文档视界 最新最全的文档下载
当前位置:文档视界 › 单片机程序死机跑飞的六大原因解析

单片机程序死机跑飞的六大原因解析

单片机程序死机跑飞的六大原因解析
单片机程序死机跑飞的六大原因解析

单片机程序死机,跑飞了可以从以下几个方面查找原因:

1.意外中断。

是否打开了某个中断,但是没有响应和**中端标志,导致程序一直进入中断,造成死机假象。

2.中断变量处理不妥。

若定义某些会在中断中修改的全局变量,这时要注意两个问题:首先为了防止编译器优化中断变量,要在这些变量定义时前加volatile,其次在主循环中读取中断变量前应该首先关闭全局中断,防止读到一半被中断给修改了,读完之后再打开全局中断;否则出现造成数据乱套。

3.地址溢出,常见错误为指针操作错误。

我要着重说的是数组下标使用循环函数中循环变量,如果循环变量没控制好则会出现数组下标越界,意外修改系统的寄存器造成死机,这种情况下如果死机说明运气好,否则后面不知道发生什么头疼的事。

4.无条件的死循环。

比如使用while(x;等待电平变化,正常情况下x都会变成0,就怕万一,因此最好加上时间限制;

5.看门狗没有关闭。

有的单片机即使没使用看门狗开机时也有可能意外自动开启了最小周期的看门狗,导致软件不断复位,造成死机,这个要看芯片手册,最好在程序复位后首先应该显式**看门狗再关闭看门狗;

6.堆栈溢出。

最难查找的问题,对于容量小的单片机,尽量减少函数调用层级,减少局部变量,从而减少压栈的时候所需的空间。当你把以上几条都试过不能解决问题,试一试把你的被调用少函数直接内置到调用的地方并且把占用RAM大的局部变量改成全局变量,试一试说不定就可以了。

7.大牛们补充下...

单片机程序分析题练习B2复习过程

1.程序如下: MOV SP,#13H MOV 33H,#7FH MOV 44H,#0ABH PUSH 33H PUSH 44H POP 33H POP 44H 程序执行后,(33H)=0ABh ,(44H)=7Fh 2.下列各条指令其源操作数的寻址方式是什么?各条指令单独执行后,A中的结果是什么?设(60H)=35H,(A)=19H,(R0)=30H,(30H)=0FH。 (1)MOV A,#48H ;寻址方式: (A)= 48H (2)ADD A,60H ;寻址方式: (A)= 4DH (3)ANL A,@R0 ;寻址方式: (A)= 10H 3.阅读下列程序段,写出每条指令执行后的结果,并说明此程序段完成什么功能? MOV R1,#30H ;(R1)=30H MOV A,#64H ;(A)= 64H ADD A,#47H ;(A)=ABH ,(CY)= 0 , (AC)= 0 DA A ;(A)=31H ,(CY)=1 , (AC)= MOV @R1,A ;(R1)= 30H ,(30H)= 31H 此程序段完成的功能 4.设(A)=38H,R0=28H,(28H)=18H,执行下列程序后,(A)=0 ORL A,#27H ANL A,28H XCHD A,@R0 CPL A 5.设(A)=38H,(20H)=49H,PSW=00H,(B)=02H,填写以下中间结果。 SETB C ADDC A, 20H (A)= 82H (CY)= 0 (AC)= 1 RLC A (A)=04H (CY)=1 (P)= 1 MUL AB (A)=08H (B)=00H (OV)=0 6.已知(R0)=20H, (20H ) =10H, (P0) =30H, (R2) =20H, 执行如下程序段后( 40H ) =15H MOV @R0 , #11H (20H)=11H MOV A , R2 A=20H

飞思卡尔单片机LED控制例程详解

我的第一个LED程序 准备工作: 硬件:Freescale MC9S08JM60型单片机一块; 软件:集成开发环境codewarrior IDE; 开发板上有两个LED灯,如下图所示: 实验步骤: 1.首先,确保单片机集成开发环境及USBDM驱动正确安装。其中USBDM的安装步骤如下:?假设之前安装过单片机的集成开发环境6.3版本:CW_MCU_V6_3_SE; ?运行USBDM_4_7_0i_Win,这个程序会在c盘的程序文件夹下增加一个目录C:\Program Files\pgo\USBDM 4.7.0,在这个目录下: 1〉C:\ProgramFiles\pgo\USBDM 4.7.0\FlashImages\JMxx下的文件 USBDM_JMxxCLD_V4.sx是下载器的固件文件; 2〉C:\Program Files\pgo\USBDM 4.7.0\USBDM_Drivers\Drivers下有下载器的usb 驱动 所以在插入usb下载器,电脑提示发现新的usb硬件的时候,选择手动指定驱动 安装位置到以上目录即可。 ?运行USBDM_4_7_0i_Win之后,还会在目录: C:\Program Files\Freescale\CodeWarrior for Microcontrollers V6.3\prog\gdi 下增加一些文件,从修改时间上来看,增加了6个文件,这些文件是为了在codewarrior 集成开发环境下对usb下载器的调试、下载的支持。

2.新建一个工程,工程建立过程如下: ?运行单片机集成开发环境codewarrior IDE ?出现如下界面 ●Create New Project :创建一个新项目工程 ●Load Example Project :加载一个示例工程 ●Load Previous Project :加载以前创建过的工程 ●Run Getting started Tutorial:运行CodeWarrior软件帮助文档 ●Start Using CodeWarrior:立刻使用CodeWarrior ?点击Create New project按钮,以创建一个新的工程,出现选择CPU的界面 如下,请选择HCS08/HCS08JM Family/MC9S08JM60,在右边的Connection窗口

单片机死机复位程序

MCS-51系统软复位的深入研究 摘要在没有硬件看门狗的系统以及一些对单片机I / O 口线状态高度敏感的系统中,软复位功能相当重要。标准 MCS-51 以及很多常见的51 内核单片机没有提供“软复位”方法。本文分别以5lasm 子程序和C51 函数的形式, 为MCS-51 单片机系统提供完善的“软复位”方法。 关键词 MCS-51 单片机软复位 51asm C51 引言 复位是单片机的初始化操作,其作用是使单片机和系统中其他部件处于一个确定的初始状态,并从这个状态开 始工作。 标准 MCS-51 的复位逻辑比较简单,只有通过复位引脚RST 进行外部扩展。对于具有外部看门狗芯片的系统, 当单片机由于某种原因程序“跑飞”而没有按时“喂狗”,或由软件陷阱捕捉到程序运行的异常,而故意不“喂狗”时,看门狗芯片会给单片机的RST 引脚提供一个复位信号,让单片机进行一次“硬”复位,以恢复程序的正常运行;有 些 5l 内核的单片机具有片内的看门狗,或者提供可访问的寄存器实现“软件复位”。一般实现的也都是与在RST 引脚提供复位信号等价的“硬”复位。 在有些应用中,由于单片机所接外设严格依附干单片机口线的时序,甚至不允许硬件复位时对口线的复位操作; 或由于系统没有外部看门狗,只能用软件监测程序运行异常并重新对单片机进行初始化操作,这时就需要所谓的 “软复位”了。 在互联网上可以找到一些软复位的方法,但都不够完善或不方便使用,基于C5l的软复位更是一个难点。本文提出一种功能完善、占用资源少的实现方法,在51asm 和 C51 下都可方便使用。 1 “软复位”要实现的功能 对于 MCS-51 系统,所谓“软复位”是一种由用户软件控制的复位活动,利用一系列指令来模拟硬件复位所实现 的各种操作内容,并且重新从头开始执行用户程序。其内容包括: ①程序计数器PC 的复位,从0000H 开始执行程序; ②中断优先级状态触发器的复位; ③特殊功能寄存器的复位; ④程序跑飞前状态的尽量恢复。 其中,特殊功能寄存器的复位可根据具体系统的需要,在软复位以前对相关寄存器逐个赋值再软复位的方法完 成,或在复位以后的初始化程序中实现;程序跑飞前状态的恢复也可根据RAM 中存留的数据来进行判断处理。 本文重点讨论关于程序计数器的复位和中断优先级状态触发器的复位,在此基础上不难再增加特殊功能寄存器的 复位和程序跑飞前状态的恢复,下文不再涉及相关代码。

单片机程序分析题练习B2

1.程序如下: MOV SP , #13H MOV 33H ,#7FH MOV 44H ,#0ABH PUSH 33H PUSH 44H POP 33H POP 44H 程序执行后, (33H)=0ABh 2.下列各条指令其源操作数的寻址方式是什么各条指令单独执行后, (60H )=35H ,(A ) =19H ,(R0)=30H ,(30H )=0FH 。 ( 1 ) MOV A , #48H ;寻址方式 A) = 48H ( 2) ADD A , 60H ;寻址方式 A) = 4DH ( 3) ANL A , @R0 ;寻址方式 A) = 10H 3.阅读下列程序段,写出每条指令执行后的结果,并说明此程序段完成什么功能 MOV R1, #30H ;( R1) =30H MOV A , #64H ; ( A) = 64H ADD A , #47H ;( A) =ABH ,( CY) = 0 , ( AC) = 0 DA A ;( A) =31H ,( CY) =1 ( AC) = MOV @R1, A ; ( R1) = 30H , ( 30H) = 31H 此程序段完成的功能 4. 设(A)=38H,R0=28H,(28H)=18H,执行下列程序后,(A) =0 ORL A , #27H ANL A , 28H XCHD A , @R0 CPL A 5. 设(A)=38H,(20H)=49H,PSW=00H,(B)=02H,填写以下中间结果。 SETB C ADDC A, 20H (A)= 82H (CY)= 0 (AC)= 1 RLC A (A)=04H (CY)=1 (P) 1 MUL AB (A)=08H (B)=00H (OV)=0 6. 已知( R0) =20H, (20H ) =10H, (P0) =30H, (R2) =20H, 执行如下程序段后 ( 40H ) =15H MOV @R0 , #11H (20H)=11H MOV A , R2 A=20H ,(44H )=7Fh A 中的结果是什么设

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

51单片机复位电路有关问题

想问一下单片机复位电路问题 复位过程我明白,RST接高电平复位,接低电平单片机正常工作 但电路连接不太理解什么意思, 想知道图中电解电容的作用,既然是按键高电平复位为什么要加电解电容呢不加可以吗?如果一定要加原因是什么? 另外想知道电容作用是隔直流通交流,是绝对的直流不通过还是什么充电过程无电流放电过程有电流,求指教 我认为绛红的蓝同学说的不太好。 电容确实可以起到按键去除抖动的作用,但是这里的电容还有一个更重要的作用就是上电复位,因为考虑到芯片刚刚上电时由于供电不稳定而做出错误的计算,所以增加一个上电复位以达到延时启动CPU的目的,使芯片能够正常工作。虽然现在很多芯片自带了上电延时功能,但是我们一般还是会增加额外的上电复位电路,提高可靠性。 上电复位是如此工作的,此时不用考虑按键和你图中1K电阻的作用。上电瞬间,电压VCC短时间内从0V上升到5V(比方说5V),这一瞬间相当于交流电,电容相当于导线,5V的电压全部加在10K电阻上,也就是说,这时RST的电平状态为高电平。但是从上电开始,电容自己就慢慢充电,其两端电压呈曲线上升,最终达到5V,也就是说其正端电位为5V,负端电位为0V,其负端也就正好是RST,此时RST为低电平,单片机开始正常工作。 添加按键是为了手动复位,一般那个1K电阻可以不加。当按键按下时,电容两端构成回路并放电,使RST端重新变为高电平,按键抬起时电容又充电使RST 变回低电平。 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

单片机程序分析试题与答案

六、设计题 1.某单片机控制系统有8个发光二极管。试画出89C51与外设的连接图并编程使它们由右向左轮流点亮。 答:图(5分) 构思(3分) MOV A,#80H (1分) UP:MOV P1,A (1分) RR A (2分) SJMP UP (1分) 2.某控制系统有2个开关K1和K2,1个数码管,当K1按下时数码管加1,K2按下时数码管减1。试画出8051与外设的连接图并编程实现上述要求。 答:图(5分) 构思(3分) 程序(4分) ORG 0000H LJMP MAIN ORG 0003H LJMP AINT0 ORG 0013H LJMP BINT1 MAIN: MOV IE,#83H SETB IT0 SETB IT1 MOV R0,#00H MOV DPTR,#TAB UP: MOV A,R0 MOVC A,@A+DPTR MOV P1,A SJMP UP AINT0: INC R0 CJNE R0,#10,AINT01 MOV R0,#0 AINT01: RETI BINT1: DEC R0 CJNE R0,#0FFH,BINT11 MOV R0,#9 BINT11: RETI 1.已知在累加器A中存放一个BCD数(0~9),请编程实现一个查平方表的子程序。 1.SQR:1NC A MOVC A,@A+PC RET TAB:DB 0,1,4,9,16 DB 25,36,49,64,81 2.请使用位操作指令实现下列逻辑操作:BIT=(10H∨P1.0)∧(11H∨C Y) 2.ORL C,11H

MOV 12H,C MOV C,P1.0 ORL C,/10H ANL C,12H MOV BIT,C RET 3.已知变量X存于V AR单元,函数值Y存于FUNC单元,按下式编程求Y值。 Y= 10 0 1 x x x > - = 0,Y=1 MOV A,#0FFH ;x<0,Y=-1 SJMP RES POSI:MOV A,#01H RES:MOV FUNC,A RET 4.已知在R2中存放一个压缩的BCD码,请将它拆成二个BCD字节,结果存于SUM开始的 单元中(低位在前)。 4. MOV R0,#SUM MOV A,R2 ANL A,#OFH MOV @R0,A ;存低字节BCD MOV A,R2 ANL A,#0F0H SW AP A 1NC R0 MOV @R0,A ;存高字节BCD RET 5.将存于外部RAM 8000H开始的50H数据传送0010H的区域,请编程实现。 5. MOV DPTR,#8000H MOV R0,#10H MOV R2,#50H LOOP:MOVX A,@DPTR ;取数 MOVX @R0,A ;存数 1NC DPTR 1NC R0 DJNZ R2,LOOP RE T

单片机复位的理解

【单片机复位的概念】 单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。 这个过程是如何实现的呢? 【计算公式】 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是1 0K*10UF=0.1S。 也就是说在启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。 【按键按下的时候为什么会复位??】 在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RS T引脚又接收到高电平。单片机系统自动复位。 【总结】: 1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。 2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。

5 STC15F2K60S2单片机的程序设计 例题

第5章STC15F2K60S2单片机的程序设计 例题 例5.1 分析ORG在下面程序段中的控制作用 ORG 1000H START: MOV R0,#60H MOV R1,#61H …… ORG 1200H NEXT: MOV DPTR,#1000H MOV R2,#70H …… 解:以START开始的程序汇编后机器码从1000H单元开始连续存放,不能超过1200H 单元;以NEXT开始程序汇编后机器码从1200H单元开始连续存放。 例5.2 分析END在下面程序段中的控制作用。 START: MOV A,#30H …… END START NEXT: …… RET 解:汇编程序对该程序进行汇编时,只将END伪指令前面的程序转换为对应的机器代码程序,而以NEXT标号为起始地址的程序将予以忽略。因此,若NEXT标号为起始地址的子程序是本程序的有效子程序的话,应将整个子程序段放到END伪指令的前面。

例5.3 分析下列程序中EQU指令的作用 AA EQU R1 ;给AA赋值R1 DA TA1 EQU 10H ;给DA TA1赋值10H DELAY EQU 2200H ;给DELAY赋值2200H ORG 2000H MOV R0,DATA1 ;R0←(10H) MOV A,AA ;A←(R1) LCALL DELAY ;调用起始地址为2200H的子程序 END 解:经EQU定义后,AA等效于R1,DATA1等效于10H,DELAY等效于2200H,该程序在汇编时,自动将程序中AA换成R1、DATA1换成10H、DELAY换成2200H,再汇编为机器代码程序。 使用赋值伪指令EQU的好处在于程序占用的资源数据符号或寄存器符号用占用源的英文或英文缩写字符名称来定义,后续编程中凡是出现该数据符号或寄存器符号就用该字符名称代替,这样,采用有意义的字符名称进行编程,更容易记忆和不容易混淆,也便于阅读。

飞思卡尔单片机知识点

1、单片机组成:1> CPU 2> 存储器3>I/O ; 2、存储器包括2大类:ROM , RAM 3、标准ASCII码使用(1)个字节表示字符; 4、BCD码是用()进制表示的()的数据; 5、HCS08QG8的最小系统包括(电源电路,复位电路,下载口,(内部时钟)); 6、QG8管脚数量(16)、只能输入的是(PTA5)、只能输出的是(PTA4)、程序下载的是、接外部时钟的是; 7、QG8的管脚可以作为数字输入输出、也可以作为模拟输入,可以作为模拟输入的有(); 8、QG8管脚复用优先级最低的功能是(I/O); 9、QG8存储器配置中,不同资源的分界线……; 10、CPU寄存器有(A, HX, PC, CCR, SP); 11、可以执行位操作的地址范围(0X0000~0X005F); 12、有地址的寄存器分成了(3)块(0页,高页,非易失); 13、如何在C语言中定义常数(数据类型变量名;),如何指定变量的地址(数据类型变量名@ 地址;); 14、堆栈的管理者是寄存器(SP); 15、SP的复位缺省值是(0X00FF); 16、堆栈对数据的操作特点是(向上生长型:先压后涨、先减后弹); 17、堆栈一般在RAM的高地址区域还是低地址区域?高地址区 18、内部时钟源包括哪4大部分? 19、外部时钟分哪2大类;振荡器,整形外部时钟 20、内部时钟中FLL固定倍频(512倍频); 21、ICS的7种工作模式(FEI, FEE, FBI, FBILP, FBE, FBELP, stop); 22、ICS的内部参考时钟是可以校准、微调的,调整的寄存器名(ICSTRM);该寄存器的数值越大,输出时钟频率越(低); 23、FLASH是按页管理的,页大小(512)字节,每页分(8)行; 24、高页寄存器位于FLASH的最后一页的(第六行/0xFFB0~0xFFBF)位置; 25、FLASH的最后一页最后一行是(中断向量); 26、FLASH块保护寄存器(FPROT);块加密寄存器(FOPT);对应的非易失寄存器分别是(NVOPT, NVPROT); 27、FLASH操作的一般过程是(); 28、FLASH操作的有效命令有(空检查,字节编程,突发模式编程,页擦除,全部ROM 擦除); 29、记录程序运行状态的CPU寄存器是(CCR); 30、指令系统包括6大类指令,分别是(算术运算指令、数据传送指令、数据和位操作、逻辑运算、程序控制、堆栈处理); 31、寻址方式是指(CPU访问操作数和数据的方法); 32、寻址方式包括7大类16种,分别是: INH IMM DTR EXT IX,IX1,IX2,SP1,SP2,IX+,IX1+ REL IMD, DD,IX+D,DIX+ 33、8指令模板和6指令模板分别是(); 34、QG8是高电平复位还是低电平复位?低电平 35、QG8数据存储器RAM的大小为(512)字节; 36、上电复位期间将管脚(A4)设置为(低)电平可以进入调试模式 37、QG8的存储器结构为冯·诺伊曼还是哈佛结构?冯诺依曼

51单片机实验程序

3 3 3 用查表方式编写y=x1 +x2 +x3 。(x 为0~9 的整数) #include void main() { int code a[10]={0,1,8,27,64,125,216,343,512,729}; //将0~9 对应的每位数字的三次方的值存入code中,code为程序存储器,当所存的值在0~255 或-128~+127 之间的话就用char ,而现在的值明显超过这个范围,用int 较合适。int 的范围是0~65535 或-32768~32767 。 int y,x1,x2,x3; //此处定义根据习惯,也可写成char x1,x2,x3 但是变量y 一定要用int 来定义。 x1=2; x2=4; x3=9; //x1,x2,x3 三个的值是自定的,只要是0~9 当中的数值皆可,也可重复。 y=a[x1]+a[x2]+a[x3]; while(1); //单片机的程序不能停,这步就相当于无限循环的指令,循环的内容为空白。 } //结果的查询在Keilvision 软件内部,在仿真界面点击右下角(一般初始位置是右下角)的watch 的框架内双击“double-click or F2 to add”文字输入y 后按回车,右侧会显示其16 进制数值如0x34,鼠标右键该十六进制,选择第一行的decimal,可查看对应的10 进制数。 1、有10 个8 位二进制数据,要求对这些数据进行奇偶校验,凡是满足偶校验的 数据(1 的个数为偶数)都要存到内RAM50H 开始的数据区中。试编写有关程序。 #include void main() { int a[10]={0,1,5,20,24,54,64,88,101,105}; // 将所要处理的值存入RAM 中,这些可以根据个人随意设定,但建议不要超过0~255 的范围。 char i; // 定义一个变量 char *q=0x50; // 定义一个指针*q 指向内部0x50 这个地址。 for(i=9;i>=0;i--) //9~0 循环,共十次,也可以用for(i=0;i<10;i++) { ACC=a[i]; //将a[i] 的值赋给累加器ACC if (P==0) //PSW0 位上的奇偶校验位,如果累加器ACC 内数值1 的个数为偶数那么P 为0,若为奇数,P 为1。这里的P 是大写的。 { *q=a[i]; q++; // 每赋一个值,指针挪一个位置指向下一个。 } } while(1); //同实验一,程序不能停。 }

单片机的复位与程序执行

单片机的复位与程序执行 程序中的字节可能是操作码,也可能是数据。所以主程序要从程序存储器的指定位置开始存储,单片机的工作也必须从这个指定位置开始执行,才能正确运行。 51单片机规定主程序从程序存储器0号单元开始存储。也就是说,O号单元存储的肯定是操作码,而1号单元存储的是操怍数或卜条指令的操作码。如果机器从l号单元开始执行程序,就会将操作数当作操作码,其结果是影响整个程序的运作.铸成一步错步步错的结局。 单片机上电后,首先使程序计数器PC等于0000H.保证从第一条指令的操作码开始执行程序。 1.复位要求和复位方法 5 1单片机复位引脚Reset为高电平时,进行初始化;为低电平时,开始工作。就是通常所说的高电平复位。单片机正常工作期间.复位引脚Reset要一直保持低电平,工作过程中,引脚Reset一旦接收到一个正脉冲,就会再次复位启动。 为可靠复位,51单片机要求Reset引脚施加的正脉冲脉宽不小于2个机器周期。当晶搌频率fose=12MHzH~f,机器周期T=lμs.要求加在Reset引脚的正脉宽不小于21xs。以t=OH寸刻作为正脉冲上升沿,在正脉冲期间,单片机完成复位任务,使有关的寄存器、计数器等成为特定状态。正脉冲结束时.即t=tl 时,单片机开始执行程序。 通常.利用RC电路暂态过程中电容充电指数曲线加到51单片机Reset引脚上完成复位.见图1和图2。 复位方法分为上电复位和手动复位。手动复位也叫按钮复位。上电复位时,Reset引脚电压按照RC充电规律变化,当该电压下降到单片机最小输入高电平对应电压时,复位结束, 程序开始启动。显然,电阻、电容越大,复位正脉宽就越大。设计复位电路的要求,就是确定电阻电容值,达到2个机器周期的复位最小正脉宽要求。 手动复位是操作者手按按钮,给单片机施加一个正脉冲,或由别的电路给单片机施加一个正脉冲使之复位。实际上.手指按一下起码有数百毫秒,一般都能满足单片机复位正脉宽的要求。 上电复位时,要通过RC缓慢放电来满足复位要求。若RCH寸间常数太小,就不能满足复位正脉宽要求。因此应当按照上电复位要求来确定电阻和电容值。按钮复位时,正脉冲波顶电压由Rl、R2对+5V分压形成。URl=(Rl/Rl+R2)Uω因此,Rl、R2应能满足对+5V分压值大于单片机最小输入高电平电压(单片机最小输入高电平UtHmin=3.5V)。通常取R1=lOkΩ,R2=lkΩ,分压为URl=4.55V>3. 5V.再根据电路暂态过程按照上述电复位要求来确定电容C的值。 根据T=RlC,以及Rl=10kΩ,可求出品振为lMHzB寸C=6.7nF。为保险起见,通常取电容C=lμF。按照比较低的晶振频率fosc=1MHz计算的电阻和电容值,自然适用于实际使用的更高的晶振频率,例如fosc=6MHz、11.0592MHz和fosc= l2MHz。对Rl=10Ω,时间常数T=4ms。就是说,当Rl=10kQ时,C=lμF.单片机合闸上电后4ms即开始启动执行程序。 2。复位影响及复位结果 复位影响:5l单片机复位影响程序计数器PC及除SBUF .WDTRST以外的22个SFR。

单片机-实验二-分支程序设计实验

实验二实验报告 ·

将00-99的十进制数据转换成二进制进行开关量的输入,L0灯亮 将100的十进制转换为01100010的二进制开关量进行输入,L1灯亮

将101-127的十进制转换为二进制进行开关量的输入,L2灯亮 完整的接线图

实验操作 1、正确连接实验板子和电脑,将点源接入,数据线连接到电脑的USB接口,在电脑端运行 软件,取消勾选模拟器,按照实验装置的名称正确的选择响应的系统。 2、在软件内部按照输入分支程序结构。 3、打开点源开关。 4、调整输入的各个断口的开关量,着重关注在二进制数01100010附近的变化. 5、整理实验器材。 思考题1 写出分支程序设计的要点 分支结构也成为选择结构。在程序中每个分支均为一个程序段。为分支需要,程序设计时不要忘记给程序段的起始地址赋予一个地址标号,以供选择分支使用。 这次实验使用的是一个多分支程序结构,可以通过一系列的JC\JNC\JB\JNB的判断,进行逐级分支。并且可以使用CJNE进行实现。 80C51中没有专门的多分支转移指令,可以使用的变址转移指令“JMP @A+DPTR”,但是这样的指令需要数据表格配合。 思考题2 8051单片机有几个并行口,写出各并行口的特点 8051单片机有4个并行I/O口,分别为P0\P1\P2\P3,以实现数据的并行输入与输出。 这4个并行口均是8为双向口线,各占8个引脚,在P3口线上有着引脚复用,均有第二功能信号,这些第二功能信号都是重要的控制信号,在实际使用中总是先按需要优先选用第二功能,剩下的不用的再当作口线使用。 并行可以有效的提高单片机的工作效率。 思考题3 实验中遇到的苦难 在这个实验中和实验一显著不同的是我们需要重新认识硬件与软件的配合,一些数据线的链接,点源的通断都是我们学习的要点,我们也第一次接触到了输入口和输出口相互之间的区别。 这个实验我们一定要将十进制的思维转换过来转换为二进制的思维,在机器语言中只有开关量的通断,而这个题目也是很好的应用了开关量的通断完成了这个实验。 学会了分支判断方式的编程

单片机各种复位电路原理

单片机各种复位电路原理 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是 一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁 兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设 计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可 靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始 工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒, 所以,完全能够满足复位的时间要求。

图1 图2 2 、上电复位 AT89C51 的上电复位电路如图 2 所示,只要在RST 复位输入引脚上接一电容至Vcc 端,下接一个电阻到地即可。对于CMOS 型单片机,由于在RST 端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1μF。上电复位的工作过程是在加电时,复位电路通 过电容加给RST 端一个短暂的高电平信号,此高电平信号随着Vcc 对电容的充电过程而 逐渐回落,即RST 端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地 复位,RST 端的高电平信号必须维持足够长的时间。上电时,Vcc 的上升时间约为10ms ,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz ,起振时间为1ms ;晶振频率为1MHz ,起振时间则为10ms 。在图 2 的复位电路中,当Vcc 掉电时,必然会使RST 端电压迅速下降到0V 以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生 损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l态”。如果系统在上电时得不到有效的复位,则程序计数器PC 将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。 2 、积分型上电复位 常用的上电或开关复位电路如图 3 所示。上电后,由于电容C3 的充电和反相门的作用,使RST 持续一段时间的高电平。当单片机已在运行当中时,按下复位键K 后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。 图3 中:C:=1uF ,Rl=lk ,R2=10k

单片机习题答案(1章-9章)

第2章习题参考答案 2-1 MCS-51系列单片机内部有哪些主要的逻辑部件? 答:一个8位CPU;一个片内振荡器及时钟电路;4K字节ROM程序存储器;128字节RAM数据存储器;两个16位定时器/计数器;可寻址64K外部数据存储器和64K外部程序存储器空间的控制电路;32条可编程的I/O线(四个8位并行I/O端口);一个可编程全双工串行口;具有五个中断源、两个优先级嵌套中断结构 2-2 MCS-51设有4个8位端口(32条I/O线),实际应用中8位数据信息由哪一个端口传送?16位地址线怎样形成?P3口有何功能? 答:实际应用中8位数据信息由P1口传送。16位地址线由P0口输出低8位地址A7~A0,P2口输出高8位地址A15~A8。P3口是一个多用途的端口,也是一个准双向口,作为第一功能使用时,其功能同P1口;当作第二功能使用时,P3.0—RXD串行输入(数据接收)口,P3.1—TXD串行输出(数据发送)口,P3.2—外部中断0输入线,P3.3—外部中断1输入线,P3.4—T0定时器0外部输入,P3.5—T1定时器1外部输入,P3.6—WR外部数据存储器写选通信号输出,P3.7—外部数据存储器读选通信号输入。 2-3 MCS-51的存储器结构与一般的微型计算机有何不同?程序存储器和数据存储器各有何作用? 答:MCS-51存储器结构与常见的微型计算机的配置方式不同,它把程序存储器和数据存储器分开,各有自已的寻址系统、控制信号和功能。 程序存储器用来存放程序和始终要保留的常数,如经汇编后所编程序的机器码。数据存储器通常用来存放程序运行中所需要的常数或变量,例如模/数转换时实时采集的数据等。2-4 MCS-51内部RAM区功能结构如何分配?4组工作寄存器使用时如何选用?位寻址区域的字节地址范围是多少? 答:MCS-51系列单片机内部数据存储器:00H ~ 7FH单元组成的低128字节地址空间的RAM 区,又分为为工作寄存器区(00H~1FH)、位寻址区(20H~2FH)和数据缓冲区(30H~7FH)。80H ~ FFH(128 ~255)单元组成的高128字节地址空间的特殊功能寄存器(又称SFR)区。对于8032、8052、8752的单片机还有80H~FFH单元组成的高128字节地址空间的RAM区。 4组工作寄存区是由程序状态字PSW(特殊功能寄存器,字节地址为0D0H)中的D4、D3 位寻址区域的字节地址范围是20H~2FH(对应的位地址范围是00H~7FH)。 2-5 特殊功能寄存器中哪些寄存器可以位寻址?它们的字节地址是什么? 答:P0字节地址80H,TCON字节地址88H,P1字节地址90H,SCON字节地址98H,P2字节地址A0H,IE字节地址A8H,P3字节地址B0H,IP字节地址B8H,PSW字节地址D0H,ACC字节地址E0H,B字节地址F0H。 2-6 简述程序状态字PSW中各位的含义。 答:CY(PSW·7)进位标志,AC(PSW·6)辅助进位标志,F0(PSW·5)用户标志位RS1、RS0(PSW·4、PSW·3)寄存器区选择控制位,OV(PSW·2)溢出标志,P(PSW.0)奇偶标志,每个指令周期都由硬件来置位或清“0”,以表示累加器A 中1的位数的奇偶数 2-7 一个时钟频率为6MHz的单片机应用系统,它的时钟周期、机器周期、指令周期分别是

北京交通大学单片机实验程序报告

单片机实验程序

实验二8155并行I/O口扩展和动态扫描程序编制 1.实验目的 (1)掌握8155并行I/O芯片扩展和使用方法 (2)掌握数码管动态扫描汇编语言的编制方法 2.预习要点 (1)8155芯片基础知识 (2)51单片机的总线时序、地址译码的原理 (3)数码管动态扫描显示方法 3.实验设备 计算机、单片机实验箱。 4.实验内容 基本要求: 通过实验板的上的8155(U16)显示电路(在电路板上已经固定连接字形和字位控制线的8155部分),并通过跳线确定8155的地址,在8个LED数码管上依次动态显示数字1~8。 扩展要求: 假定30H~33H的存储单元内容为4个字节16进制数,请依序将他们显示在8个LED数码管上 根据程序要求做如下程序流程图: 主程序流程图:

显示子程序流程框图: 基本要求编程如下: ORG 0000H

AJMP MAIN ORG 0050H MAIN: MOV SP,#60H ;压栈 MOV DPTR, #4100H MOV A,#0FH ;方式控制字0FH送A MOVX @DPTR, A ;8155初始化 MOV 70H,#01H ;设置显示缓冲区 MOV 71H,#02H MOV 72H,#03H MOV 73H,#04H MOV 74H,#05H MOV 75H,#06H MOV 76H,#07H MOV 77H,#08H LOOP: ACALL DISPLAY ;循环调用显示子程序AJMP LOOP DISPLAY: MOV R0,#70H ;显示缓冲区首地址送R0 MOV R3,#0FEH ;字位控制初值送R3

单片机复位电路理图解

单片机复位电路原理图解 复位电路的作用 在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。 无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。 基本的复位方式 单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。单片机系统的复位方式有:手动按钮复位和上电复位 1、手动按钮复位 手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。一

般采用的办法是在RST端和正电源Vcc之间接一个按钮。当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。手动按钮复位的电路如所示。由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。 图1 图2 2、上电复位 AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电

容减至1µF。上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。在图2的复位电路中,当Vcc 掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。 2、积分型上电复位 常用的上电或开关复位电路如图3所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。 根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。图3中:C:=1uF,Rl=lk,R2=10k

相关文档
相关文档 最新文档