文档视界 最新最全的文档下载
当前位置:文档视界 › (完整版)纳米材料的制备技术及其特点

(完整版)纳米材料的制备技术及其特点

(完整版)纳米材料的制备技术及其特点
(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点

一纳米材料的性能

广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。

二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。

1 物理制备方法

物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。

粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。

高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。

惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。

溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。

等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。

2 化学制备方法

化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到10-4Pa 或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He 从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。

溶胶- 凝胶法是用易水解的金属化合物(无机盐或金属盐)在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化,再经干燥P 烧结等后处理得到所需的材料,其基本反应有水解反应和聚合反应,它可在低温下制备纯度高、粒径分布均匀、化学活性高的单、多组份混合物(分子级混合),并可制备传统方法不能或难以制备的产物。该法又分为醇盐法和非醇盐法。醇盐法是将醇盐制成溶胶,然后把溶剂、催化剂、配合剂等溶胶变成凝胶,最后将凝胶干燥、热处理后获得所需纳米材料。我国清华大学曾庭英等人采用醇盐法制备纳米级微孔TiO2玻璃球,孔径为1.0~6.0nm。水热法是通过高温高压在水溶液或蒸汽等流体中合成物质,再经分离和热处理得到纳米微粒。水热条件下离子反应和水解反应可以得到加速和促进,使一些在常温下反应速度很慢的热力学反应,在水热条件下可以实现快速反应, 依据反应类型不同分为: 水热氧化、还原、沉淀、合成、水解、结晶等, 该法制得的纳米粒子纯度高、分散性好、晶形好且大小可控。郭景坤等人采用高压水热处理,将化学制得的Zr(OH)4胶体置于高压釜中,控制合适的温度和压力,使氢氧化物进行相变,成功地得到了10~15nm 的形状规则的ZrO2超微粒。

化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物, 使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。直接沉淀法是指金属离子与沉淀剂直接作用形成沉淀。均匀沉淀法是指通过预沉淀剂在溶液中的反应缓慢释放出沉淀剂,再与金属离子作用形成沉淀。醇盐水解法是由金属醇盐遇水分解成醇和氧化物或其水合物沉淀。共沉淀法是在混合的金属盐溶液中添加沉淀剂得到多种成份混合均匀的沉淀,然后进行热分解得到纳米微粒。由于冷冻干燥过程冷冻液体并不进行收缩,因而生成的微粒表面积较大,可较好地消除粉料干燥过程中粉末团聚现象,目前该法已制备出MgO-ZrO2 及BaPb-xBixO3 超微粒子。

三纳米技术的应用展望

纳米技术的应用可归纳如下几个方面:

1 纳米材料在机械方面的应用

纳米碳管是目前材料领域最引人关注的一种新型材料。纳米碳管是由碳原子排列成六角网状的石墨薄片卷成具有螺旋周期的多层管状结构,直径1 ~30nm,长度为数微米左右的微小管状结晶。科研人员在对纳米碳管的研究过程中发现,纳米碳管具有很高的扬氏模量、强韧性和高强度等力学性能。因此将其用于金属表面复合镀层,可获得超强的耐磨性和自润滑性,其耐磨性要比轴承钢高100倍,摩擦系数为0. 06 ~0. 1。此外,纳米碳管材料复合镀层还具有高热稳定性和耐腐蚀性等优异性能。利用纳米碳管的高耐磨性、耐腐蚀性和热稳定性,可用其制造刀具和模具等,不仅能够延长使用寿命,还可提高工件的加工精度,为机械工业带来巨大效益。纳米碳管还具有高效吸收性能,可用其制造保鲜除臭产品。利用纳米碳管吸取氢分子的性质,可将氢分子储存在纳米碳管内,制成十分安全的氢吸留容器,这对于研制氢动力燃料电池汽车具有极大的实用价值。这种氢吸留容器可以储存相当于自重7% 的氢,汽车使用一个可乐瓶大小的氢吸留容器,就可以行驶500km。

2 纳米材料在电子方面的应用

随着纳米技术研究的不断发展,人们已考虑运用纳米技术制造电子器件,以使电子产品体积进一步缩小,而其性能更加出类拔萃。利用纳米碳管可自由变化的电器性质及“量子效应”现象,可将目前集成电路的元器件缩小100倍,研制出高速、微小、节能的新一代电脑。

目前的电视机和计算机显示器采用的电子显像管,是在真空中释放电子撞击荧光体后发光,由于发射电子的电子枪与荧光屏之间必须保持一定距离,显示器体积较大。此外,加热电子枪要消耗大量电能。而利用纳米碳管取向排列制成的场发射电子源具有较大的发射强度,可在低电压下释放电子,在荧光屏上激发出图像,为制造纯屏超薄节能大型显示器提供了新选择,且其性能大大优于液晶显示器。运用复合纳米碳管材料制成光电转换薄膜,应用于太阳能电池,可使现有的太阳能电池的效率提高3倍;将纳米碳管应用于锂离子电池的负极材料,有望大大提高其贮锂量。以色列科学家在硅片上覆盖惰性材料单分子膜,使用原子显微镜和电子针的“分子刻痕”技术激活膜层分子,通过电子化学反应控制分子级信息载体,存储文本、图像、音乐等数据信息。这些信息可在原子显微镜下被复读,利用电子计算机解码还原,这项技术可用于开发更大储存量的纳米超级存储器。将图书馆的全部数据储存在一块方糖大小的芯片上,是近期科研人员的主攻课题。如果能够巧妙应用微机械技术和自组织方法,以一个原子或分子制成存储器,就可实现这一目标。

3 纳米技术在医学方面的应用

对付癌症的“纳米生物导弹”。专家们采用一种非常细小的磁性纳米微粒,把它运用到一种液体中,然后让病人喝下去,通过操纵,可使纳米微粒定向“射”向癌细胞,把它们“全歼”,并且不会破坏其他正常细胞。治疗血管疾病的“纳米机器人”。用特制超细纳米材料制成的机器人, 可注入人体血管内, 进行健康检查,疏通脑血管中的血栓,爆破肾结石,清除心脏动脉脂肪积淀物,完成医生不能完成的血管修补等“细活”。运用纳米技术,还能对传统的名贵中草药进行超细开发,同样服用一剂药,经过纳米技术处理的中药,可让病人极大地吸收药效。

4 纳米技术在军事方面的应用

“麻雀”卫星。这种卫星比麻雀略大,重量不足10千克,具有可重组性和再生性,成本低,质量好,可靠性强。

“蚊子”导弹。利用纳米技术制造的形如蚊子的微型导弹,可以起到神奇的战斗效能。纳米导弹直接受电波遥控,可以神不知鬼不觉地潜入目标内部,其威力足以炸毁敌方火炮、坦克、飞机、指挥部和弹药库。

“苍蝇”飞机这是一种如同苍蝇大小的袖珍飞行器,可携带各种探测设备,具有信息处理、导航和通信能力。其主要功能是秘密部署到敌方信息系统和武器系统的内部或附近,监视敌方情况。这些纳米飞机可以悬停、飞行,敌方雷达根本发现不了它们。

“蚂蚁士兵”这是一种通过声波控制的微型机器人。这些机器人比蚂蚁还要小,但具有惊人的破坏力。它们可以通过各种途径钻进敌方武器装备中,长期潜伏下来。一旦启用,这些“纳米士兵”就会各显神通:有的专门破坏敌方电子设备,使其短路、毁坏; 有的充当爆破手,用特种炸药引爆目标; 有的施放各种化学制剂,使敌方金属变脆、油料凝结或敌方人员神经麻痹、失去战斗力。

此外,还有被人称为“间谍草”或“沙粒坐探”的形形色色的微型战场传感器等纳米武器装备。所有这些纳米武器组配起来, 就建成了一支独具一格的“微型军”。纳米武器的出现和使用,将大大改变人们对战争力量对比的看法。

纳米技术还具有很高的电磁波吸收系数,将纳米材料加入飞机、坦克中,用以吸收雷达波,于是隐形飞机、隐形坦克问世了。隐形武器在战场上神出鬼没,出现于战场的不同角落。

5 纳米技术在环保方面的应用

随着纳米技术的悄然崛起,纳米环保也会迅速来临,拓展人类利用资源和保护环境的能力。当物质被“粉碎”到纳米级细粒并制成“纳米材料”,不仅光、电、热、磁发生变化,而且具有辐射、吸收、催化、吸附等许多特性,给环境保护带来突破性变化。污水处理纯净化。新型的纳米级净水剂具有巨大的比表面积,因而吸附能力非常强,可将污水中的悬浮物和

铁锈、异味等污染物除去。通过纳米孔径的过滤装置,还能把水中的细菌、病毒去除。经过纳米净化后的水体清澈,没有异味,成为高质量的纯净水,完全可以饮用。并且纳米材料具有非常强的紫外光吸收能力,因而具有非常强的光催化能力,可快速将吸附在其表面的有机物分解掉。尾气排放无害化。一方面, 纳米材料的高催化效率,可以帮助煤充分燃烧,提高能源的利用率,防止有害气体的产生。另一方面,高质量的碳纳米材料,能储存和凝聚大量的氢气。而氢能是取之不尽、用之不竭的清洁能源,只因为储存等方面的问题制约着氢能的开发利用。利用碳纳米材料的高储氢能力,可以做成燃料电池驱动汽车,有效避免因机动车尾气排放所造成的大气污染。当机器设备等被纳米技术微型化后,所需资源将大大减少,可实现资源利用的持续化。并且微型化机械其互相撞击、摩擦产生的交变机械作用力将大为减少,噪声污染便可得到有效控制。

6 纳米材料在纺织物方面的应用

根据纳米粒子的微观结构和光谱特性,将其应用于纺织物中,可制造出各种功能性纺织物。经分散处理或抗氧化处理的纳米粒子与粘胶纤维相混后,在一定条件下可以喷成功能性粘胶纤维,该功能性粘胶纤维再与棉纱等混纺,可织成各种功能性纺织物,如抗紫外线、抗可见光、抗电磁波以及通过红外吸收原理可以改善人体微循环等功能性纺织物。我国利用纳米技术已制成不粘水和油污的纺织物。

7 纳米技术在其他方面的应用

纳米技术还可渗透到其他各个方面。例如,近年来有关高频电磁场对人体健康的影响问题已众所周知,可现在我们再也不用为防电磁辐射而担忧。若在强烈辐射区工作并需要电磁屏蔽时,可以在墙内加入纳米材料层,或者涂上纳米涂料,能大大提高遮挡电磁波辐射能力。纳米涂料还可用来保护文物,使其颜色不变、材质不腐坏。利用纳米材料的超疏水性和超疏油性,可制作免洗服装,这种服装不仅有自清洁功能,还有抗菌性能。彩电等家电一般被称为黑色家电,这是因材料中需加入碳黑进行静电屏蔽。而利用可静电屏蔽的纳米涂料,黑色家电将变成彩色家电,利用碳纳米管的强度高、重量轻的性质,把它做成太空升降机的缆绳,人类到外太空旅行将是一件轻而易举的事情。由于纳米机器人能直接操作移动单个原子、分子,而物理世界的一切均是由原子构成的,因此原则上纳米机器人能制造从苹果到飞机等任何东西。比如钻石具有极高的透明度和超级强度,是理想的建筑材料,而构成钻石的基本原料却是普通的碳原子。因此用纳米机器人能制造出钻石,其价格将同玻璃一样便宜。

参考文献

[1]张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2001.146.

[2]Ledenstor N N, Crystalline growth characteristics[ J ]. Mater Prog, 1998, (35) : 289.

[3]刘学东,卢柯,丁炳哲等. 纳米相的晶格畸变[ J ] 科学通报,1994, (39) : 217 ~219.

[4]齐民,杨大智,朱敏. 机械合金化过程的固态相变[ J ]. 功能材料, 1995, (26) : 472 ~ 475.

[5]H Gleitet In deformation of polycrystals : mechanisms and

mi_crostruetures[M]London:Roskilde R is National Lab,1981.

[6] R W Siegel, H Hahn. In crrent trends in the physics of materials[M ]. Singapore:World

Scientific. 1987.

(完整版)离散数学作业答案一

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、 数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1 .命题公式P (Q P)的真值是T或1 ______ . 2?设P:他生病了,Q:他出差了. R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P V Q)-R 3. ____________________________________________________________ 含有三个命题变项P,Q,R的命题公式P Q的主析取范式是__________________ _(P Q R) (P Q R)_ 4. 设P(x): x是人,Q(x): x去上课,则命题“有人去上课.” 可符号化为— x(P(x) Q(x))_ 5. 设个体域D = {a, b},那么谓词公式xA(x) yB(y)消去量词后的等值式为 (A(a) A(b)) (B(a) B(b))_ 6 .设个体域D = {1,2, 3},A(x)为“x大于3”,则谓词公式(x)A(x)的真值为F 或0 ________________ . 7.谓词命题公式(x)((A(x) B(x)) C(y))中的自由变元为 ________ . 8 .谓词命题公式(x)(P(x) Q(x) R(x,y))中的约束变元为x _______ . 三、公式翻译题 1 .请将语句“今天是天晴”翻译成命题公式

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

小学四年级寒假作业答案完整版

精心整理 小学四年级寒假作业答案完整版 【练习一】 1.判断题 ) (10)√(没有空气传播) 2.不能溶解的物质是:面粉、油菜、土块 3.小实验

提示:做小实验时尽量多放点食盐,选择的瓶子也尽量小瓶口,这样观察结果会明显些。 结果说明:食盐量多,瓶口小,则水面上升明显些;食盐量少,瓶口大,则水面上升不明显,但原理上也是增加的,水面也是会上升的。 3.小实验 (1)自制吹管乐器原理说明 试管:水位低,试管震动快,发出声音高。反之,水位高,试管震动慢,发出声音低。(图上所示应该是音高音低)

吸管:空气柱短,振动快,发出声音高;空气柱长,振动慢,发出声音低。(图上所示应该是音高音低) (2)小活动 盐水升温灯泡变亮,盐水降温灯泡变暗。原因是盐水升温加快分 (3)×好吃的食物营养不一定丰富。比如:肯德基 (4)√ (5)√ 2.选择题

(1)A(2)C(3)B(4)A 3.小资料:跟日常饮食很有关系,希望多去了解了解。 4.调查生活中岩石的用途 如铺路;筑坝;筑成石屋、围墙或做其它建材;做摆设或配饰; 这里提供的5条浙江民间气象谚语读读背背默默。 语文书三年级下册语文园地六P104,四年级下册语文园地三P50,共有11条学过的气象谚语,翻翻看看,读读背背,默写整理在表格中。

【练习五】 1.判断题 (1)√ (2)√ 成。 ) 燕草,霞草等等。 表格举例如下:荷花粉红叶盾圆形香大17112 忍冬白或黄合瓣二唇形清香中515 野百合白离瓣清香中613

4.小实验观察记 记录说明: 植物的叶子具有向阳性,后来的几天观察应该会发现:幼苗向着开口处生长。 3.观察与比较 蝴蝶和蜘蛛在身体特征上的异同点 蝴蝶①身体分头、胸、腹三部分 ②头上有两对触角,虹吸式口器

纳米材料习题答案

纳米材料习题答案 1、简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。 2、什么是原子团簇谈谈它的分类。 3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管如何计算单壁碳纳米管直径 答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。 100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。 单臂管的直径d与特征拉曼峰的波数成反比,即d = 224/w d:单壁管的直径,nm;w:为特征拉曼峰的波数cm-1

4、论述碳纳米管的生长机理(图)。 答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。 (1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。 ①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移; ②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端; (2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。 ①表面扩散机理:用苯环坐原料来生长碳纳米管,如果苯环进入催化剂内部,会被分解而产生碳氢化合物和氢气同时副产物的检测结果为只有氢气而没有碳氢化化物。说明苯环没有进入催化剂液滴内部,而只是在催化剂表面脱氢生长,也符合“帽式”生长机理。 5、论述气相和溶液法生长纳米线的生长机理。 (1)气相法反应机理包括:V-L-S机理、V-S机理、碳纳米管模板法、金属原位生长。 ①V-L-S机理:反应物在高温下蒸发,在温度降低时与催化剂形成低共熔液滴,小液滴相互聚合形成大液滴,并且共熔体液滴在端部不断吸收粒子和小的液滴,最后由于微粒的过饱和而凝固形成纳米线。 ②V-S机理:首先沉底经过处理,在其表面形成许多纳米尺度的凹坑蚀丘,这些凹坑蚀丘为纳米丝提供了成核位置,并且它的尺寸限定了纳米丝的临界成核直径,从而使生长的丝为纳米级。 ③碳纳米管模板法:采用碳纳米管作为模板,在一定温度和气氛下,与氧化物反应,碳纳米管一方面提供碳源,同时消耗自身;另一方面提供了纳米线生长的场所,同时也限制了生成物的生长方向。 ④金属原位生长: (2)溶液法反应机理包括溶液液相固相、选择性吸附。 ①S-L-S机理:SLS 法和 VLS 法很相似,二者的主要差别在于 SLS 法纳米线成长的 液态团簇来源于溶液相,而 VLS 法则来自蒸气相。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

大学英语作业答案完整版

Exercises 1.When and where shall we ___A____. A.meet B. met C. to meet D. meeting A.You __D_____show more respect for your elders. A.can B. could C. would D. must 3. It is necessary that I ___D____ return the books to him tomorrow. A. will B. can C. may D. should 4. She __B_____ to school by school bus at eight in the morning. A. go B. goes C. went D. gone 5. What __C_____the notice say? A. is, say B. is, said C. did, say D. does, say 6. I’ll tell her after Ruby __B____. A. leave B. leaves C. left D. is leaving 7. We __D_____ the result tomorrow. A. know B. knew C. has known D. will know 8. On November 1 we __D_____ in this house for thirty years. A. live B. will have C. are living D. will have been living 9. It __B_____ to rain soon. A. is B. is going C. will D. shall 10. Mary ___C_____ a dress when she cut her finger.

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

部编人教版小学四年级语文下册第二单元第7课《纳米技术就在我们身边》课后作业及答案(含两套题)

部编人教版小学四年级语文下册第二单元第7课 《纳米技术就在我们身边》课后作业及答案 一、读句子,用“√”给加点字选择正确的读音,根据拼音写词语。 1.纳米技术在我们身边。bīng xiāng()里面用到一种纳米涂层,具有杀菌.(jūn jǔn)和除臭.(chòu xiù)的功能;还有一种叫作“tàn()纳米管”的神奇 cái liào(),比钢管结实百倍。 2.纳米技术可以让我们更加jiàn kāng()。如果在只有几个癌细胞.(bāo pāo)的时候就能发现的话,死亡率.(lù lǜ)会大大降低,实现疾.(jī jí)病的早期检测和yù fáng()。 3.那个亿.(yí yì)万富翁没有yōng bào()孩子,他把情感yǐn cáng()在了内心深处。 二、照样子,写一写。 示例:匡框(画框)(门框) 才______()()方______()() ______()() ______()()建______()()包______()() ______()() ______()() 三、根据要求完成练习。 1.“鲜”用部首查字法,应该查______部,再查______画。“鲜”字的解释有:①新鲜;②鲜美;③(花朵)没有枯萎;④鲜明。在“鲜嫩”中应选第______种意思。在“鲜艳”中应选第______种意思。

2.给下列句中的“直”选择恰当的解释。 直:①公正的,正义的;②一个劲儿,不断地;③成直线的(跟“曲”相对);④一直,径直,直接 (1)他看着我直.笑,让我觉得有点莫名其妙。() (2)未来的纳米机器人,甚至可以通过血管直.到病灶。()(3)他理直.气壮地说:“凭什么让我认错呢!”() 四、选词填空。 深厚深重深刻 1.纳米技术将给人类的生活带来()的变化。 2.这一时期,民族危机和社会危机空前()。 3.这一带是老根据地,群众基础非常()。 五、选择下列句子运用的说明方法。 A.列数字 B.作比较 C.举例子 D.下定义 1.纳米技术就是研究并利用这些特性造福于人类的一门学问。() 2.未来的纳米缓释技术,能够让药物效力缓慢地释放出来,服一次药可以管一周,甚至一个月。() 3.有一种叫作“碳纳米管”的神奇材料,比钢铁结实百倍,而且非常轻。() 4.前肢越来越长,能像鸟翼一样拍打。() 六、下列对课文内容的理解有错误的一项是() A.这是一篇说明文,向读者介绍了正在兴起的高新技术——纳米技术。 B.在介绍纳米技术的应用的时候,作者是从三个方面来介绍的。

纳米材料的一种制备方法

固液界面反应一水热晶化法制备二氧化锡纳米颗粒 一、简介 水热晶化法: 水热晶化法是合成无机纳米材料广泛采用的一种方法,装置简单,只需衬有聚四氟乙烯内胆的高压釜和加热设备(例如鼓风烘箱、油浴锅等)即可。在高温与溶剂自生高压的条件下,体系能够模拟自然界的成矿过程。水热晶化法的特点是适用范围广,可以用来制备各种金属氧化物、硫化物、磷酸盐等无机纳米材料。生产成本低,合成的材料纯度高,结晶度好。可以通过调节溶剂、物料配比、体系的pH值、有机添加剂等参数达到对粒径、形貌、结构的控制。 二氧化锡纳米材料的制备也常常运用水热晶化法。Chiu等人使用2-propanol 与蒸馏水作为混合溶剂,SnCl4?5H2O为锡源,在碱性条件下(pH=12)水热合成了3nm的SnO2纳米颗粒。Guo等人使用水热晶化法,通过调节SnCl4和NaOH的摩尔比,即体系的pH值,控制合成出空心微球、中空核-壳微球和纳米颗粒三种形态的二氧化锡。水热过程中,不同的结构导向剂也能控制二氧化锡的形貌结构。例如,Guo等人同样使用SnCl4玩为锡源,在CTAB模板剂的作用下,水热获得了棒状纳米二氧化锡。而Han等人换用环六亚甲基四胺作为结构导向剂,依旧使用SnCl4作为锡源,水热合成了核-壳结构的二氧化锡微球。Sun等人使用PVP(MW=30000)作为结构导向剂,并换用SnC12?2H2O作为锡源,双氧水预处理后,水热获得了蒲公英状二氧化锡。 在各种结构导向剂中,油酸分子由于能在颗粒表面选择性吸附,从而可以有效地引导各种结构的形成,并对纳米微粒起到稳定保护作用。 固液界面反应: 在纳米材料的制备过程中,通常会发生氧化、水解、沉淀等各种化学反应。利用在两相界面发生的化学反应来控制材料的合成引起了一定的关注。Kang等人利用水相与油相界面Sn2+的氧化反应制备出了不同粒径大小的二氧化锡纳米材料。由于水-油界面的存在,产物的结晶度比较高,尺寸分布也较窄。Deng等人使用PVP(MW=30000)作为保护试剂,乙二胺作为催化剂,过氧化氢作为氧化剂,室温下,利用单质锡块与水的界面发生的氧化反应,获得了由约3.8nm的纳米晶自组装形成的纳米球。纳米球的直径约为30nm,且具有良好的分散性。Wang 等人基于liquid-solid-solution(LSS)相转移原理合成了一系列纳米材料,其实也利用了界面间的化学反应。在这些利用界面反应控制纳米材料合成的文献中,有些纳米材料的制备其实也运用了水热晶化过程,综合利用了界面反应与水热晶化两者在材料控制合成方面的优势。 金属油酸盐是一种合成无机纳米材料比较理想的有机前驱物,它不能溶解于水或一些低碳醇(如乙醇)中,而会形成固液界面相。对于油酸锡而言,它又易发生水解反应。所以在本章中使用油酸锡作为锡源,利用固液界面反应-水热晶化过程来制备二氧化锡纳米材料。并且在油酸锡的水解过程中,可生成目前较受关注的油酸表面修饰结构导向剂。 二、实验步骤 所有原料均未作任何纯化处理,直接使用。首先,10mL去离子水中溶解

纳米材料与技术作业

纳米材料与技术作业 1.纳米材料按维度划分,可分为几类? (1) 0维材料quasi-zero dimensional—三维尺寸为纳米级(100 nm)以下的颗粒状物质。 (2) 1维材料—线径为1—100 nm的纤维(管)。 (3) 2维材料—厚度为1 — 100 nm的薄膜。 (4) 体相纳米材料(由纳米材料组装而成)。 (5)纳米孔材料(孔径为纳米级) 2. 详细说明纳米材料有那几大特性?这几大特性的特点是什么?为什么纳米材料具有这些特性? (1) 表面效应:我们知道球形颗粒的比表面积是与直径成反比的,故颗粒直径越小,比表面积就会越大,因此,纳米颗粒表面具有超高的活性,在空气中金属颗粒会迅速氧化而燃烧,也正是基于表面活性大的原因,纳米金属颗粒可以看成新一代的高效催化剂,储气材料和低熔点材料; (2) 小尺寸效应:随着颗粒尺寸的量变会引起颗粒宏观物理性质的质变。特殊的光学性质:所有的金属在超微颗粒状态都呈现为玄色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等;特殊的热学性质:固体颗粒在超微细化后其熔点将明显降低,当颗粒小于10纳米量级时尤为明显;特殊的磁学性质:超微的磁性颗粒可以使鸽子、海豚等生物在微弱的地磁场中辨别方向,利用磁性超微颗粒具有高矫顽力的特性,可以做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等;利用超顺磁性,可以将磁性超微颗粒制成用途广泛的磁性液体;特殊的力学性质:由于纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很轻易迁移,因此表现出甚佳的韧性与一定的延展性。 (3)宏观量子隧道效应:处于分子、原子与大块的固体颗粒之间的超微纳米颗粒具有量子隧道效应,例如:在知道半导体集成电路时,当电路的尺寸接近电子的波长时,电子就会通过隧道效应溢出器件,使器件无法正常工作。 3.半导体纳米材料光催化特性产生的原因是什么?为什么一些半导体纳米材料的光催化特性要远远好于非纳米结构的半导体材料? (1)光催化特性是半导体具有的独特性能之一,在光的照射下,半导体价带中的电子跃迁到导带,从而价带产生空穴,导带中产生电子。空穴具有很强的氧化性,电子具有很强的还原性;(2)光激发和产生的电子和空穴可经历多种变化途径,其中最主要的分离和符合这两个相互竞争的过程,因此为了提高催化效率,需要加入电子或者空穴捕获剂,纳米半导体材料相比于一般的半导体材料具有更大的比表面积,因此具有更好的催化效果。 4.详细说明零维纳米材料具有哪些优良的物理化学特性?产

(完整版)机织学作业答案

4.什么是投梭力、投梭时间? 答:投梭力一般用投梭动程表示,投梭动程是指织机由静止状态被人工缓缓转动其主轴,皮结推动梭子移过的距离。 投梭时间指的是:织机运转中,投梭转子与投梭鼻开始接触时主轴的位置角。 5. 有梭织机制梭的要求是什么?制梭有哪几个阶段? 答:答:有梭织机制梭的要求是:(1)梭子定位良好,不宜紧贴皮结,也不宜远离皮结;(2)制梭动作要缓和,以免产生脱纬;(3)制梭装置各部件负荷均匀,减少机物料消耗;(4)制梭噪音低。 制梭过程可分为三个阶段: (1)梭子进梭箱,与制梭铁斜碰撞制梭:斜碰撞使梭子速度下降1%,但制梭铁获得能量,向外甩出,与梭子脱离,对摩擦制梭,吸收梭子动能不利,这一制梭过程的作用是极有限。 (2)制梭铁及梭箱前板对梭子摩擦制梭:制梭铁外甩后重新压紧梭子,梭子移动受到摩擦制动,吸收梭子动能。 (3)皮圈在皮圈架上滑行的摩擦制梭及三轮缓冲装置制梭:一方面,梭子撞击皮结,皮结撞击投梭棒,投梭棒撞击皮圈,使皮圈产生拉伸变形吸收梭子动能;另一方面,投梭棒带动三轮缓冲装置,产生扭转和扭簧变形吸收梭子动能。 制梭过程起主要作用的是第三阶段,梭子的大部分动能为皮结、皮圈和三轮缓冲装置所吸收。 7.常见的无梭引纬的方式有哪几种? 答:片梭、剑杆、喷气、喷水引纬。 10.剑杆引纬的品种适应性及特点如何? 答: ?最高入纬率:1000m/min; ?最大织机幅宽:4600(mm); ?多色纬功能:8-16色; ?积极引纬,对纬纱握持良好,低张力引纬,适合强捻纬纱织造,抑制纬 缩疵点。

?适用纱线:多种纤维的长丝及短纤纱,适用于花式纱,变形纱及弱捻低 强纬纱(运动规律的可设计性)。 ?适用织物:细布,府绸,卡其类,多色纬织物,花式纱,复合纱的厚重 织物,特种工业用,精纺毛织物,毛圈织物,劳动布,割绒,双层,多 层织物。 14.何谓喷气接力引纬?单喷嘴引纬系统与多喷嘴引纬系统的工作原理有何不同? 答: ?接力引纬:在喷气引纬中,除主喷嘴外,在筘座上增设一系列辅助喷嘴,沿纬纱方向相继喷气,纬纱头端气流不断得到补充,这种引纬方式称为接力引纬。 ?单喷嘴与多喷嘴的不同: ?单喷嘴:完全只靠一只喷嘴喷射气流来牵引纬纱,气流和纬纱是在若干 片管道片组成的管道中行进的,从而大大减少了气流扩散。但纬纱飞行 一段时间后,气流头端速度减慢,而尾端喷嘴处仍很快,纬纱经一段距 离后浮动、成圈,纬纱前端速度小于后端速度,造成“前拥后挤”现象。 ?主喷嘴+辅助喷嘴:在筘座上增设了一系列辅助喷嘴,沿纬纱方向相继喷 气,补充高速气流,实现接力引纬,纬纱头端始终收到高速气流的牵引 (避免弯曲)。 16.对比管道片和异性筘多喷嘴引纬系统的应用性能有何不同? 答:管道片引纬系统采用管道片组成管道防止气流扩散,在管道片的径向开有脱纱槽,以便引纬完成后,纬纱从管道片中脱出留在梭口中,管道片之间还要留有间隙以容纳经纱。管道片防气流扩散效果好,节约能源,使用的是常规钢筘,但管道片在经纱中反复作用,对经纱干扰重,限制了纬纱飞行时间,布面质量差;因其筘座动程大,不适应高速织机。由于管道片具有一定厚度,且为有效地防止气流扩散紧密排列,这就难以适应高经密织物的织造。 异形筘是一种带有凹槽的特殊筘齿的钢筘,引纬时筘槽必须位于梭口中央,打纬时织口接触筘槽上部。异形筘防气流扩散效果不如管道片好,耗能较大,使

纳米材料作业

四川大学 功能材料课程综述 题目:纳米材料 专业:化学工艺 姓名:王南南 学号: 2014223070047

纳米材料 摘要由于纳米材料的特殊结构以及所表现出来的特异效应和性能, 使得纳米材料具有不同于常规材料的特殊用途。本文就纳米材料的性质,制备方法及应用进行了综述, 并对其发展前景进行了展望。 关键词纳米材料性质制备方法应用 Nanometer materials Abstract Due to the special structure of nanomaterials and demonstrated specific effects and performance, making nanomaterials different from conventional materials for special purposes. In this paper, the nature, preparation and application of nano-materials were reviewed, and the prospects of its development prospects. Keyword nanometer materials property preparation method application 前言 20世纪90年代见证了一场新的科技革命——纳米科技的发展。它以空前的分辨率为人们揭示了一个可见的原子、分子世界,它的最终目标是直接以原子和分子来构造具有特定功能的产品。这种精确操控原子、分子构筑材料的能力将会使制造业、农业、能源、医药健康,国家安全等领域取得突破性的进展。那么,这篇文章会概况的介绍一下纳米材料的相关知识,主要有,纳米材料的定义和性质,制备技术,典型的纳米材料,纳米材料的应用及其发展前景。 1 纳米的相关概念和性质 1、1纳米的相关概念 纳米(Nano-meter)希腊语“侏儒”“矮子”。其数学尺度为 1 nm=10- 9m=10 埃。举个简单的例子头发直径大概为50-100 m,而1 nm相当于头发的1/50000。再比如氢原子的直径为1埃,所以1纳米等于10个氢原子一个一个排起来的长度。纳米材料就是在纳米基础上发展起来的一门新兴学科,把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料[1]。它是指三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本

离散数学作业答案完整版

离散数学作业答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

离散数学集合论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数 理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题 目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识 点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地 完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答 过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在03任务界 面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)- A B P(B )={{3},{1,3},{2,3},{1,2,3}},A? B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} . 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} ∈ y x∈ y < > = {B , , x , 2 y A x 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素{,} ,则新得到的关系就具有对 称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自反闭 包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>} . 二、判断说明题(判断下列各题,并说明理由.)

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米材料的制备与合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (1) 1.1纳米粉体的湿化学法制备 (1) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (2) 1.2.2溅射法 (2) 1.2.3真空蒸镀法 (2) 1.2.4等离子体方法 (3) 1.2.5激光诱导化学气相沉积法(LICVD) (3) 1.2.6爆炸丝方法 (3) 1.2.7燃烧合成法 (3) 1.3纳米薄膜的化学法制备 (4) 1.4纳米单相及复相材料的制备 (4) 2纳米材料的物理法制备 (5) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (5) 2.2纳米粉体的高能机械球磨法制备 (5) 2.3纳米晶体非晶晶化方法制备 (6) 2.4深度塑性变形法制备纳米晶体 (6) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (6) 2.6纳米薄膜物理气相沉积技术 (6) 3纳米材料的应用展望 (7) 4 总结 (7) 参考文献 (8)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。[1] 纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。 1纳米材料的化学制备 1.1纳米粉体的湿化学法制备 湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。 上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错

相关文档