内的纤维根数显著增加,纤维未搭接处形成的孔隙尺寸显著减小,过滤效率明显提升(如图2所示)。对于常规过滤材料很难拦截的PM 2.5污染物有很高的拦截效率。 图2 纤维直径与孔隙尺寸和过滤效率之间的关系(2)纳米纤维比表面积大——对细微颗粒的吸附能力强 纤维直径减小,纤维比表面积增大。相同的聚合物形成纤维后,比表面积(s)与纤维直径(d)的关系式为:ds1∝,其关系服从图3中的曲线。可知,纤维直径从10 μm减小到100 nm(0.1 μm)时,纤维的比表面积增加至原来的1000倍。 比表面积的增大,增加了颗粒与纤维接触而被吸附的几率,特别是对常规过滤材料无法过滤的100-500 nm的微细颗粒的捕捉与分离,纳米纤维滤料是常规滤料无法比拟的,可以捕获PM2.5污染物中粒径最细小的颗粒。

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

纳米纤维概述

纳米纤维概述 1.纳米纤维的概念 纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[1]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。 2.纳米纤维的制备方法 随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。 2.1静电纺丝法 静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[2-4],其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯--核结构的纳米纤维,满足其在不同领域的应用需要。 2.2双组份复合纺丝法 双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[5-7],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[8]。Fedorova等[9]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA 复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”的数量增加至360个时,制备所得纳米纤维的直径为360nm。 海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

纤维素纳米纤维

纤维素纳米纤维 众所周知,植物的基本组成单位是细胞,其主要结构为纤维素纳米纤维,纤维素纳米纤维是拉伸纤维素链的半结晶纤维束。纤维素纳米纤维不仅纤细,而且纤维素分子链可以拉伸和结晶,所以其质量仅为钢铁的1/5,强度却是钢铁的5倍以上。另外,其线性热膨胀系数极小,是玻璃的1/50,而且其弹性模量在-200~200℃范围内基本保持不变。弹性模量约140GPa,强度2~3GPa。不同于石油基材料,作为生物基材料,更环保。 图1 纳米纤维素微观结构作为下一代工业材料或绿色纳米材料,目前已在全世界积极地开展有关制造和利用这种纤维素纳米纤维的研究。用木材浆粕等植物类纤维材料制造纤维素纳米纤维的各种方法相继被开发出来。在低浓度(约百分之几)下进行的浆粕纤维分解技术有高压高速搅拌方法、微射流法、水中逆流碰撞法、研磨机研磨法、冷冻粉碎法、超声波分丝法、高速搅拌法和空心颗粒粉碎法等。纤维素纳米纤维重要的特征是可以用所有的植物资源作为原料。除木材外,还可以从稻杆和麦杆等农业废弃物、废纸、甘蔗和马铃薯的榨渣,以及烧酒气体等的工业废弃物中制得直径为10~50nm的纳米纤维。如果有效利用轻薄且宽域分布的生物资源的特点,则可以制造和利用取自唾手可得资源的高性能纳

米纤维。日本等发达国家已经实现了纤维素纳米纤维的工业化生产。轻量、强度高的纤维素纳米纤维作为复合材料,可制造汽车零部件和家电产品外壳、建筑材料等;利用气体阻隔性可制造屏障薄膜;利用其透明性可制作显示器和彩色滤光器、有机EL基板、太阳能电池板等;利用耐热性可制造半导体封装材料和柔性基板、绝缘材料等;利用黏弹性能,可生产化妆品、药品、食品、伤口敷料如细胞培养基材、分离器和过滤器以及特殊功能纸张等。在石油工程领域,纳米纤维素凝胶可作为井下流体助剂,不发生体积收缩;可用于钻井液降滤失剂、页岩抑制剂、增稠剂等,改善相关流体的性能。《石油工程科技动态》所有信息编译于国外石油公司网站、发表的论文、专利等,若需转载,请注明出处!中国石化石油工程技术研究院战略规划研究所

纳米科技概论期末试卷

选择题6题18分,填空题6题24分,名词解释或问答3题18分,简答题2题20分,论述题1题20分 一、选择题 1、纳米(nm)是一个长度单位,它等于10-9米 2、光学显微镜分辨率约为200纳米(nm) 3、属于准一维纳米材料的是碳纳米管 4、扫描隧道显微镜和原子力显微镜的英文缩写为STM和AFM 5、DNA螺旋结构的横向尺寸约为1-3nm 6、纳米粒子粒径从100nm减小至1nm,其表面原子占粒子中原子总数比例将增大 7、平均粒径为40nm的铜粒子的熔点与同一种固体材料的熔点相比降低了300℃左右 8、DNA的直径约2nm左右,SARS病毒约60--120nm,艾滋(AIDS)病毒约100nm 9、属于液相制备方法的是溶胶-凝胶法(Sol-gel) 10、一个C60分子的结构是由12个五边形和20个六边形组成的球体 二、填空题 1、最早明确提出纳米尺度上科学和技术问题的是理查德·费曼 2、纳米科学技术(NST)的英文全称为:Nano-science and technology 3、当纳米粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象以及纳米半导体粒子能隙的调制现象,均被称为量子尺寸效应 4、为制造具有特定功能的纳米产品,其技术路线可分为“自上而下”和“自下而上”两种方案。其中“自下而上”是指以原子、分子为基本单位,根据人们的意愿进

行设计和组装,从而构筑成具有特定功能的器件或产品的方式 5、纳米结构自组装体系英文全称为Nanostructured Self-assembling system 6、从学科角度层面上划分,纳米科学技术主要包括纳米(体系)物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工与测量学、纳米力学等7个既相对独立又相互渗透的学科 7、碳材料有非晶碳(无定形碳)和晶态碳材料之分。其中晶态碳材料包括石墨、金刚石、富勒烯、碳纳米管;其中C-60的发现开创了碳科学的新领域,同时,三位科学家也因此分享了1996年诺贝尔化学奖 8、宏观尺度的下限是肉眼所能分辨的最小尺寸,而微观尺度的上限约为原子分子的大小,即0.1nm左右 9、国家纳米技术(推进)计划,英文全称为National Nanotechnolgy Initiative 10、纳米生物材料工程主要集中在6个方面,即生物分子操作和组装、可控室温活性的功能分子膜、生物分子芯片、生物分子识别专家系统、自组装生物膜、生物分子机器 三、名词解释或问答 1、纳米科学技术: 是指在纳米尺度上研究物质组成体系的运动规律和相互作用,以及在应用中实现特有功能和智能作用的、多学科交叉的科学和技术 2、小尺寸效应(亦称体积效应) 由于颗粒尺寸变小所引起的宏观物理性质的变化现象称为纳米材料的小尺寸效应 3、纳米材料: 是指在三个维度上至少有一维处于纳米尺度范围或由它们作为基本组元构成的材料。主要包括纳米粒子或纳米粉体材料,一维纳米材料、纳米薄膜、纳米块材 4、纳米器件:

纳米科学技术概论

纳米科学技术概论 2016年4月27日 纳米科技的作用 纳米科技英文名称是nanotechnology,是指能操作细小到0.1~100nm物件的一类新发展的高技术。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学

科交叉性质的科学和技术。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。从20世纪纳米科技的兴起,几十年来已 得到飞速发展,进入21世纪更是全球形成了世界性的纳米 科技热潮,纳米科技领域的新发现与新成果层出不穷。于此同时,在生活的的各个方面已出现数不胜数的应用,掀起了信息,材料,能源,环境,医疗,卫生,生物与农业等领域的产业革命,对社会科学技术的发展以及人类生活产生了重要意义。 任何一门学科如果只注重于理论是不会得到很大发展的,而纳米技术所以能得到飞速发展是因为在我们生活中得到了广泛的应用。第一,在纳米电子和计算机技术领域的应用。微电子的发展改变了现代人的生活,计算机的运算速度几乎是每两年翻一番。纳米结构下的微处理器的效率将提高一万倍。未来的方向是把微电子技术和纳米技术有机结合起来。第二,在纳米材料领域的应用。在纳米尺度上控制构成材料的基本单元的结构和成分,再组装成具有独特性质与功能的大结构,这将从根本上改变材料和器件的制造方法;以新原理和新结构在纳米层次上制备特定性质的材料或自 然界中不存在的材料,生物材料和仿生材料,实现材料破坏过程中纳米级损伤的诊断和修复。第三,在生物工程技术领域的应用。纳米材料在生物医学材料中占有重要位置,自

纳米材料研究及检测.

纳米材料研究及检测 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地 概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。本文以纳米材料为主要研究对象,阐述了其分析使用的分析方法。 【关键词】纳米技术;纳米材料;结构;性能;分析方法;表征 前言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米科技是未来高科技的基础, 而适合纳米科技研究的仪器分析方法是纳米科技中必不可少的实验手段。因此, 纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的意义 和作用。 分析科学是人类知识宝库中最重要、最活跃的领域之一, 它不仅是研究的对象, 而且又是观察和探索世界特别是微观世界的重要手段。随着纳米材料科学技术的发展, 要求改进和发展新分析方法、新分析技术和新概念, 提高其灵敏度、准确度和可靠性, 从中提取更多信息, 提高测试质量、效率和经济性。 纳米材料主要性质有:小尺寸效应[、表面与界面效应、量子尺寸效应、宏观量子隧道效应。目前表征纳米材料的技术很多,采用各种不同的测量信号形成了各种不同的材料分析方法,大体可以分为以下

几种方法。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新

纳米科技导论,徐国财精华版

1.纳米科学与技术(Nano-ST)是研究由尺寸在0.1~100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。 2.1纳米(nm)=10-3微米(μm)=10-6毫米(mm)=10-9米(m)=10埃 3.纳米材料的定义 指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。 4.纳米材料的分类:纳米材料的基本单元按维数(结构)可以分为三类:(1)零维,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、原子团簇、人造超原子、纳米尺寸的孔洞等;(2)一维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;(3)二维,指在三维空间中有一维在纳米尺度,如超薄膜、多层膜、超晶格等.因为这些单元往往具有量子性质,所以零维、一维和二维基本单元又分别有量子点、量子线和量子阱之称。按组成分类 金属纳米材料,无机非金属纳米材料,有机和高分子纳米材料,复合纳米材料;根据化学成分,纳米材料可分为纳米金属、纳米晶体、纳米陶瓷和纳米高分子。 5.纳米材料的特点: (1)至少有一维处于0.1~100nm; (2)因具有量子尺寸效应、小尺寸效应、表面效应、或宏观量子隧道效应等引起光学、热学、电学、磁学、力学、化学等性质发生十分显著的变化。否则,不能称之为纳米材料 6.自然界的纳米技术 ★人体和兽类的牙齿 ★海洋中的生命粒子 ★蜜蜂的―罗盘‖-腹部的磁性纳米粒子 ★螃蟹的横行-磁性粒子―指南针‖定位作用的紊乱 ★海龟在大西洋的巡航-头部磁性粒子的导航 ★荷花出污泥而不染等 7.为什么会有这种“荷叶效应”? ●用传统的化学分子极性理论來解释,不仅解释不通,恰恰是相反。 ●从机械学的粗糙度、光洁度角度來解释也不行,因为它的表面光洁度根本达不到机 械学意义上的光洁度(粗糙度),用手触摸就可以感到它的粗糙程度。 原來在荷叶叶面上存在着非常复杂的多种纳米和微米级的超微结构。 蜡质结晶+细微结构→荷叶效应 在超高解析度电子显微镜下可以清晰看到:在荷叶叶面上布满着一個挨一個隆起的“小山包”在山包上面長滿絨毛,在“山包”頂則又長出一個個饅頭狀的“碉堡”凸頂。因此,在―乳突‖间的凹陷部份充滿著空氣,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上―乳突‖的凸頂形成几个点接触。雨点在自身的表面張力作用下形成球狀,水球在滚动中吸附灰尘,並滾出叶面,这就是―荷叶效应‖能自洁叶面的奧妙所在。再加上叶片表面的细微结构之助,使水与叶面的面积更小而接觸角变大, 因此加強了疏水性,同時也降低污染顆粒对叶面的附着力。 8.第一次工业革命——毫米时代,第二次工业革命——毫米时代,第三次工业革命——微米时代,第四次工业革命——即将到来的纳米时代 9.宏观:大尺度,发明了望远镜,探索宇宙起源与进化。 微观:小尺度,发明了显微镜、粒子加速器,探索物质结构。 介观:原子分子层次,才是和人类自身关系最密切的。 10.纳米技术与微电子技术的主要区别是: 纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。 11.人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 12.制造纳米产品的技术路线可分为两种: “自上而下” (top down):是指通过微加工或固态技术, 不断在尺寸上将人类创造的功能产

刘延波谈静电纺纳米纤维技术

谈静电纺纳米纤维技术 刘延波 天津工业大学纺织学院,300160s 纳米纤维一般是指纤维的直径在纳米级范围。有些人把直径小于1μm的纤维称为纳米纤维,而有些人则定义直径小于0.3μm的纤维为纳米纤维,也有文献将纳米纤维定义为直径为纳米级、长度超过1μm的物质。美国国家科学基金会(NSF)定义纳米纤维为至少在一维空间尺度上小于100nm的纤维。无纺布工业一般认为直径小于1微米的纤维就是纳米纤维。另一方面,更广泛说来,传统纤维与纳米材料(零维、一维或三维)复合制得的纤维材料也可以称为纳米复合纤维材料或广义的纳米纤维材料。纳米纤维这种广泛的定义还可以延伸,即可以把纤维中包含有纳米结构,而且又赋予了新的物理性能的纤维都划入纳米纤维的范围。纳米纤维与人发的细度对比如图1所示。图2为纳米纤维的SEM图片。 纳米纤维材料特点及应用 纳米纤维直径一般在几个纳米到几个微米之间,极细的纤维直径使得纳米纤维具有极高的比表面积,因此具有极高的表面吸附性能;另一方面,由极细的纳米纤维构成的纤网、薄膜或非织造布又具有极小的孔隙尺寸和极高的孔隙率(低空气阻力)及静电驻留性,因此在表面吸附、过滤隔阻等方面具有广泛的应用,例如气体过滤、液体过滤、吸声防噪、生物医疗、能源电子、航空航天、农业防护、战争防护、食品安全、化妆品、纳米纤维增强复合材料等领域,部分应用如图3所示。具体包括: (1)气体过滤—工业气体、汽车发动机空气过滤以及汽车尾气过滤; (2)液体过滤—食品和药品过滤、血液过滤、海水淡化、水处理等; (3)特种防护—生化防护服、防毒面具、医疗防护服、特种工作服等; (4)能源电子—储能材料和电池隔膜; (5)生物医疗—生物传感器、组织工程支架、创伤敷料、药物传输载体、人造器官/血管,手术缝合线、医用口罩等等; (6)其它应用—包括吸声防噪、化妆用品、太阳镜、太阳帆等。

纳米科学技术概述

纳米科学技术概述 一、历史背景 在20世纪90年代的科技报刊上,经常出现“纳米材料”和“纳米技术”这种名词。什么是“纳米材料”呢?通俗一点说,就是用尺寸只有几个纳米的极微小的颗粒组成的材料。1纳米为10亿分之一米,用肉眼根本看不见。但用纳米颗粒组成的材料却具有许多特异性能。因此,科学家又把它们称为“超微粒”材料和“21世纪新材料”。而纳米材料并非完全是最近才出现的。最原始的纳米材料在我国公元前12世纪就出现了,那就是中国的文房四宝之──墨,墨中的重要成分是烟。实际上,烟是由许多超微粒炭黑形成的,而制造烟和墨的过程中就包含了所谓的纳米技术。 1984年,一位德国科学家格莱特(Gleiter)把一些极其细微的肉眼看不见的金属粉末用一种特殊的方法压制成一个小金属块,并对这个小金属块的内部结构和性能做了详细的研究。结果发现这种金属竟然呈现出许多不可思议的特异的金属性能和内部结构。他制出的这种材料的特殊性在于,一般的物理概念认为晶体的有序排列为物质的主体,而其中的缺陷、杂质是次要的,要尽力除去。格莱特把物质碾成极小微粒再组合起来,实际上是把界面上的缺陷作为物质的主体,由微小颗粒压制成的金属块是一种双组元材料,有晶态组元和界面组元,界面组元占50%,在晶态组元中原子仍为

原来的有序排列,而在界面组元中,界面存在大量缺陷,原子的排列顺序发生变化,当把双组元材料制到纳米级时,这种特殊结构的物质就构成了纳米材料,由此开始了对纳米材料及纳米科学技术的研究。 1987年,德国和美国同时报道制备成功二氧化钛纳米陶瓷(颗粒大小为12纳米),这种陶瓷比单晶体和粗晶体的二氧化钛陶瓷的变形性能和韧性好得多。例如,纳米陶瓷在180℃下能经受弯曲变形而不产生裂纹,纳米陶瓷零件即使开始时带有裂纹,在经受一定程度的弯曲变形后,裂纹也不会扩大。1989年,美国商用机器公司(IBM)的科学家用80年代才发明的扫描隧道显微镜(STM)移动氙原子,用它们拼成IBM 三个字母,接着又用48个铁原子排列组成了汉字“原子“两字。1990年,首届纳米科学技术大会在美国成功举行,标志着一个把微观基础理论与当代高科技紧密结合的新型学科 ──纳米科学技术正式诞生了。1991年,IBM的科学家制成了速度达每秒200亿次的氙原子开关。2019年,IBM设在苏黎世的研究所又研制出世界上最小的“算盘”,这种“算盘”的算珠只有纳米级大小,由著名的“碳”巴基球C60制成。 二、发展现状 纳米技术的发展现状十分乐观,世界各国纷纷制定发展纳米科学技术的战略,纳米科技成为世界科技竞争的一个热点领

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

纳米技术简介

纳米科技导论 课程小论文 题目:纳米技术简介 学号 班级 教师

摘要:纳米材料作为材料科学中的重要一元,近年来受到科学界的广泛重视。本文将从纳米材料的概况,制备工艺,及其部分应用等方面作出综合评价 关键词:纳米材料制备方法 1、纳米材料概述 纳米是一种长度单位,一纳米相当于十亿分之一米,大约相当于几十个原子的长度.人类对纳米的研究是在高技术领域或继信息技术和生命科学之后的又一个里程碑.正如中国的纳米首席科学家张立德所说: “大多数人竟然一无所知,纳米即将是一次产业革命”.由于物质组成的精细度达到纳米级时,就能表现出一些奇特的物理、化学的性能,从而为新材料的产生创造条件.纳米技术能在原子和分子水平上操纵物质,创造和制备优异性能的材料.因此,纳米技术是一项引领时代潮流的前沿技术,是科技之峰颠. 1982 年,科学家发明了纳米的重要工具——扫描隧道显微镜为我们揭示了一个可见的原子、分子世界,对纳米科技的发展产生了积极的促进作用. 1.1纳米材料分类 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。如果按维数,纳米材料的基本单元可分为三类: 1.零维,指在空间三维尺度均在纳米尺度,如纳米尺度颗粒、原子团簇等。 2.一维,指在空间中有两维处于纳米尺度,如纳米四、纳米管、纳米棒等。 3.二维,指在三维空间中有一维在纳米尺度,如超薄膜、多层膜、超晶格等。 因为这些单元往往具有量子性质,所以对零维、一维、二维的基本单元又分别有量子点,量子线,量子阱之称。 1.2纳米材料特性 纳米材料是新型材料,由于它的尺寸小、比表面大及量子尺寸效应,它具有常规粗晶材料不具备的特殊性能。 1.2.1 小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变。 1.2.2 表面效应 纳米微粒尺寸小,表面能高,位于表面原子占相当大的比例。随着粒径减小,表面原子数迅速增加。这是由于粒径小,表面积急剧变大所致。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。例如:金属的纳米粒子在空气中会燃烧,无机的纳米粒空子暴露在空气中会吸附,并与气体进行反应。 1.2.3量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象以及纳米半导体微粒存在不连续的最高被占据分子轨道和最低轨道能级而使能隙变宽现象均称为量子尺寸效应。量子尺寸效应直接解释了纳米粒子特别的热能、磁能、静磁能、静电能、光子能量以及超导态的凝聚能等一系列的与宏观特性有着显著不同的特性。 1.2.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现了一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦具有隧道效应,称为宏观的量子隧道效应。 宏观量子隧道效应的研究对基础研究及实用都有着重要意义。它限定了磁带、磁盘进行

静电纺丝纳米纤维薄膜的应用进展_李蒙蒙

基金项目:国家自然科学基金(20904037)、江苏省自然科学基金(BK2009141); 作者简介:李蒙蒙(1988-),男,硕士研究生,主要从事静电纺丝制备纳米材料及其性质等方面的研究; *通讯联系人,E -mail :dy yang2008@sinano .ac .cn . 静电纺丝纳米纤维薄膜的应用进展 李蒙蒙1,2,朱 瑛1,仰大勇1*,蒋兴宇3,马宏伟1 (1.中国科学院苏州纳米技术与纳米仿生研究所,苏州 215125; 2.青岛大学物理科学学院,青岛 266071; 3.国家纳米科学中心,北京 100190) 摘要:静电纺丝是一种简单而高效制备高分子微纳米纤维的技术,由于设备和实验成本低、纤维产率高、制 备出的纤维比表面积比较大、适用性广泛等独特的优势,近些年来备受关注。静电纺丝的应用是静电纺丝研究 的最基本动力和终极目标,因此成为研究者一直努力的方向。为了研究静电纺丝应用的研究现状和主要发展 方向,本文综述了静电纺丝纳米纤维薄膜几个主要的应用领域,包括组织工程、药物缓释、纳米传感器、能源应 用、生物芯片和催化剂负载等,并展望了未来可能的发展方向。 关键词:静电纺丝;纳米纤维薄膜;应用进展 引言 静电纺丝是一种简便易行、可以直接从聚合物及复合材料制备连续纤维的方法,其制备的纳米纤维薄膜通常是以无纺布形式存在的。静电纺丝技术具有一些突出的优点:设备和实验成本较低,纤维产率较高,制备出的纤维比表面积比较大(纤维直径在几十纳米到几个微米的范围内),并且适用于许多不同种类的材料。这些优点使静电纺丝纳米纤维薄膜在许多领域具有广泛的潜在应用 [1~6]。静电纺丝的原理和设备如图1(a )所示[7],高压电源提供高压,正极接在医用注射器的不锈钢针头上, 负极(接地)接在铝箔上。电压一般在5kV 到30kV 之间,针头到收集极间的距离(工作距离)一般在5cm 到20cm 之间。实验时,将纺丝溶液装入注射器内,并加上高压。由于高压电场的作用,在针头处形成“泰勒锥”。溶液在高电压作用下形成射流,并经过多次分裂,同时溶剂快速挥发,在收集板上就得到了微纳米尺度的纤维,如图1(b )&(c )所示 。 图1 (a )静电纺丝的装置示意图及得到的聚合物纳米纤维的(b )数码照片和(c )电镜照片[7] Fig ure 1 (a )Schematic illustration of electr ospinning se t -up ;(b )Dig ital came ra imag e and (c )SEM image o f electro spun nanofiber s co llected on an aluminum fo il [7] 近年来,静电纺丝逐渐成为材料科学与纳米科技的研究热点之一,吸引着全世界的科技工作者。纵观近期已发表的相关文献,研究的内容包括以下几个方面:(1)新材料静电纺丝的制备,主要包括生物材

纳米科学技术学院

纳米科学技术学院 纳米材料与技术专业人才培养方案 一、专业介绍 苏州大学纳米科学技术学院(College of Nano Science and Technology, CNST)成立于2010年,是苏州大学、苏州工业园区政府和加拿大滑铁卢大学携手共建的一所高起点、国际化的新型学院。学院现有“纳米材料与技术”一个本科专业,本专业拥有“三个唯一”:唯一一个依托首批国家试点学院建设的纳米专业,是聚全院资源集中建设的唯一专业;唯一一个依托首批国家“2011”计划协同创新中心建设的纳米专业,集行业产业资源开展人才协同培养;唯一一个依托江苏省高校品牌专业建设工程项目的纳米专业,面向国家战略性新兴产业发展培养创新人才。 二、培养目标 培养纳米科学与技术领域具有创新思维能力、具备学科交叉优势、拥有国际化视野的创新人才,包括学术创新人才和技术创新人才。毕业生五年后将活跃在纳米材料科学与工程、纳米器件技术、纳米医学等相关领域,从事科

学研究、技术开发或科技管理工作,为国家与区域的战略性新兴产业发展做出贡献。 三、基本培养规格与要求 (1)政治思想和德育方面 热爱社会主义祖国,拥护中国共产党领导,掌握马列主义、毛泽东思想和邓小平理论的基本原理;愿为社会主义现代化建设服务,为人民服务,有为国家富强、民族复兴而奋斗的志向和责任感;具有敬业爱岗、艰苦奋斗、热爱劳动、遵纪守法、团结合作的品质;具有良好的思想品德、社会公德和职业道德。 (2)体育方面 掌握体育和军事基本知识,掌握科学锻炼身体的基本技能,养成良好的体育锻炼和卫生习惯,接受必要的军事训练,达到国家规定的大学生体育和军事训练合格标准,具备健全的心理和健康的体魄,能够履行建设祖国和保卫祖国的神圣义务。 (3)智育方面 掌握人文社会科学和自然科学基本理论知识,掌握纳米材料与技术领域的基础理论、基本技能以及相关的工程技术知识,具有独立获取知识、运用知识、创新知识的基本能力及开拓进取的精神,具有运用科学理论和实验技能

纳米科学概述

纳米科学技术概述 1.研究报告 纳米科技的前景(积极)及可能存在的问题(健康及环境威胁)2. 2008年九大纳米产品简介 啤酒瓶纳米复合材料(食品包装)、纳米防弹衣(军事安全)、纳米电池(电化学)、DNA测试(医学)、纳米等级汽车光泽剂(清洁)、纳米太阳能电池(能源)、金纳米微粒女性试孕纸(生活)、纳米网球(运动)、纳米止血绷带(卫生) 3.介观领域概念 广义及狭义介观领域 4. 纳米科学技术基本概念与内涵 1)纳米:是单位也是思维方式; 2)纳米科学、纳米技术概念; 3)纳米科技的主要研究内容(三个方面)及分支学科; 4)纳米材料含义、分类(按结构、按组成、按应用)及新性质(表、界面效应及影响及其它:见教材Page4-5) 5)纳米科技最终目标; 6)纳米材料与传统材料差别; 7)纳米科技分类: a、纳米材料:主要类型、研究的两个方面

b、纳米器件:含义、特点、纳米技术与微电子技术区别及制造纳米产品技术路线(top-down/bottom up) c、纳米尺度的检测与表征:含义及研究内容、STM及应用实例 5. 纳米科学技术的发展史 1)纳米材料及纳米技术的自然存在: 牙釉质、天体陨石碎片、海洋亚微米胶体粒子;蜜蜂、磁性细菌、鸽子、海龟及螃蟹的磁体微粒;壁虎飞檐走避、莲花效应、蝴蝶翅膀的光子晶体; 2)纳米技术的人工造就: a、无意识的造就 中国墨、古铜镜面、2000年前古希腊及罗马染发及现代模拟、b、有意识的制作 There’s Plenty of Room at the Bottom——Richard Feynman 1861胶体粒子及胶体化学、1932透射电子显微镜TEM、铂超微颗粒催化剂、金属或金属氧化物颗粒的制备及表征(X射线、电子显微镜) c、自觉地(理论)研究 1950-1960电子波函数相干现象、1961久保理论——超微粒子的量子限域理论、1963气体蒸发冷凝法制得纳米微粒及其表征、1973年半导体超晶格及半导体隧道效应 d、系统研究(久保理论日臻完善) 70年代末80年代初,金属颗粒费米面附近电子能及状态的久保

相关文档
相关文档 最新文档