文档视界 最新最全的文档下载
当前位置:文档视界 › 高分子材料的等离子体表面处理

高分子材料的等离子体表面处理

高分子材料的等离子体表面处理
高分子材料的等离子体表面处理

高分子材料的等离子体表面处理

摘要

阐述了等离子体表面改性技术的作用原理, 总结论述了等离子体对高聚物表面作用的几种理论, 经低温等离子体处理的高分子材料表面发生多种物理和化学变化,重点介绍了低温等离子体在医用高分子材料、合成纤维材料、薄膜材料中的研究概况和进展。

关键词: 等离子体; 表面改性; 高分子材料;

0 引言

高分子聚合物材料同金属材料相比具有许多优点, 如密度小、比强度和比模量低、耐蚀性能好、成型工艺简单、成本低廉、优异的化学稳定性、热稳定性好、卓越的介电性能、极低的摩擦系数、良好的润滑作用及优异的耐候性等, 因此广泛应用于包装、印刷、农业、轻工、电子、仪表、航天航空、医用器械、复合材料等行业[1]。但其应用范围和使用效益往往会受到表面性能的制约,因此常常需按使用目的改善或变换其表面性能,如材料或部件的粘着性,高分子膜的印刷性、透过性等。

1 高分子材料的表面改性

高分子材料的各种表面性能的获得取决于材料的表面结构和相关的界面特性,所以高分子材料的界面物性控制是非常必要的。

图1 界面物控技术内容及应用领域

图1所示为界面物性控制技术的内容和相关的应用领域。为了使高分子材料适合各种应用需要,大体上有两类作法。一类是利用各种表面改性技术产生一个新的表面活性层,从而改变表面、界面的基本特性。另一类作法是借助功能性薄膜或表面层形成技术在原表面上敷膜。这两种作法的目的都是为了使材料具有或同时具有几种表面性能。为此,人们研究开发了许多种可供利用的表面处理技术。诸如化学湿法处理,利用电子束或紫外线的干式处理,利用表面活性剂的添加剂处理以及采用真空蒸渡的金属化处理等。本论文主要介绍的等离子体表面处理是利用低压气体辉光放电的干式处理技术。既能改变表面结构,控制界面物性,也可以按需求进行表面敷膜。在塑料、天然纤维、功能性高分子膜的表面处理方面有着巨大

的应用潜力。

2 等离子体表面改性

近年来,随着等离子体技术的不断发展,利用等离子体进行表面改性已成为研究的热点[2 ]。

2.1等离子[1,2]

等离子体是在特定条件下使气( 汽) 体部分电离而产生的非凝聚体系。它由中性的原子或分子,激发态的原子或分子;自由基;电子或负离子, 正离子以及辐射光子组成。体系内正负电荷数量相等, 整个体系呈电中性。它有别于固、液、气三态物质,被称作物质存在的第四态,是宇宙中绝大多数物质的存在状态。实验室中获得等离子体的方法有热电离法,激波法,光电离法,射线辐照法以及直流、低频、射频、微波气体放电法等。

等离子体一般可分为两种:高温等离子体和低温等离子体。用于高分子材料表面改性的一般为低温等离子体。

2.2低温等离子体的特点[1~3]

实验室中常采用10-3~1 torr 气压的气体射频放电获得等离子体。气体电离度一般为10-6左右, 也就是说大约每1, 000, 000个中性原子或分子中含有一个带电粒子, 带电粒子密度n e ~n + ≈109~1012cm -3。带电粒子在射频电场中被加速, 用温度来表示不同种类粒子群的平均动能: ∈= 3/2kT , k 为玻尔兹曼常数。电子质量最轻, 其温度高达104K 以上;离子,自由基,中性原子或分子等重粒子的温度接近或略高于室温。据此称这种等离子体为低温等离子体。低温等离子体一方面具有足够高能量的活性物种使反应物分子激发、电离或断键, 另一方面不会使被处理材料热解或烧蚀,在改性高分子材料表面上具有独特的应用价值。

2.3低温等离子体与高分子材料表面的相互作用

低温等离子体中的活性粒子具有的能量一般都接近或超过碳-碳或其他含碳键的键能,因此等离子体完全有足够的能量引起聚合物内的各种化学键发生断裂或重新组合。 表1 低温等离子体中基本粒子的能量范围和一些化学键的键能(eV )

等离子体撞击材料表面时,除了将自身的能量传递给材料表层分子外,还可能引起表面刻蚀,使表面吸附的气体或其他物质的分子发生解析;部分粒子也可能发生自溅射,一些粒子特别是电子、亚稳态粒子有可能贯穿材料内部,贯穿深度可达5~50nm ;材料内部分子受撞击后,引起电子层受激发产生电子跃迁,同时引起溅射和辐射;浅表层的电子也可能逃逸到材料表面以外的空间。

等离子体中活性粒子与高分子材料表面进行各种相互作用:[9]

一种是利用非聚合性无机气体( Ar, N 2 , H 2 , O 2 等) 的等离子体进行表面反应,参与表面反应的有激发态分子、自由基和电子离子,也包括等离子体产生的紫外光的辐射作用。通过表面反应有可能在表面引入特定的官能团,产生表面侵蚀,形成交联结构层或生成表面自由基。另一种作用是在表面沉积薄膜,其中主要的是利用聚合性有机单体的等离子体聚合法在材料表面被覆聚合膜。有时也可采用PCVD 法乃至溅射制膜,如塑料表面的金属化处理。低温等离子体中基本粒子的能

量范围 电子 离子 亚稳态粒子 紫外光/可见光 0~20

0~2 0~20 3~40 化学键的键能

C-H

C-C C-N C-F 4.3

3.4 2.9

4.4 C=O

C-Cl C=C C≡C 8 3.4 6.1 8.4

等离子体对高分子材料表面的作用有许多理论解释,如表面分子链降解理论、氧化理论、氢键理论、交联理论、臭氧化理论以及表面介电体理论等,但其对聚合物表面发生反应机理可概括为三步[10]:

(1)自由电子在高电压电场中被加速而获得较高动能,运动时撞击到其他分子。被撞分子获得部分能量被激发而具有活性。

(2)激发态分子不稳定,分解成自由基或电离成离子。

(3)自由基或离子在高分子表面反应时,形成致密的交联层;等离子体与存在的气体或单体发生聚合反应,沉积在聚合物表面形成具有可设计的涂层;等离子体与表面自由基或离子发生反应形成改性层。

等离子体对材料表面的作用大致有4种:清除表面杂质;表面刻蚀;表面交联和形成具有新化学结构的表面[11,12]。Delattre等将等离子体聚合噻吩(PPTh)膜沉积在冷轧钢表面, 以提高与橡胶的黏结性。PPTh膜的C/S 为4:1,与噻吩单体具有类似的组成。用酸清洗和氢等离子体预处理的冷轧钢样品有利于提高黏结性,PPTh膜的最佳厚度为5nm,与其他等离子体聚合膜相比较薄,但黏结性较好。M.Tatoulian等人研究了NH3 等离子体改性聚乙烯薄膜及十八烷基三氛硅烷自组装单分子膜,并利用接触角、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)等对其进行了表征。Rcueff等人研究了PET经CO2 等离子体处理后,表面含氧基团的变化,并利用XPS表征了处理前后聚合物表面结构的变化。S.Guruvenket等人研究了氢气或氧气等离子体处理时间与处理功率对PS与PET表面性质的影响,并通过静态接触角与红外光谱的测定对其表面进行了分析。Y.Kusanoa等人在大气压下用DBD等离子放电的方法对碳纤维表面用环氧树脂做了处理,用He,He/O2 和Ar等离子的方法在碳纤维的表面增加含有极性功能团的氧, He等离子处理后改变了碳纤维的吸湿度且增加了吸附能。SimoneS.Silva等人对薄膜表面进行修饰, 研究了薄膜的表面粗糙度和表面能, 用XPS测得薄膜的成分,用等离子处理后各项性能都有所改善。

2.4 低温等离子体中各类活性种及活性种与被处理材料表面的反应机制[1~8]

低温等离子体中的高速运动的电子与气体分子的碰撞是产生各种不同活性种的主要原因。

1)使气体分子由基态跃迁到激发态A+e→A*+e, AB(j,w )+e→AB*(j',w')+e等。

2)使气体分子得到/失去电子或断键形成离子、原子及自由基碎片A+e→A++2e, A*+ e→A++ 2e,AB+e→A+B+e,AB+e→AB-→A+ B-等。

3)活性种间相互作用, 以辐射光子形式释放能量

A*→A+ hν, A*+hν→A+2hν, A++e→A*+ hν, A++e→A++e+hν等。

等离子体与被处理高分子材料表面的作用机制十分复杂, 迄今为止没有报道明确地阐述何种活性种与被处理材料表面发生了怎样的化学反应。一种可能的反应机制如下:

高分子受等离子体处理, 脱氢而产生自由基:

P- H+ Plasma→P·+ H·

相邻高分子自由基可能复合而交联:

P·+ P·→P- P

高分子自由基亦可能脱氢或者脱去其它原子而形成双键:

P·→RCH=CH2+ X·, X= H, F,Cl等

高分子自由基与等离子体中活性种反应, 生成一系列新的官能团。如对于NH3等离子体处理聚乙烯:

P·+ ( NH3) Plasma→RC≡N+ RNH2+ RCH=NH+RCON2…

(其中酰胺基的产生是由于反应器中永远有无法除尽的微量氧)

高分子自由基也可能与反应器中存在的氧或处理完毕后接触到空气中的氧发生反应, 从而在高分子材料表面引入含氧官能团:

P·+O/O2→R-OH+ROO·+R2C=O+RCOOH…

3 等离子体表面改性的应用

等离子表面处理在高分子材料改性中的应用, 主要表现在下述几方面。

3.1 改变表面亲( 疏) 水性

一般高分子材料经NH3、O2、CO、Ar、N2、H2等气体等离子体处理后接触空气,会在表面引入—COOH, —C=O ,—NH2,—OH 等基团,增加其亲水性。处理时间越长,与水接触角越低[13~15],而经含氟单体如CF4 ,CH2F2 等气体等离子体处理则可氟化高分子材料表面,增加其憎水性[15]。Hsieh等[16]研究发现,未处理PET膜与水接触角是73.1°,Ar等离子体处理5min,放置一天后测量,与水接触角降为33.7°,随放置时间的延长,接触角缓慢上升,显示出处理效果随时间衰退。放置10d后测量,接触角升至41.3°。Yasunori等[18]研究N2 等离子体处理LDPE 时也发现,表面极性基团在处理后20d左右基本消失。Andre等[19]研究O2 等离子体处理3-羟基丁酸-3-羟基戊酸共聚物膜表面,也发现其后退接触角经60d后由处理后的20°恢复到70°。接触角的衰减被认为是由于高分子链的运动,等离子体表面处理引入的极性基团会随之转移到聚合物本体中[13~19]。Hsieh等[17]发现,如果将PET膜在处理前浸入与之有较强相互作用的有机溶剂中浸泡,会稳定处理效果,这是因为溶剂诱导的分子链重排降低了链的可动性。同时,处理效果不但随时间延长而衰退,也会随温度升高而衰退。Yukihiro等[20]研究了O2 等离子体处理6 种合成高分子膜表面,随后在80~140℃热处理,发现等离子体处理后表面张力增大,湿润性增大;随后的热处理则加快了等离子体处理效果的衰退。ESCA和浸润实验的结果表明,等离子体处理PET、尼龙-6等表面—COOH、—OH基团浓度及表面力随热处理急剧下降;而聚酰亚胺,聚苯硫醚虽然表面张力也下降,但表面—COOH及—OH基团浓度变化不大。这也从一个侧面说明聚合物分子链本身运动程度的难易也是影响处理效果衰退快慢的一个重要因素。

高分子材料表面粗糙度和微观形态也会影响其湿润性[16]。这种等离子体对表面的物理刻蚀引起的湿润性变化也会随着分子链的运动而缓慢衰退。

3.2增加粘接性

等离子体处理能很容易在高分子材料表面引入极性基团或活性点,它们或者与被粘合材料、粘合剂面形成化学键,或者增加了与被粘合材料、粘合剂之间的范得华作用力,达到改善粘接的目的。这种处理不受材料质地的限制,不破坏材料本体力学性能,远远优于一般的化学处理方法。等离子体处理能显著改善高分子膜之间的粘接性[26~28]和纤维增强复合材料的力学性能[21~25]。如果增强纤维与底基粘接性能不好,则不但没有一个良好的粘接界面来传递应力,反而会产生应力集中源,使复合材料力学性能变差。高尚林等[21]将超高分子量聚乙烯(UHMWPE)纤维经等离子体处理, 其与环氧树脂粘接强度提高4倍以上。Hild[22]等用Ar、N2、CO2等气体等离子体处理PE纤维,发现了增加了与PMMA的粘接。提高了其韧度指数(Toughness Index)及断裂强度。Woods等[23]也发现等离子体处理高强PE纤维提高了纤维-环氧树脂复合材料的屈服强度,并研究了纤维-环氧树脂粘接性能与屈服强度的关系。Johan[24]等则研究了等离子体处理纤维素纤维,反气相色谱、XPS、SEM 揭示处理表面并不均匀,但仍然在表面有效地引入了酸( 碱) 基团,提高了纤维与PS、PVC、PP等组成的复合材料的力学性能和玻璃化转变温度。Sheu等[25]研究了NH3、O2、H2O等离子体处理Kevlar-49 纤维后改善与环氧树脂的粘接性,发现处理后,纤维/环氧树脂界面剪切应力显著增加,增幅43% ~83%。

等离子体处理高分子材料,还能显著改善其与金属的粘接。Conley[29]发现含氟气体( 如CF4等) 等离子体处理热塑性聚合物如PC、ABS等能增强与铝板的粘接。Guezenoc等[30]用氧化性气体等离子体( 如O2、H2O等) 处理PP,真空下热压到低碳钢板上,与未处理热压样品相比,测得剪切强度大大提高。Tatoulian等[31]发现NH3等离子体处理PP后与铝片的粘接强度是N2 等离子体处理的2倍多,通过研究表面的酸( 碱) 性质研究了NH3等离子体处理的时间效应, 利用接触角计算得到的粘附功与剥离试验结果一致。Rozovskis等[32]用O2 等离子体处理聚酰亚胺膜,研究了处理条件,膜表面化学组成及形态与被覆Cu片粘接性能的关系。发现随处理温度降低,剥离强度增大;较高温度下延长处理时间对粘接性能亦有正面影响。XPS揭示了表面含氧基团与剥离强度有正比关系。

3.3改善印染性

等离子体表面处理一方面能增加被处理材料表面粗糙度,破坏其非晶区甚至晶区,使被处理材料表面结构松散,微隙增大增加了对染料/油墨分子的可及区;另一方面,表面引入的极性基团,使被处理表面易于以范得华相互作用力、氢键或化学键合吸附染料/油墨分子,从而改善了材料的印染性能。

Makismov等[33]发现低温等离子体处理增强了PET纤维对分散染料的吸附。Vladimirt seva等[34]用低温等离子体处理亚麻类织物,随后用热水泡洗,所得织物印染性能良好,同时力学性能没有受损。Toshio等[35]发现真空度1 torr下低温等离子体处理羊毛织物能提高其匀染性。Thomas等[36]则发现,羊毛染色前用空气等离子体处理减少了含Cr染料的用量和废水中的卤代有机污染物。Takashi等[37]发现低温等离子体处理能提高聚酯染色色牢度。Mishra 等[38]亦发现,用NH3 等离子体处理聚酰胺纤维,然后用酸性染料染色,能提高色牢度和上色率。

3.4在微电子工业中的应用

在高分子领域, 等离子体在微电子工业中主要可用作集成电路制备中硅片表面高分子覆层的刻蚀、去除;改善聚合物电学元件表面电学性能;增加高分子绝缘膜与线路板的粘接等。

Thuy[39]应用O2、Ar、CHF3混合气体等离子体选择性蚀刻集成电路表面残留的聚酰亚胺覆层。Reihardt等[40]在氧化蚀刻硅片后,用O2 等离子体去除硅片表面氟代烃高聚物,发现高聚物完全去除,而硅片未受损失。Kokubo[41]用惰性气体等离子体(如Ar、Kr 、Xe、N2 等) 处理全氟烷基乙烯基醚高聚物薄膜, 使其比电阻由1014Ω·cm降至109~108Ω·cm。Binder等[42]发现等离子体处理能提高高分子电容器击穿强度。

Nonaka[43]在印刷电路制备中用O2 / CF4 混合气体等离子体处理高分子绝缘层能提高它与线路板的粘接, 用CF≥40vol %混合气体比单独用O2等离子体处理效果更好。另外,Takahiro[44]将包覆在电极上的憎水高分子膜等离子体处理后牢固地粘上了一层固体电解质, 能形成一种稳定的电化学传感器。

3.5在生物医用材料上的应用

等离子体处理高分子材料,有选择地在表面引入新的基团,改变表面湿润性、表面电位、表面能极性分量和色散分量以及表面微结构,达到改善高分子材料生物相容性的目的。

Terlingen等指出,通过采用不同的等离子体处理方式可获得不同化学组成的表面。例如,用CF4 等离子体处理可获得氟化表面或类似聚四氟乙烯的表面;表面引入的含氟基团又可以用Ar等离子体可控地去除,由此可获得一系列不同湿润性的表面,适用于用作特定场合的生物医用材料。

Piglowski等用全氟烃等离子体处理PET膜,研究了表面湿润性的变化对生物相容性的影响。发现处理后膜吸附白蛋白的保留时间延长, 增加了其抗凝血性。而且等离子体修饰无毒、无副作用。Kodama等[45]发现空气等离子体处理医用PVC管能改善其抗凝血性。曹伟民等[46]亦发现等离子体处理医用PVC能提高其抗凝血性。

Liu等[47]用不同的等离子体气体(如CO2、O2、N H3、Ar 等)处理各类热塑性高分子材料(如PE、PP、PS、PVC等)表面,引入含O、N 基团;在改性的表面引入Fe离子覆层,与未处理样品相比,对细菌的吸附速率和容量大大提高。

3.6其他应用

Shunsuke等[48]报道等离子体处理气体分离膜提高其分离系数。一种高分子气体分离膜, 80℃时He透过速率≥ 1×10-4cm3/ cm2·s·cmHg, He/ N2分离系数为83;经NH3 等离子体处理后, 其分离系数达到306。

Tadahiro [49]报道等离子体处理制备光学防反射膜。Ar 等离子体处理PET使与水接触角≦30°,然后在其表面沉积一层氟化镁, 所得膜具有良好的防反射性能和耐久性、抗划性, 能广泛用于制备液晶显示装置、镜片及透镜等。

Akovali等[50]报道等离子体处理PET能提高它与PVC共混相容性。

4 结论

等离子体处理作为一种新的表面修饰手段,能快速、高效、无污染地改变各类高分子材料表面性能。不但改善了特定环境下高分子材料的使用性能,也拓宽了常规高分子材料的适用范围,因此吸引了世界各地研究者的兴趣。在探索不同条件下等离子体处理高分子材料表面以改善不同场合下材料使用性能的同时,也应该研究和建立高分子材料表面-等离子体相互作用模型,为定量设计和控制形成特定功能表面提供理论依据。

参考文献

[1]赵化侨.等离子体化学与工艺.合肥:中国科大出版社,1993.

[2]Yasuda H. Plasma Polymerization. Boston: Academic Pres s, 1985.

[3] Capitelli M, Celiberto R, Capriati Getal. Plasma Technology , Fundamentals and Applications . New York: Plenum Press, 1992.

[4] d'Agostino R, Plasma Deposition. Treatment and Etching of Polymers . Boston: Academic Press, 1990.

[5] Chapman B. Glow Discharge Processes. New York : John Wiley & Sons , 1980.

[6] Smith D L. Thin Film Deposition-Principals and Practice. New York: McGraw Hill Inc. , 1995.

[7] Suzuki M, Kishida A, Iwata Hetal . Macromolecules, 1986, 19: 1804~1808.

[8] Gilbert C M, Kenth S. Surf. Int . Anal. , 1993, 20: 441

[9] Yasuda H . Plasma Chemistry of Polymers[ M ] . New York:Marcel Dekker, 1976.

[10] 熊艳丽,王汝敏,王云芳.等离子体表面改性在高聚物中的应用进展[J].塑料,2005, 34( 3) : 19-23.

[11] 杨超,邱高.等离子体表面技术和在有机材料改性应用中的新进展[J] .高分子材料科学与工程, 2001, 17( 6) : 30-34.

[12]施来顺.EV A等离子体表面接枝丙烯酸的阻燃性能研究[J] .功能高分子学报,2000, 13( 1) : 85-89.

[13] XiaoG, Hua B Jetal. J. Mater. Sci. Lett . , 1994, 13( 4) : 280~282.

[14] Mishra G K, Tripathy M. Book Pap. -Int. Cont . Exhib. , 1992, AAT CC 23~30.

[15] Piglow ski J, Gancar z I et al . Biomat erials , 1994, 15( 11) : 909~916.

[16] Hsieh Y-L , Wu M P. J. Appl. Polym. Sci . , 1991, 43: 2067~2082.

[17] Hsieh Y-L , Timm D A, Wu M P. J . Appl . Polym . Sci. , 1989, 38: 1719.

[18] Yasunori T, Masahisa Tetal . Kobunshi Ronbunshu ( Jap.) , 1996, 53( 2) : 96~103.

[19] Andre M , Hass an Jetal . Macromol. Chem . Phys . , 1996, 197( 7) : 2331~2341.

[20] Yukiro S, Seiji Tetal . Sen' i Gakkaishi (Jap.) , 1995, 51(12) : 580~585.

[21]高尚林,牟其伍,袁超庭.高分子材料科学与工程.1992, 8(5) : 61~65

[22]Hild D N, Schwartz P. J . Mater . Sci. : Mater. Med. , 1993, 4(3) : 481~493.

[23] Woods D Wetal. Adhes. Soc. , Proc. 16th Annu. Meet . Int . Symp. , 1993: 69~72.

[24] Johan F, Paul G, Schreiber H P. J. Appl . Polym. Sci. , 1994, 5(2) : 285~295.

[25] Sheu G S , Shyu S S . Compos. Sci. Technol. , 1994, 52( 4) : 489~497.

[26] Tos hio O, Hiroyuki Ketal . Nippon Set chaku Gakk ais hi(Jap.) , 1993, 29(11) : 497~503.

[27] Ogwa Tetal .Nippon Setchaku Gakkaishi (Jap.) , 1995, 31(12) : 490~497.

[28] Toshio O, Hiroyuki Ketal . Nippon Set chaku Gakkaishi (Jap.) , 1996, 32(3) : 81~85.

[29] Conley D J. U . S . U S 5, 275, 882, 1993.

[30] Guezenoc H, Segui Yetal . J . Adhes. Sci. Technol . , 1993, 7(9) : 953~965.

[31] Tatoulian Metal.Int.J. Adhes . , 1995, 15(3) : 177~184.

[32] Rozovskis G, Vinkevicius Jetal . J. Adhes. Sci. Technol . , 1996, 10( 5) : 399~406.

[33] Maksimov A Ietal. Izobreteniya, 1992, 37: 228.

[34] Vladimirtseva E Letal.Ivz.Vyssh .Vchebn.Zaved., Khim. Tekhnol . , 1993, 36( 5) : 115~118.

[35] Toshio Netal. JP 05, 230, 779, 1993.

[36] Thomas Hetal. DNI Rep . , 1993, 111: 315~326.

[37] Takashi H, Masao S . JP 05, 295, 679, 1993.

[38] Mishra G K, Norton M J T . Book Pap . -Int . Conf.Exh ib. . 1993, AAT CC 345~356.

[39] Thuy Bich T. Eur. Pat . Appl. EP 573, 212, 1993.

[40] Reinhardt K , Divincenzo Betal . Mater. Res . Soc. Symp. Proc. , 1993, 315: 267~272.

[41] Kokubo Y. JP 08, 59, 864, 1996.

[42] Binder M , Mammone R Jetal. PCT Int . Appl. Wo 9314, 881, 1993.

[43] Nonaka J. JP 07, 249, 867, 1995.

[44] Tadahiro I. . JP 04, 262, 251, 1992.

[45] Kodama M et al . Polym. Prepr . , 1995, 36(1) : 109~110.

[46]曹伟民, 周坤嶙. 合成化学. 1994, 2(1) : 57~62.

[47] Liu Y, Wang Q D, J. Environ. Sci. Health , Part A: Environ . Sci. Eng. , Tocic Hazard. Subst . Control , 1996, A31( 4) :869~879.

[48] Shunsuke N, Yoshihiro K. JP 05, 146, 651, 1993.

[49] Tadahiro I. JP 08, 41, 2330, 1996.

[50] Akovali G. NATO ASISer. , Ser. E, 1993, 230: 309~320.

氧化车间废水处理

氧化车间废水处理 水是工业生产必不可少的能源之一,表面处理车间往往是用水量最大的用户,在表面处理生产中如何节省水的用量一直是当前研究的课题。例如国外某铝材生产联合企业每天用水量为6300 t,其中表面处理就占30%,为了节省水的消耗,各厂都在致力于研究水的重复和循环使用问题,目前多数的表面处理车间都程度不同地做了水的重复和循环使用,有的厂可以做到60%的水重复使用,一部分排人附近的河中,处理过的水可以养鱼,采用新的水处理技术之后,需用的新水量大为降低,如某工厂的表面处理以前为l000t/d,现在改为循环使用,新水用量降至l00 t/d。 一、中和沉淀处理 水洗槽排出的含碱、含酸和微量铝离子的废水先在车间内混合,排至综合处理站中和池,先测定pH值,如符合要求,即流入多级沉淀池,如不符合要求即用酸碱调整。如果偏酸,用氢氧化钠作中和处理,铝离子在pH中性环境下形成氢氧化铝沉淀。中和后的悬浮废液再高分子凝聚剂进行凝聚沉降、分离,上部的澄清的水如达到环保排放要求,可直接排放或利用。剩下来的淤泥再经脱水处理后运出,其过程如下: 图5—6—4 废水处理系统图 1)注满溶液 (1)废水储槽注满废液 (2)将废液注入中和槽 (3)将水注入絮凝槽、浓缩机和放流槽的溢流口。 (4)将絮凝剂用水溶解并搅拌,搅拌不要超过5 h。 (5)将水注入中和碱液槽的二分之一处,再注入同量25%碱液后,进行搅拌。 (6)中和酸槽内注入废酸液。 2)中和处理 废液中含有较多的硫酸,需要用NaOH来中和,其中反应如下:

中和过程中要控制pH值在7±0.5范围内。 3)絮凝沉淀 将中和的废液注入凝集槽,边搅拌边加入絮凝剂。絮凝剂采用高分子有机化合物,一般使用聚丙烯酰胺,其分子量约为l00万。 絮凝剂的加入使悬浮的Al(4OH),呈絮凝状,而后再注入沉淀槽,边搅拌边沉淀,从而使沉淀物与水分离,清水从沉淀槽槽边溢至排放槽内,再排至室外。 絮凝剂注入量按下式计算: Q2=0.7Q1T 式中Q1——絮凝剂注入量/L·h-1; Q2——泥浆抽出量/L·min-1; T——凝集时间/min。 4)分离 将沉淀槽中的泥浆用泵吸出,送至压滤机或脱水机进行脱水处理,脱水后的泥渣含水率高达85%~90%,其主要成分是Al(40H)3·l8H2O。 泥渣所含的成分(%)大致如下: 二、含氟废水的处理 使用氟化氢铵进行铝表面处理工艺时,所产生的污水中含氟离子,故用户要在污水处理中对氟离子进行综合处理,如图5—6—5。 1)废水处理工艺方法 (1)酸性污水排放到中和池,用NaOH调节pH为3~4,再用Ca0调整至pH为7~8。 (2)抽至高位沉淀池,加入聚丙烯酰胺稀释液(含20~30 g/m3聚丙烯酰胺)。

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

冷弧空气等离子体射流表面处理技术分析

冷弧空气等离子体射流表面处理技术介绍 一.冷弧空气等离子体射流表面处理的必要性 传统的表面处理用湿法,采纳化学溶剂浸泡擦洗。湿法不具有普适性,处理速度慢,特不是化学溶剂会造成二次污染,使得人们必须查找新的表面处理技术。 低温等离子体具有极强的化学活性,在室温下能够引起多种化

学反应或物理刻蚀,而基质材料的本体性能不受阻碍。通过低温等离子体表面处理,材料表面发生多种的物理,化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使材料表面清洁、活化,改善材料表面的亲水性、粘结性、可染色性、生物相容性及电性能。它的这种专门性能能够对塑料、橡胶、金属、半导体、陶瓷和玻璃、复合物、纺织品、泡沫等进行表面改性,以及金属和非金属的粘接表面处理,因此能够广泛应用于汽车、航空、家用电器、包装材料、医疗器械、电子、机械、建筑、纺织和生物医学工程等领域。 在一般情况下,低温等离子体表面处理能够采纳低气压等离子体技术,但由于要使用真空系统,常常具有专门大的局限性,也使得花费过大。常压等离子体技术使表面处理变得简单而廉价。常压等离子体产生的方法有:一是电晕放电等离子体,二是冷弧放电等离子体,三是射频放电等离子体(包括同轴型和平板多孔型),四

是介质阻挡放电等离子体。其中射频放电须用氦气工作,无法广泛应用;电晕和介质阻挡放电会产生大量臭氧,污染使用环境。因此,冷弧空气等离子体射流表面处理是最廉价、最有用的技术。它用于表面处理有专门大的优势,它的优点在于 1.属于干式工艺,省能源,无公害,满足节能和环保的需要;2.使用空气,无臭氧污染,价格专门廉价,时刻短,效率高;3.对所处理的材料无严格要求,具有普遍适应性; 4.可处理形状复杂的材料,材料表面处理的均匀性好; 5.反应环境温度低; 6.对材料表面的作用仅涉及几到几百纳米,材料表面性能改善的同时,基体性能不受阻碍。 这种技术通过十几年的进展差不多逐步成熟,在国外差不多有一些髙技术公司在大力推广和使用这类技术。国内也有一些实验室开始着手推广这类技术。我们在已有的技术基础上不失时机的进行

最常见的废水处理工艺一览!

最常见的废水处理工艺一览! 表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理:废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理:废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。 当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理:废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理:废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水

所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1.含氰废水 目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。

塑胶产品表面处理工艺

产品表面处理工艺 ●表面处理工艺:机壳漆 机壳漆金属感极好,耐醇性佳,可复涂PU或UV光油。玩具油漆重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 963、欧洲标准EN71、EN1122。 ●表面处理工艺:变色龙 随不同角度而变化出不同颜色。是一种多角度幻变特殊涂料,使你的商品价值提高,创造出无懈可击的超卓外观效果。 ●表面处理工艺:电镀银涂料 电镀银漆是一款无毒仿电镀效果油漆,适用ABS、PC、金属工件,具有极佳的仿电镀效果和优异的耐醇性。 ●橡胶漆 适用范围:ABS、PC、PS、PP、PA以及五金工件。 产品特点:本产品为单组份油漆,质感如同软性橡胶,富有弹性,手感柔和,具有防污、防溶剂等功能。这种油漆干燥后可得涂丝印。重金属含量符合国际安全标准。包括CPSC含铅量标准、美国测试标准ASTMF 963、欧洲标准EN71、EN1122。 ●导电漆 适用于各种PS 及ABS 塑料制品;导电导磁、对外界电磁波、磁力线都能起到屏蔽作用;在电气功能上达到以塑料代替金属的目的。电阻值可根据客人要求调试。重金属含量符合国际安全标准,包括CPSC 含铅量标准、美国测试标准A STMF- 963 、欧洲标准EN71 、EN1122。 ●UV 高性能UV固化光油 ●珠光粉-ZG001 珠光颜料广泛应用于化妆品、塑料、印刷油墨及汽车涂料等行业。珠光颜料的主要类型有:天然鱼鳞珠光颜料、氯氧化铋结晶珠光颜料、云母涂覆珠光颜料。 ●夜光漆 夜光粉是一种能在黑暗中发光的粉末添加剂;它可以与任何一种透明涂层或外涂层混和使用,效果更显著,晚上发光时间长达8小时! ●激光雕刻 用激光雕刻刀作雕刻,比用普通雕刻刀更方便,更迅速。用普通雕刻刀在坚硬的材料上,比如在花冈岩、钢板上作雕刻,或者是在一些比较柔软的材料,比如皮革上作雕刻,就比较吃力,刻一幅图案要花比较长的时间。如果使用激光雕刻则不同,因为它是利用高能量密度的激光对工件进行局部照射,使表层材料气化或发生颜色变化的化学反应,从而留下永久性标记的一种雕刻方法。它根本就没有和材料接触,材料硬或者柔软,并不妨碍"雕刻" 的速度。所以激光雕刻技术是激光加工最大的应用领域之一。用这种雕刻刀作雕刻不管在坚硬的材料,或者是在柔软的材料上雕刻,刻划的速度一样。倘若与计算机相配合,控制激光束移动,雕刻工作还可以自动化。把要雕刻的图案放在光电扫描仪上,扫描仪输出的讯号经过计算机处理后,用来控制激光束的动作,就可以自动地在木板上,玻璃上,皮革上按照我们的图样雕刻出来。同时,聚焦起来的激光束很细,相当于非常灵巧的雕刻刀,雕刻的线条细,图案上的细节也能够给雕刻出来。激光雕刻可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。激光雕刻是近年巳发展至可实现亚微米雕刻,已广泛用于微电子工业和生物工程。 优点: 1、精美、防伪、永久保存、极大提高产品档次。 2、比传统腐蚀精美,没有丝印、移印的图案易被擦掉以至模糊不清的缺点。 3、电脑控制、图文可随意改动。 4、显著增强竞争能力,速度快接近0%的废品率。 5、没有污染、没有化学物质污染产品表面。 6、加工精度可达到0.01mm,保证同一批次的加工效果完全一致。

高分子抗菌剂的应用

高分子抗菌剂的应用 摘要:综述了季铵盐类抗菌剂、季膦盐类抗菌剂、有机锡类抗菌剂、卤代胺类抗菌剂、胍盐类抗菌剂、壳聚糖及其衍生物类抗菌剂等高分子抗菌剂的制备、抗菌性能、抗菌机理及其在各个方面的应用的研究进展,并对这些高分子材料抗菌剂的应用和今后的发展作了展望。 关键词:抗菌剂;抗菌高分子;高分子材料;季铵盐 引言 高分子抗菌剂也称抗菌高分子,人们根据天然高分子的抗菌机理开始模仿合成具有抗菌性能的高分子。高分子材料抗菌性能的获得,是通过向其中添加抗菌剂制成复合材料或对高分子材料进行表面处理实现的。合成高分子抗菌剂可以克服天然抗菌剂耐热性差等缺点,通过熔融共混得到抗菌材料。抗菌剂指能够在一定时间,使某些微生物(细菌、真菌、酵母菌、藻类及病毒等)的生长或繁殖保持在必要水平以下的化学物质。抗菌剂是具有抑菌和杀菌性能的物质或产品。抗菌剂作用在于影响微生物菌丝的生长、孢子萌发、各种籽实体的形成、细胞的透性、有丝分裂、呼吸作用、细胞膨胀、细胞原生质体的解体和细胞壁受损坏等,使微生物细胞相关的生理、生化反应和代活动受到干扰和破坏,杀死或抑制微生物的生长繁殖[1]。 随着社会快速发展和人们生活水平的提高,越来越多的人发现细菌、霉菌等有害微生物严重危害着人的自身健康、生活质量与居住环境.过去发生的种种事件足以证明有害微生物已经危害到人类生存基地——地球,因此如何防止细菌对人体的危害,加强抗菌知识和扩大应用领域显得极其迫切,并得到了进一步的重视[2]。抗菌剂包括无机抗菌剂、有机抗菌剂、天然抗菌剂和高分子抗菌剂等四大类。 本文主要讨论高分子抗菌剂的应用及其发展。

正文 一、高分子抗菌剂 高分子抗菌剂是近些年兴起的抗菌剂品种,目前研究和使用主要集中于高分子季铵盐、季鏻盐等。高分子抗菌剂主要是通过带官能团单体的聚合反应或以接枝的方式在高分子链上引入抗菌官能团而获得抗菌性能的。 高分子抗菌剂由于其高效杀菌、杀菌时效性长等优点,日益受到人们的广泛关注。目前研究和使用的高分子抗菌剂主要有季铵盐类、季膦盐类、吡啶盐类、有机锡类和胍盐类,它们都具有一定地杀菌效果[3]。 随着人们对生活质量要求的提高,人们对服装、卫生用品、日用品、食品包装等耐用消费品的抗菌性也有了较高的要求。另外,在公共场所适当地使用抗菌产品,可以有效地抑制细菌的生长,防止细菌的传播和感染。面对日益增长的对抗菌材料的需求,抗菌材料的研究也越来越多地受到关注,更多安全、高效、廉价的抗菌剂和抗菌产品被开发出来。高分子抗菌材料就是其中重要的一种。对于低分子抗菌剂的抗菌活性已经有了较多的研究,人们发现带有长链烷基的季铵盐基团就具有很强的抗菌性能,但是低分子抗菌剂存在易挥发、不易加工、化学稳定性差等缺点。带有抗菌基团的有机高分子化合物恰好可以克服上述缺点,而且高分子抗菌剂不会渗透进人的皮肤,同时还具有比小分子抗菌剂更好的抗菌性能。因此高分子抗菌剂的合成和应用正成为当今研究和开发的一个热点[4]。按照抗菌基团的不同,目前研究得较多的高分子抗菌剂有季铵盐、季膦盐、有机锡、卤代胺、胍盐、壳聚糖及其衍生物等6种。 二、高分子抗菌剂的应用

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

等离子表面处理

项目提纲 一、项目背景 等离子体是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,主要包括:电子、离子、中性基团、分子、光子,它是除去固、液、气相之外物质存在的第四态。1879年英国物理学家William Crookes发现物质第四状态,1929年美国化学物理学家Langmuir发现等离子体。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。 等离子体可分为两种:高温和低温等离子体。高温等离子体如焊工用高温等离子体焊接金属。现在低温等离子体广泛运用于多种生产领域。例如:材料的表面处理(塑料表面处理、金属表面处理、铝表面处理,印刷、涂装及粘接前的等离子表面处理),此技术主要作用为清洗材料表面,提高表面的附着能力及粘接能力。等离子技术具有极为广泛的应用领域,这使其成为行业中广受关注的核心表面处理工艺。通过使用这种创新的表面处理工艺,可以实现现代制造工艺所追求的高品质,高可靠性,高效率,低成本和环保等目标。 等离子表面处理技术能够应用的行业非常广泛,对物体的处理不单纯的是清洗,同时可以进行刻蚀、和灰化以及表面活化和涂镀。因此就决定了等离子表面处理技术必将有广泛的发展潜力。也会成为科研院所、医疗机构、生产加工企业越来越推崇的处理工艺。 二、等离子技术简介 射流型常压等离子处理系统由等离子发生器、气体管路及等离子喷枪组成。等离子发生器产生高压高频能量在喷嘴钢管中被激活和被控制的辉光放电中产生了低温等离子体,借助压缩空气将等离子体喷向工件表面,当等离子体与被处理表面相遇时,产生了化学作用和物理变化,表面得到了清洁。却除了碳化氢类污物,如油脂、辅助添加剂等。根据材料成分,其表面分子链结构得到了改变。建立了自由基团,这些自由基团对各种涂敷材料具有促进粘合的作用,在粘合和油漆应用时得到了优化。在同样效果下,应用等离子体处理表面可以得到非常薄的高张力涂层表面,不需要其他机械、化学处理等强烈作用成分来增加粘合性。 高分子领域中应用的等离子体表面处理技术,是指利用非聚合性气体(如Ar、N2、CO、NH3、O2、H2等)等离子体与高分子材料表面相互作用,使在表面上形成新的官能团和改变高分子链结构,以改善亲(疏)水性、粘接性、表面电学性能、光学性能以及生物相容性等,从而达到表面改性的目的。参与表面反应的活性种有激发态分子、离子、自由基及紫外辐射光子。对高分子材料表面的作用有刻蚀、断键(链)、形成自由基及活性种与自由基复合从而引入新的官能团或形成交联结构。在等离子体处理过程中,随不同的放电条件,往往以某种作用为主,几种作用并存。等离子体处理的优点是效果显著,工艺简单,无污染,可通过改变不同的处理条件获得不同的表面性能,应用范围广。更为重要的是,处理效果只局限于表面而不影响材料本体性能。其缺点是处理效果随时间衰退;影响处理效果因素的多样性使其重复性和可靠性较差。 等离子表面处理在高分子材料改性中的应用,主要表现在下述几方面。 1)改变材料表面亲((疏)水性。一般高分子材料经NH3、O2、CO、Ar、N2、H2等气体等离子体处理后接触空气,会在表面引入—COOH,CO,—NH2''—OH等基团,增加其亲水性。处理时间越长,与水接触角越低,而经含氟单体如CF4''CH2F2等气体等离子体处理则可氟化高分子材料表面,增加其憎水性。 2)增加材料的粘接性。等离子体处理能很容易在高分子材料表面引入极性基团或活性点,

汽车涂装废水处理技术

汽车涂装废水处理技术 汽车涂装是保护和装饰汽车的主要措施,是非常重要的汽车制造工艺之一。 1 汽车涂装工艺简介[1] 涂装工艺一般由漆前表面处理、涂布和干燥等三个基本工序组成。 漆前表面处理是涂装工艺的基础,它包括表面清理(除锈、脱脂等)和磷化处理两部分。 脱脂一般用热碱液清洗和有机溶剂清洗,碱液由强碱、弱酸、聚合碱性盐(如磷酸盐、硅酸盐等)、表面活性剂(阳离子型或非离子型)等适当配合而成。 磷化处理是通过化学反应在金属表面形成一层非金属的、不导电的、多孔的磷酸盐薄膜,磷化膜可显著提高涂层的附着力。耐蚀性和耐水性。车身、车厢等磷化一般都采用薄膜锌盐快速磷化处理。磷化液的主要成分是磷酸二氢锌、氧化剂(如硝酸钠)、催化剂(如亚硝酸钠、氯酸钠)和一些添加剂(如三聚磷酸钠、氟化钠)。磷化处理后一般再进行2-3次水洗。 涂布系指将涂料在被涂物表面扩散开的操作,目前多用阴极电泳涂装法泳涂阳离子型水溶性漆。电泳 后用超滤液进行2-3次回收水洗,再用脱离子水淋洗。装饰性要求高的轿车和轻型载重汽车一般采用静电 涂装法涂中间层涂料;面漆一般用三聚氰氨基醇酸树脂磁漆,采用自动喷涂或静电喷涂。 2 汽车涂装废水特征 2.1 污染源分析[1] 在涂装工艺生产中产生的废水主要分前处理废水、电泳涂漆废水和喷漆废水。 前处理废水来自漆前表面处理的脱脂、磷化、表面调整等工序,含有乳化油、表面活性剂、磷酸盐、重金属离子(如Zn 2+)、填料(如钛白粉)、溶剂等。电泳涂漆废水产生于涂件上附着的浮漆和槽液的清洗过程,一般包括去离子水洗水和超滤液;其成分与槽液成分相同,含有水溶性树脂(如环氧树脂、酚醛树脂等)、颜料(如碳黑、氧化铁红、铅汞等)、填料(如钛白粉、滑石粉等)、助溶剂(如三乙醇胺、丁醇等)和少量重金属离子。 湿式喷漆室用水洗涤喷漆室作业区空气,空气中漆雾和有机溶剂被转移到水中形成了喷漆废水;废水中含有大量漆雾颗粒,其水质由所用漆料(以硝基漆、氨基漆、醇酸漆和环氧漆为主)和溶剂(如乙醇、丙酮、 脂类、苯类等)、助溶剂而定。 2.2 汽车涂装废水特征 2.2.1 废水种类多、成分复杂 汽车涂装线排放的废水(或废液)种类很多,每一种废水水质(成分、浓度)因使用的材料而异。仅脱脂液就有多种配方,涂料(任何一种涂料均由树脂、颜料、溶剂、添加剂等组成)种类更多。 2.2.2 排放无规律 除部分水洗水连续溢流排放外,涂装线废水或废液多为间歇集中排放。某汽车厂车身车间排水情况见 表1。 2.2.3 水量、水质变化大 由于各种废水成份、浓度各异,且排放无规律,造成汽车涂装线排水水量、水质变化很大且无规律可 循。 3 国内汽车涂装废水处理技术 中国城镇水网w w w .c h i n a c i t y w a t e r .o r g

机械表面处理工艺【详解】

机械表面处理工艺详解 内容来源网络,由深圳机械展收集整理! 机械表面处理工艺有: 静电喷涂、烤漆、镀锌、镀铬、镀镍、镀钛、镀金、镀银、铝阳极、浸渗、喷油、喷砂、DLC处理、铁氟龙处理、染黑、冷电镀 喷涂 喷涂是最常见的表面处理,无论塑料还是五金都适用。喷涂一般包括喷油、喷粉等,最常见的是喷油。 喷涂的涂料俗称油漆,涂料是由树脂、颜料、溶剂、和其他添加剂构成。 塑料喷涂一般有两道漆,表面呈现颜色的称为面漆,最表面透明图层称为保护漆。喷涂工艺流程介绍: (1)前期清洁。如静电除尘等。 (2)喷涂面漆。面漆一般是表面看的到的颜色。 (3)烘干面漆。分为室温自然干燥、专用烤炉烘干。

(4)冷却面漆。专用烤炉烘干需要冷却。 (5)喷涂保护漆。保护器一般是用来保护面漆的,大部分是透明的油漆。 (6)固化保户漆。 (7)QC检查。检查是否满足需求。 3.橡胶油 橡胶油,又称弹性漆,手感漆,橡胶油是一种双成分高弹性的手感油漆,用该油漆喷涂后的产品具有特殊柔软的触感及高弹性表面手感。橡胶油的缺陷是成本高,耐用一般,用久了容易脱落。 橡胶油广泛应用于通信产品,视听产品,MP3、手机外壳,装饰品、休闲娱乐用品,游戏机手柄,美容器材等。 4.UV漆 UV漆是紫外线(Ultra-Violet Ray)的英文简称。常用的UV波长范围为 200-450nm。UV漆在紫外线光照射下才能固化。UV漆的特点:透明光亮,硬度高,固定速度快,生产效率高,保护面漆,加硬加亮表面。

水镀 水镀是一种电化学的过程,通俗理解就是将需要电镀的产品零件浸泡在点解液中,再通以电流,以点解的方式使金属沉积在零件表面形成均匀、致密、结合力良好的金属层的表面加工方法。 水镀适应的材料:最常见的是ABS,最好是电镀级的ABS,其他常见塑料如PP,PC,PE等都很难水镀。 常见的表面颜色:金色,银色,黑色,枪色。常见的电镀效果:高光,亚光,雾面,混合等。 真空镀 真空镀是电镀的一种,是在高度真空的设备里,在产品表面镀上一层细薄的金属镀层的一种方法。 真空镀的工艺流程:表面清洁-去静电-喷底漆-烘烤底漆-真空镀膜-喷面漆-烘烤面漆-品质检查-包装。 真空镀的优缺点:

高分子表面材料改性论文

(2014-2015学年第一学期) 《高分子材料改性》 课程论文 题目:纳米粒子增韧聚氯乙烯研究新进展 姓名:周凯 学院:材料与纺织工程学院 专业:高分子材料与工程 班级:高材121 班 学号: 201254575128 任课教师:兰平 教务处制 2014年12月30日

纳米粒子增韧聚氯乙烯研究新进展 摘要 通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。 关键词: 聚氯乙烯纳米材料增韧 一.研究背景 随着科学技术的发展, 人们对材料性能的要求越来越高。聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状 和发展趋势[1]。 二.纳米CaCO3 增韧PVC 碳酸钙是高分子复合材料中广泛使用的无机填料。在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。 2.1 纳米CaCO3 增韧对PVC 力学性能的影响 魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。 熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。 对CPE/ACR共混增韧PVC力学性能的影响 2.2 纳米CaCO 3 如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

某公司金属表面处理废水方案

上海XXXXXXXX有限公司 废水处理工程 初 步 设 计 方 案 XXXXXXXXXXXXXXx

一、概述 本项目为XXX废水处理工程,主要接纳并处理该厂金属表面处理过程中产生的脱脂废水和皮膜废水,达国家规定的排放标准,最大限度降低对周边生态系统的影响。 二、设计依据 1.上海市污水综合排放标准【DB31/199-1997】二级排放标准; 2.室外排水设计规范(GBJ14-87); 3.室外给水设计规范(GBJB-BC); 4.XXX公司提供之相关设计资料依据; 5.我公司对电镀皮膜废水处理之成功经验。 三、设计原则 本设计遵循以下原则进行工艺路线选择及工艺参数的确定: 1.设计处理工艺采用合理、先进、成熟之高水平处理工艺; 2.废水处理工程具适当安全系数,各工艺参数选择略有富余; 3.废水处理系统具高运行效率,稳定之处理效果,且有一定抗冲击负荷能力,节省建设投资与日后操作运行费用; 4.处理设备具有最高运行效率、最稳定处理效果、且有一定抗冲击能力; 5.处理设备能操作简单、维修方便、弹性大、工人劳动条件好。 四、设计标准: 1、地质、地貌与自然条件: 拟建场地为公司内预留地,在施工之前,须作地质勘探,测试拟建场地的地耐力。 2、设计标准: (1)预制构件 以采用上海市标准图集为主,国家标准图集为辅。

(2)建筑材料 a、砖砌体 均采用MU7-5机制砖。 b、水泥砂浆 +0.00以上:M5.0混合砂浆 + 0.00以下:M5.0水泥砂浆 c、砼 ①贮水构筑物及地下构筑物:采用普通硅酸盐水泥,标号不低于425#,为标 号C25,抗渗标号S6。 ②一般建筑物现浇砼均采用C20。 ③垫层:C10砼。 ④钢筋: Φ≥12为II级钢Φ∠12为I级钢 ⑤预埋件 A3钢,焊条E50 ⑥水处理及防渗构筑物的内外粉刷: 1:2防水砂浆粉刷。 ⑦本工程按地震烈度70进行设防。 ⑧设计埋深: 构筑物的设计埋深由工艺流程决定。

常见工业废水处理技术介绍

常见工业废水处理技术介绍 在电子、塑胶、电镀、五金、印刷、食品、印染等行业,从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰

等离子体表面改性技术的研究与发展.

等离子体表面改性技术的研究与发展 摘要本论文介绍了等离子体的相关概念,主要阐述了低温等离子技术在金属材料表面改性中的两种处理方法。并对等离子体电解沉积技术做了简要介绍,分析了该技术的应用前景及存在的问题。最后对等离子体表面改性技术的发展做出展望。 关键词等离子体;表面改性;等离子体电解沉积技术 Development of Plasma Surface Modification Technology Abstract :The relate concept of plasma the means on application of cold plasma technology to surface modification of metal in this paper. This article also introduce Plasma electrolysis deposition technology, the problems and development directions of PED in the surface modification technology arc also presented. The prospects of plasma surface modification technology is also analyzed. Key words :plasma,surface modification,plasma electrolytic deposition 0. 前言 金属零部件的磨耗量是增大能耗,增加零部件更换率和提高生产运用成本,降低生产效率的重大问题,因此如何提高零部件表面的耐磨性,实施表面改性处理是十分重要的课题。随着科学技术和现代工业的发展,各种工艺对使用产品的技术要求越来越高,对摩擦、磨损、腐蚀和光学性能优异的先进材料的需要日益增长,这导致了整个材料表面改性技术的发展与进步。其中等离子体表面改性技术发挥了重要作用。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,同时开创了一门新的研究领域。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和

难粘高分子材料的表面处理技术

难粘高分子材料的表面处理技术 聚乙烯(PE)、聚丙烯(PP)等聚烯烃和聚四氟乙烯(PTFE)类含氟高分子材料,若不经特殊的表面处理,是很难用普通胶粘剂粘接的,这类材料通常称为难粘高分子材料或难粘塑料。 聚烯烃类塑料由于性能优良、成本低廉,其薄膜、片材及各种制品在日常生活中大量地应用着。而氟塑料则因具有优异的化学稳定性、卓越的介电性能和极低的摩擦系数以及自润滑作用,使其在一些特殊领域中具有重要的用途。但是,这类材料在应用过程中,不可避免地会遇到同种材料之间或与其它材料的粘接问题,因此,人们曾对这类难粘高分子材料的难粘原因及表面处理方法进行了不断深入的研究。 难粘高分子材料的难粘原因是多方面的 1.润湿能力差 一般胶粘剂在未固化前都呈流动态,粘接过程是胶液在粘接件表面浸润,然后固化的过程,对粘接来说,润湿接触是粘接的首要条件。液体与固体接触,其润湿程度可用接触角表示,几种塑料的表面特征数据见表1。从表1可以看出水对它们的接触角都比较大,表面张力小,接着能不大,润湿能力就差,比较难粘。 2.结晶度高 这几种难粘塑料都是高结晶度物质,所以化学稳定性好,它们的溶胀和溶解都比非结晶高分子困难,当与溶剂型胶粘剂粘接时,很难发生高聚物分子链的扩散和相互缠结,不能形成很强的粘附力。 3.是非极性高分子 聚乙烯、聚丙烯、聚四氟乙烯等都是非极性高分子,它们的表面只能形成较弱的色散力,而缺少取向力和诱导力,因而粘附性能较差。 4.存在弱的边界层 这些高聚物难粘除了结构上的原因外,还在于材料表面存在弱的边界层。聚烯烃类树脂本身含有低分子量物质以及在加工过程中加入的添加剂(如滑爽剂、抗静电剂等),这类小分子物质极容易析出、汇集于树脂表面、形成强度很低的薄弱界面层,表现出粘附性差,不利用于印刷、复合和粘接等后加工。 基于上述认识,人们采取了多种手段对难粘高分子材料表面进行改性处理:一在聚烯烃等难粘材料表面的分子链上导入极性基团;二提高材料的表面能;三提高

涂装前处理废水处理

涂装前处理废水治理工艺 摘要 涂装前表面处理工序主要有脱脂、酸洗、表调、磷化及钝化封闭后处理。在生产过程中,各处理液的功能将不断下降(或者失效),为了维持正常生产,保证产品质量,必须定期更换槽液。槽液可能整槽倒掉,也可能是排出一部分,并补入新液。不同种类处理液的更新不尽相同,但更换周期大致如下: ①脱脂液7~15天;②酸洗液7~10天;③磷化液1~3月;④表调液7~15天;⑤后处理液10~15天。 除这些废液外,还有各道工序后的冲洗废水,它们的污染物浓度要比相应废液低得多,但冲洗水的消耗量和排放量却很大。 关键词 前处理废水处理方法回收利用 序言 随着的发展,城市水资源短缺的压力越来越大,追究城市水危机的根本原因,人们越来越认识到,是水的社会循环超出了水的自然循环可承载的范围.因此,只有充分尊重水的自然运动规律,合理地使用水资源,使上游地区的用水循环不影响下游水域的水体功能、社会循环不损害自然循环的客观规律,从而维系或恢复城市乃至流域的良好水环境,才是水资源可持续利用的有效途径.这就要求我们从“取水-输水-用户-排放”的单向开放型的用水模式转变为“节制地取水-输水-用户-再生水”的反馈式循环流程,提高水的利用效率.实现这一重大用水模式的转变,加强污水再生利用是关键.随着科学技术的进步,城市污水已不再是废水,而是一种宝贵的资源.既然是一种资源,就要最大程度的利用.提高城市污水的再生利用率,一是可以减少污染物排放,二是节约了有限的水资源.作为涂装专业的学生,我们要从本专业入手,学会如何处理涂镀废水以及实现它的重复利用有着重大意义。例如本文以涂装前处理废水的处理为研究对象,分析了前处理废水的来源,处理原理以及处理工艺,最终使得废水能够达标排放或者回收利用,对资源的回收利用以及环境保护都具有重大意义。 一.废水来源及成分 1、碱性脱脂废液 前处理中需要采用碱性溶液来脱脂,碱性脱脂废液含氢氧化钠、碳酸钠、三聚磷酸钠等碱性物质,以及表面活性剂和少量有机溶剂,另外还含有机械油、防锈油脂等悬浮物。因此,主要处理项目是pH、悬浮物、BOD、COD、含油量等。 2、酸洗废液 前处理除锈时需要用到酸洗,槽液定期更换便会产生废液。酸洗废液含H2SO4,HCl,H3PO4 等酸、少量的有机缓蚀剂,另外也可能含有缓蚀剂、酸雾抑制剂、润湿剂等辅助添加剂。除此之

相关文档
相关文档 最新文档