文档视界 最新最全的文档下载
当前位置:文档视界 › 图像的边缘检测(实验报告).doc

图像的边缘检测(实验报告).doc

图像的边缘检测(实验报告).doc
图像的边缘检测(实验报告).doc

数字信号处理实验

图像的边缘检测

图像的边缘检测

一,原理

本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。

首先,了解一些术语的定义:

边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。

边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。

边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。

轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。

边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。

边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。

边缘就是图像中包含的对象的边界所对应的位置。物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。

边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。由于边缘的灰度不连续性,可以使用求导数的方法检测到。最早的边缘检测方法都是基于像素的数值导数的运算。本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。

边缘检测有三个共性准则,

1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。

2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。

3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。

二,对图像进行各种算子运算

本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算。

由于MATLAB对彩色图像不能进行分析。所以,我们要将图像首先进行灰度处理,处理后的图像才能进行各种算子的变换分析。

程序如下所示:

>> I=imread('C:\Users\Administrator\Desktop\草莓.jpg');

>> subplot(3,3,1);

>> imshow(I);title('(a)原始图像');

>> J=rgb2gray(I); %转化为灰度图像

>> subplot(3,3,2);

>> imshow(J);title('(b)灰度图');

>> K=imadjust(J,[40/255 1]);%调整灰度值

>> subplot(3,3,3)

>> imshow(K);title('(c)调整灰度后的图');

>> I1=edge(K,'sobel');

>> subplot(3,3,4);

>> imshow(I1);title('(d)Sobel算子');

>> I2=edge(K,'prewitt');

>> subplot(3,3,5);

>> imshow(I2);title('(e)Prewitt算子');

>> I3=edge(K,'robert');

>> subplot(3,3,6);

>> imshow(I3);title('(f)Robert算子');

>> I4=edge(K,'log');

>> subplot(3,3,7);

>> imshow(I4);title('(g)Laplace算子');

>> I5=edge(K,'canny');

>> subplot(3,3,8);

>> imshow(I5);title('(h)Canny算子');

图像进行分析之后的结果如图1所示。

图1 对原图进行各种算子变换的结果

通过对上述几种算子的研究,我们可以发现,Prewit t 算子和Sobel 算子都是对图像进行差分和滤波运算,仅在平滑部分的权值选择上有些差异,但是图像产生了一定的模糊, 而且有些边缘还检测不出来,所以检测精度比较低, 该类算子比较适用于图像边缘灰度值比较明显的情况。

Robert s 算子检测精度比较高, 但容易丢失一部分边缘, 使检测的结果不完整,同时图像没经过平滑处理,不能抑制噪声,所以该算子对具有陡峭的低噪声图像响应最好。

Laplace算子通过高斯函数对图像进行了平滑处理,对噪声的抑制作用比较明显, 但处理的同时也可能将原有的边缘平滑, 造成某些边缘无法检测到。此外,噪声对其影响也较大,检测到的图细节很丰富,同时就可能出现伪边缘。但是,如果要降低伪边缘的话,又可能使检测精度下降,丢失很多真边缘。因此, 对于不同图像应选择不同参数。

Canny 算子也采用高斯函数对图像进行平滑处理,也具有较强的去噪能力, 但同样可能会丢失一些边缘信息,但是,从图中可以看出,Canny 算子比Laplace算子的检测边缘的精度要高些。通过实验结果可以看出,该算子在上述几种边缘检测算子当中效果最好。

三,加入噪声

对图像加入一定的噪声,然后观察各种算子对噪声的影响。(加入高斯噪声(μ=0,σ^2=0.01))

其程序如下:

>> K_g1 = imnoise(K,'gaussian',0,0.01);

>> BW_sobel = edge(K_g1,'sobel');

>> BW_prewitt = edge(K_g1,'prewitt');

>> BW_roberts = edge(K_g1,'roberts');

>> BW_laplace = edge(K_g1,'log');

>> BW_canny = edge(K_g1,'canny');

>> figure(2)

>> subplot(2,3,1);imshow(K_g1),title('加入高斯噪声(μ=0,σ^2=0.01)图像');

>> subplot(2,3,2),imshow(BW_sobel),title('sobel检测');

>> subplot(2,3,3),imshow(BW_prewitt),title('prewitt检测');

>> subplot(2,3,4),imshow(BW_roberts),title('roberts检测');

>> subplot(2,3,5),imshow(BW_laplace),title('laplace检测');

>> subplot(2,3,6),imshow(BW_canny),title('canny检测');

其程序运行的结果如图2所示:

图2 加入高斯噪声之后各种算法的结果

通过上述实验结果我们可以发现,在加入高斯噪声以后,canny算子的去噪能力减弱,对边缘检测的效果不太明显。相反,从图中可以发现sobel算子和prewitt算子对噪声的过滤作用较为明显。基本上能够检测出较为完整的边缘信号。

经典图像边缘检测

经典图像边缘检测(微分法思想)——Sobel算子 2008-05-15 15:29Sobel于1970年提出了Sobel算子,与Prewitt算子相比较,Sobel算子对检测点的上下左右进一步加权。其加权模板如下: 经典图像边缘检测(微分法思想)——Roberts交叉算子 2008-05-14 17:16 如果我们沿如下图方向角度求其交叉方向的偏导数,则得到Roberts于1963年提出的交叉算子边缘检测方法。该方法最大优点是计算量小,速度快。但该方法由于是采用偶数模板,如下图所示,所求的(x,y)点处梯度幅度值,其实是图中交叉点处的值,从而导致在图像(x,y)点所求的梯度幅度值偏移了半个像素(见下图)。

上述偶数模板使得提取的点(x,y)梯度幅度值有半个像素的错位。为了解决这个定位偏移问题,目前一般是采用奇数模板。 奇数模板: 在图像处理中,一般都是取奇数模板来求其梯度幅度值,即:以某一点(x,y)为中心,取其两边相邻点来构建导数的近似公式:

这样就保证了在图像空间点(x,y)所求的梯度幅度值定位在梯度幅度值空间对应的(x,y)点上(如下图所示)。 前面我们讲过,判断某一点的梯度幅度值是否是边缘点,需要判断它是否大于设定的阈值。所以,只要我们设定阈值时考虑到加权系数产生的影响便可解决,偏导数值的倍数不是一个问题。 经典图像边缘检测(微分法思想)——Prewitt算子 2008-05-15 11:29 Prewitt算子 在一个较大区域中,用两点的偏导数值来求梯度幅度值,受噪声干扰很大。若对两个点的各自一定领域内的灰度值求和,并根据两个灰度值和的差来计算x,y的偏导数,则会在很

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

数字图像处理实验报告--边缘检测

数字图像处理实验报告 实验名称:边缘检测 姓名: 班级: 学号:09045433 专业:电子信息工程(2+2) 指导教师:陈华华 实验日期:2012年5月17日

边缘检测 一,原理 本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。首先,了解一些术语的定义: 边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。 边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。 边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。 轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。 边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。 边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。 边缘就是图像中包含的对象的边界所对应的位置。物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。 边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。由于边缘的灰度不连续性,可以使用求导数的方法检测到。最早的边缘检测方法都是基于像素的数值导数的运算。本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。 边缘检测有三个共性准则, 1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。 2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。 3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。二,对图像进行各种算子运算 本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace 算子和Canny算子运算。 Matlab代码: clear all; close all; warning off all; I=imread('cameraman.tif'); %%没有噪声时的检测结果 BW_sobel=edge(I,'sobel'); BW_prewitt=edge(I,'prewitt');

入侵检测技术综述

入侵检测技术综述 胡征兵1Shirochin V.P.2 乌克兰国立科技大学 摘要 Internet蓬勃发展到今天,计算机系统已经从独立的主机发展到复杂、互连的开放式系统,这给人们在信息利用和资源共享上带来了很大的便利。由Internet来传递和处理各种生活信息,早已成为人们重要的沟通方式之一,随之而来的各种攻击事件与入侵手法更是层出不穷,引发了一系列安全问题。本文介绍现今热门的网络安全技术-入侵检测技术,本文先讲述入侵检测的概念、模型及分类,并分析了其检测方法和不足之处,最后说描述了它的发展趋势及主要的IDS公司和产品。 关键词入侵检测入侵检测系统网络安全防火墙 1 引言 随着个人、企业和政府机构日益依赖于Internet进行通讯,协作及销售。对安全解决方案的需求急剧增长。这些安全解决方案应该能够阻止入侵者同时又能保证客户及合作伙伴的安全访问。虽然防火墙及强大的身份验证能够保护系统不受未经授权访问的侵扰,但是它们对专业黑客或恶意的经授权用户却无能为力。企业经常在防火墙系统上投入大量的资金,在Internet入口处部署防火墙系统来保证安全,依赖防火墙建立网络的组织往往是“外紧内松”,无法阻止内部人员所做的攻击,对信息流的控制缺乏灵活性,从外面看似非常安全,但内部缺乏必要的安全措施。据统计,全球80%以上的入侵来自于内部。由于性能的限制,防火墙通常不能提供实时的入侵检测能力,对于企业内部人员所做的攻击,防火墙形同虚设。 入侵检测是对防火墙及其有益的补充,入侵检测系统能使在入侵攻击对系统发生危害前,检测到入侵攻击,并利用报警与防护系统驱逐入侵攻击。在入侵攻击过程中,能减少入侵攻击所造成的损失。在被入侵攻击后,收集入侵攻击的相关信息,作为防范系统的知识,添加入知识库内,增强系统的防范能力,避免系统再次受到入侵。入侵检测被认为是防火墙之后的第二道安全闸门,在不影响网络性能的情况下能对网络进行监听,从而提供对内部攻击、外部攻击和误操作的实时保护,大大提高了网络的安全性[1]。 2 入侵检测的概念、模型 入侵检测(Intrusion Detection,ID), 顾名思义,是对入侵行为的检测。它通过收集和分析计算机网络或计算机系统中若干关键点的信息,检查网络或系统中是否存在违反安全策略的行为和被攻击的迹象。进行入侵检测的软件与硬件的组合便是入侵检测系统(Intrusion Detection System,IDS)。 入侵检测的研究最早可以追溯到詹姆斯·安德森[1]在1980年为美国空军做的题为《计算机安全威胁监控与监视》的技术报告,第一次详细阐述了入侵检测的概念。他提出了一种对计算机系统风险和威胁的分类方法,并将威胁分为外部渗透、内部渗透和不法行为三种,还提出了利用审计跟踪数据监视入侵活动的思想。他的理论成为入侵检测系统设计及开发的基础 , 他的工作成为基于主机的入侵检测系统和其它入侵检测系统的出发点。 Denning[2]在1987年所发表的论文中,首先对入侵检测系统模式做出定义:一般而言,入侵检测通过网络封包或信息的收集,检测可能的入侵行为,并且能在入侵行为造成危害前及时发出报警通知系统管理员并进行相关的处理措施。为了达成这个目的,入侵检测系统应包含3个必要功能的组件:信息来源、分析引擎和响应组件。 ●信息来源(Information Source):为检测可能的恶意攻击,IDS所检测的网络或系统必须能提供足够的信息给IDS,资料来源收集模组的任务就是要收集这些信息作为IDS分析引擎的资料输入。 ●分析引擎(Analysis Engine):利用统计或规则的方式找出可能的入侵行为并将事件提供给响应组件。 ●响应模组(Response Component):能够根据分析引擎的输出来采取应有的行动。通常具有自动化机制,如主动通知系统管理员、中断入侵者的连接和收集入侵信息等。 3 入侵检测系统的分类 入侵检测系统依照信息来源收集方式的不同,可以分为基于主机(Host-Based IDS)的和基于网络(Network-Based IDS);另外按其分析方法可分为异常检测(Anomaly Detection,AD)和误用检测(Misuse Detection,MD),其分类架构如图1所示: 图 1. 入侵检测系统分类架构图

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

入侵检测技术毕业论文

入侵检测技术毕业论文 Last updated on the afternoon of January 3, 2021

毕业设计 开题报告 学生姓名徐盼 学号 专业计算机网络技术 班级网络201401班 指导教师刘烨 开题时间2016年10月20日 黄冈职业技术学院电子信息学院

电子信息学院毕业设计开题报告

学业作品题目入侵检测技术应用 学生姓名徐盼 学号 专业计算机网络技术 班级网络201401班 指导教师刘烨 完成日期2016年11月20日 目录

摘要 近年来随着计算机网络的迅速发展,网络安全问题越来越受到人们的重视。从网络安全角度来看,防火墙等防护技术只是被动安全防御技术,只是尽量阻止攻击或延缓攻击,只会依照特定的规则,允许或是限制传输的数据通过。在网络环境下不但攻击手段层出不穷,而且操作系统、安全系统也可能存在诸多未知的漏洞,这就需要引入主动防御技术对系统安全加以补充,目前主动防御技术主要就是入侵检测技术。 本文从入侵检测技术的发展入手,研究、分析了入侵检测技术和入侵检测系统的原理、应用、信息收集和分析、数据的处理及其优缺点和未来的发展方向。 关键词:网络安全,网络入侵,入侵检测技术,入侵检测系统 第一章绪论 入侵检测技术的提出 随着Internet高速发展,个人、企业以及政府部门越来越多地依靠网络传递信息,然而网络的开放性与共享性容易使它受到外界的攻击与破坏,信息的安全保密性受到严重影响。网络安全问题已成为世界各国政府、企业及广大网络用户最关心的问题之一。 在计算机上处理业务已由基于单机的数学运算、文件处理,基于简单连结的内部网络的内部业务处理、办公自动化等发展到基于企业复杂的内部网、企业外部网、全球互联网的企业级计算机处理系统和世界范围内的信息共享和业务处理。在信息处理能力提高的同时,系统的连结能力也在不断的提高。但在连结信息能力、流通能力提高的同时,基于网络连接的安全问题也日益突出,黑客攻击日益猖獗,防范问题日趋严峻:具WarroonResearch的调查,1997年世界排名前一千的公司几乎都曾被黑客闯入;

文字识别开题报告

太原理工大学信息工程学院 本科毕业设计(论文)开题报告 毕业设计(论文)题目 基于边缘检测的文字图像识别 学生姓名导师姓名 专业信息 报告日期 班级07-1 指导教 师意见 签字年月日 专业(教 研室)主 任意见 年月日系主任 意见 年月日

1. 国内外研究现状及课题意义 文字图像信息是人类获取外界信息的主要来源,在近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多的利用图像信息来识别和判断事物,解决实际问题。例如:由于空间技术的发展,人造卫星拍摄了大量地面和空间的照片,人们要分析照片,获得地球资源、全球气象和污染情况等;在医学上,医生可以通过X射线分析照像,观察到人体个部位的多次现象;在工厂,技术人员可以利用电视图像管理生产;生活中,交通管理部门也要利用文字图像识别技术确定违章车辆的牌照,对其进行监督管理,由此可见文字图像信息的重要性【1】。 获得文字图像信息非常重要,但更重要的是对文字图像进行处理,从中找到我们所需要的信息,因此在当今科学技术迅速发展的时代,对文字图像的处理技术提出了更高的要求,能够更加快速准确的获得有用信息。 1.1国内外研究现状 20世纪20年代文字图像处理首次得到应用。20世纪60年代中期,电子计算机的发展得到普遍应用,文字图像处理技术也不断完善,逐渐成为一个新兴的科学。从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理技术也向更高、更深的层次迈进。到了20世纪90年代,机器人技术已经成为工业的三大支柱之一,人们已经开始研究如何用计算机系统解释图像,实现类似人类视觉系统来理解外部世界,这被称为图像理解活计算机视觉。很多国家,特别是发达国家投入更多的人力、物力道这项研究,取得了不少重要的研究成果。 数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提取有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。目前,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。数字图像处理因易于实现非线性处理,处理程序和处理参数可变,故事一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。主要用于图像变换、测量、模式识别、模拟以及图像产生。广泛应用在遥感、宇宙观测、影像医学、通信、刑侦及多种工业领域【2】。1.2文字图像识别面临的问题 文字图像识别的发展经历了三个阶段:文字识别、图像处理和识别、物体识别。现在对于文字图像识别技术的研究,还面临几个问题,一是图像数据量大,一般来说,要取得较高的识别精度,原始图像应具有较高的分辨率,至少应大于64×64。二是图像污

基于matlab的图像边缘检测算法研究和仿真设计

基于matlab的图像边缘检测算法研究和仿真 目录 第1章绪论 1 1.1 序言 1 1.2 数字图像边缘检测算法的意义 1 第2章传统边缘检测方法及理论基础 2 2.1 数字图像边缘检测的现状与发展 2 2.2 MATLAB和图像处理工具箱的背景知识 3 2.3 数字图像边缘检测关于边缘的定义 4 2.4 基于一阶微分的边缘检测算子 4 2.5 基于二阶微分的边缘检测算子 7 第3章编程和调试 10 3.1 edge函数 10 3.2 边缘检测的编程实现 11 第4章总结 13 第5章图像边缘检测应用领域 13 附录参考文献 15

第1章绪论 §1.1 序言 理解图像和识别图像中的目标是计算机视觉研究的中心任务,物体形状、物体边界、位置遮挡、阴影轮廓及表面纹理等重要视觉信息在图像中均有边缘产生。图像边缘是分析理解图像的基础,它是图像中最基本的特征。在Marr的计算机视觉系统中,图像边缘提取占据着非常重要位置,它位于系统的最底层,为其它模块所依赖。图像边缘提取作为计算机视觉领域最经典的研究课题,长期受到人们的重视。 图像边缘主要划分为阶跃状和屋脊状两种类型。阶跃状边缘两侧的灰度值变化明显,屋脊状边缘则位于灰度增加与减少的交界处。传统的图像边缘检测方法大多是从图像的高频分量中提取边缘信息,微分运算是边缘检测与提取的主要手段。由于传统的边缘检测方法对噪声敏感,所以实际运用效果有一定的局限性。近年来,越来越多的新技术被引入到边缘检测方法中,如数学形态学、小波变换、神经网络和分形理论等。 Canny于1986年提出基于最优化算法的边缘检测算子,得到了广泛的应用,并成了与其它实验结果作比较的标准。其原因在于他最先建立了优化边缘检测算子的理论基础,提出了迄今为止定义最为严格的边缘检测的三个标准。另外其相对简单的算法使得整个过程可以在较短的时间实现。实验结果也表明,Canny算子在处理受加性高斯白噪声污染的图像方面获得了良好的效果[1]。 §1.2 数字图像边缘检测算法的意义 数字图像处理是控制领域的重要课题,数字图像边缘检测是图像分割、目标区域识别和区域形状提取等图像分析领域十分重要的基础,是图像识别中提取图像特征的一个重要方法。边缘中包含图像物体有价值的边界信息,这些信息可以用于图像理解和分析,并且通过边缘检测可以极降低后续图像分析和处理的数据量。图像理解和分析的第一步往往就是边缘检测,目前它已成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。 图像的边缘检测技术是数字图像处理技术的基础研究容,是物体识别的重要基础。边缘特征广泛应用于图像分割、运动检测与跟踪、工业检测、目标识别、双目立体视觉等领域。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适

图像增强和边缘检测实验报告

图像增强和边缘检测 实验内容 1)将Image1.jpg 转换为灰度图像A。 2)读懂文档(图像直方图均衡化.doc),利用里面的方法通过编程对图像A进行直方图均衡化处理,得到处理后的图像B。显示图像A和B,以及各自对应的灰度直方图。 3)利用锐化方法(教材118-120页),编制程序,对图像A和B分别使用罗伯特梯度,索伯尔梯度,拉普拉斯方法,进行处理,比较哪种求边缘的方法好,以及进行图像的直方图均衡化后能否提高求边缘的精确度。 4)撰写报告书,说明实验的步骤和方法,实验的结果等。 5)提交报告书以及源程序 实验步骤和方法 1)调用rgb2gray()函数将Image1.jpg 转换为灰度图像A。并将图像A保存到f和I1中。2)统计图像A中的像素并进行均衡化处理并将结果保存到B,显示图像A和B;调用imhist()函数显示两图像的灰度直方图。 3)编制罗伯特锐化函数,设定两个模板t1=[1,0;0,-1] t2=[0,-1;1,0],调用conv2()函数获得图像和两个模板的卷积并取绝对值相加获得罗伯特锐化结果,缩小结果图像。4)编制索伯尔锐化函数,设定两个模板t1=[1,2,1;0,0,0;-1,-2,-1] t2=[-1,0,1;-2,0,2;-1,0,1] ,其余步骤与罗伯特锐化相似。 5)编制拉普拉斯锐化函数,设定模板t(m,n)=[0,1,0;1,-4,1;0,1,0],将待处理图像与模板卷积,并用原图像的至减去模板运算结果的整数倍,将结果缩小化到原图像大小既得拉普拉斯锐化结果。 6)函数整合,将编制好的3)、4)、5)三个函数整合到2)的程序后面并加以调整,分别对图像A和B进行锐化,并将结果输出到2*4的图框中进行对比 实验结果 1)

入侵检测技术综述

河南理工大学 课程论文 (2014-2015第二学年) 论文题目:入侵检测技术综述 学院: 专业班级: 学号: 姓名: 指导老师: 日期:2015.7.3

1引言 1 2入侵行为的概念、分类和演化 1 3入侵检测技术的发展 3 3.1以Denning模型为代表的IDS早期技术 3 3.2中期:统计学理论和专家系统相结合 4 3.3基于网络的NIDS是目前的主流技术 4 4结语 5 参考文献 6

摘要:自从计算机问世以来,安全问题就一直存在着,使用者也一直未给予足够的重视,结果大量连接到Internet上的计算机暴露在愈来愈频繁的攻击中。本文先介绍入侵行为的概念和演化,然后按时间顺序,沿着技术发展的脉络,回顾了入侵检测技术从20世纪70年代初到今天的发展历程。文章以历史和实践的观点,透视入侵和入侵检测技术相互制约,相互促进的演进过程。 关键词:计算机安全;入侵检测;入侵检测系统;入侵检测系统的历史 1引言 自从计算机问世以来,安全问题就一直存在。特别是随着Internet的迅速扩张和电子商务的兴起,人们发现保护资源和数据的安全,让他免受来自恶意入侵者的威胁是件相当困难的事。提到网络安全,很多人首先想到的是防火墙,防火墙作为一种静态的访问控制类安全产品通常使用包过滤的技术来实现网络的隔离。适当配置的防火墙虽然可以将非预期的访问请求屏蔽在外,但不能检查出经过他的合法流量中是否包含着恶意的入侵代码。在这种需求背景下,入侵检测系统(IDS)应运而生。 入侵检测系统(IDS)是将电子数据处理、安全审计、模式匹配及统计技术等有机地融合在一起,通过分析被检测系统的审计数据或直接从网络捕获数据,发现违背安全策略或危及系统安全的行为和活动。本文主要讨论入侵和入侵检测技术从20世纪70年代初到今天的发展历程。这个概念出自James P.Anderson在1972年的一项报告,随后的30多年中,概念本身几乎没有改变。 2入侵行为的概念、分类和演化 从最早期的计算机安全开始,人们就密切关注恶意使用者破坏保护机制的可能性。早期系统多为多用户批处理系统。这个时期,主要的威胁来自系统的合法使用者,他们企图得到未经授权的材料。到了20世纪70年代,分时系统和其他的多用户系统已成气候,Willis H Ware 主持的计算机安全防御科学特别工作 小组提供了一项报告,为处理多级数据的计算机系统的发展奠定了基础。但这篇报告并没有受到应有的重视,直到70年代中期,人们才开始进行构建多级安全体系的系统研究。 1980年4月,詹姆斯·安德森(James P.Anderson)为美国空军做的题为《Computer Security Threat Monitoring and Surveillance》(计算机安全威胁监控与监视)的技术报告,第一次详细阐述了入侵检测的概念,并首先为入侵和入侵检测提出了一个统一的架构,这是该领域的开山之作。他在论文中给出了入侵和入侵检测技术方面的概念: 威胁(Threat)可能存在有预谋的、未经认可的尝试: ①存取数据; ②操控数据; ③使系统不可靠或无法使用。 危险(Risk)意外的和不可预知的数据暴露,或者,由于硬件故障、软件设计的不完整和不正确所造成的违反操作完整性的问题。 脆弱性(Vulnerability)已知的或可疑的硬件或软件设计中的缺陷;使系统暴露的操作;意外暴露自己信息的操作。攻击(Attack)实施威胁的明确的表达或行为。 渗透/入侵(Penetration)一个成功的攻击;(未经认可的)获得对文件和程序的使用,或对计算机系统的控制。 威胁概念中的③包括DOS(Denial Of Service)“拒绝服务攻击”。盗用计算资源也属于这个类别之内。 一般来说,外部入侵者的首要工作是进入系统。所外人,也可能是合法用户,但违规使用了未经授权的资源。另一方面,除了拒绝服务攻击外,多数攻击都需要入侵者取得用户身份。20世纪80年代中后期,网络计算已经相当普遍,渗透和入侵也更广泛。但许多厂商和系

边缘检测原理(内含三种算法)

边缘检测原理的论述

摘要 数字图像处理技术是信息科学中近几十年来发展最为迅速的学科之一。图像边缘是图像最基本的一种特征,边缘在图像的分析中起着重要的作用。边缘作为图像的一种基本特征,在图像识别、图像分割、图像增强以及图像压缩等的领域中有较为广泛的应用,其目的就是精确定位边缘,同时更好地抑制噪声。目前,数字图像处理技术被广泛应用于航空航天、通信、医学及工业生产等领域中。图像边缘提取的手段多种多样,本文主要通过MATLAB语言编程分别用不同的算子例如Roberts算子、Prewitt算子、Sobel算子、Kirsch 算子、Laplacian算子、Log算子和Canny算子等来实现静态图像的边缘检测,并且和检测加入高斯噪声的图像进行对比。阐述了不同算子在进行图像边缘提取的特点,并在此基础上提出利用小波变换来实现静态图像的边缘检测。 【关键字】图像边缘数字图像边缘检测小波变换 背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年

代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。(2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 边缘是图象最基本的特征.边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息.所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来 的.边缘具有方向和幅度两个特征.沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈.而这种剧烈可能呈

边缘检测与Hough变换实验报告----Matlab

边缘检测与Hough变换 实验目的:写一段代码实现一幅图像,其中分为以下两个步骤 1.使用Matlab中的canny算子进行边缘检测,可以让使用者交互式的输入不同 的Sigma的值实现边缘检测。 2.运用Hough变换来找到最突出的边缘,在图像中找到并画出最长的直线。 实验原理: canny算子边缘检测的基本原理是:采用二维高斯函数的任一方向上的一阶方向 导数为噪声滤波器,通过与图像f(x,y)卷积进行滤波,然后对滤波后的图像 寻找图像梯度的局部极大值,以确定图像边缘。 Canny边缘检测算子是一种最优边缘检测算子。其实现步骤如下: 1)用高斯滤波器平滑图像 2)计算滤波后图像梯度的幅值和方向 3)对梯度幅值应用非极大值抑制,其过程为找出图像梯度中的局部极大值点,把其他非局部极大值置零,以得到细化的边缘; 4)再用双阈值算法检测和连接边缘; 使用canny算子的edge函数调用格式为 BW=edge(I,'canny'); BW=edge(I,'canny',thresh,sigma); BW=edge(I,'canny',thresh); [BW,threshold]=edge(I,'canny',…); 2.Hough变换时最常用的直线提取方法,它的基本思想是:将直线上每一个 数据点变换为参数平面中的一条直线或曲线,利用共线的数据点对应的参数 曲线相交于参数空间中一点的关系,使得直线提取问题转化为计数问题。 Hough变换提取直线的主要优点是受直线中的间隙和噪声影响较小。 Hough检测直线的Matlab实现:在Matlab图像处理工具箱中提供了3个与 Hough变换有关的函数,分别为hough函数,houghpeaks函数和houghlines 函数。 hough函数的调用格式为[H,theta,rho]=hough(BW);其中BW为二值图像, H为Hough变换矩阵,theta为变换轴间隔θ,rho为元素个数。 Houghpeaks函数是用来提取Hough变换后参数平面上的峰值点。其调用格 式为peaks=houghpeaks(H,numpeaks),其中,H为Hough函数的输出,参数平 面的技术结果矩阵,参数numpeaks为指定要提取的峰值数目,默认值为1; 输出参数peaks为Q*2维峰值位置矩阵,其中Q为提取的峰值数目,peaks 的第q行分别存储第q个峰值的行和列坐标。 Hough函数用于在图像中提取参数平面上的峰值点对应的直线。其调用格式为lines=houghlines(BW,theta,rho,peaks) Lines=houghlines(…,param1,val1,param2,val2) 其中,BW与Hough函数的BW相同,为二值图象。theta和rho为hough 函数返回的输出,指示θ轴和ρ轴各个单元对应的值。Peaks为houghpeaks 函数返回的输出,指示峰值的行和列坐标,houghlines函数将根据这些峰值 提取直线。Param和val是参数对,用于指定是否合并或保留直线段的相关 参数,其取值有两种。当param=’MinLength’时,bal指定合并后的直线被保 留的门限长度,长度小于val的直线被舍去。当param=’FillGap’时,val指定 直线段被合并的门限间隔。如果两条斜率和截距均相同的直线段间隔小于

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

图像边缘检测算子

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名*** 班级学号09******* 课程设计题目图像边缘检测算子 课程设计目的与要求: 设计目的: 1.熟悉几种经典图像边缘检测算子的基本原理。 2.用Matlab编程实现边缘检测,比较不同边缘检测算子的实验结果。设计要求: 1.上述实验内容相应程序清单,并加上相应的注释。 2.完成目的内容相应图像,并提交原始图像。 3.用理论对实验内容进行分析。 工作计划与进度安排: 2012年 06月29 日选题目查阅资料 2012年 06月30 日编写软件源程序或建立仿真模块图 2012年 07月01 日调试程序或仿真模型 2012年 07月01 日结果分析及验收 2012年 07月02 日撰写课程设计报告、答辩 指导教师: 2012年 6月29日专业负责人: 2012年 6月29日 学院教学副院长: 2012年 6月29日

摘要 边缘检测是数字图像处理中的一项重要内容。本文对图像边缘检测的几种经典算法(Roberts算子、Sobel算子、Prewitt算子)进行了分析和比较,并用MATLAB实现这几个算法。最后通过实例图像对不同边缘检测算法的效果进行分析,比较了不同算法的特点和适用范围。 关键词:图像处理;边缘检测;Roberts算子;Sobel算子;Prewitt算子

目录 第1章相关知识.................................................................................................... IV 1.1 理论背景 (1) 1.2 数字图像边缘检测意义 (1) 第2章课程设计分析 (3) 2.1 Roberts(罗伯特)边缘检测算子 (3) 2.2 Prewitt(普瑞维特)边缘检测算子 (4) 2.3 Sobel(索贝尔)边缘检测算子 (5) 第3章仿真及结果分析 (7) 3.1 仿真 (7) 3.2 结果分析 (8) 结论 (10) 参考文献 (11)

susan算子图像分割开题报告

西安邮电大学 毕业设计(论文)开题报告自动化学院专业级02班 课题名称:基于SUSAN算子的图像分割 学生姓名:学号: 指导教师: 报告日期: 2014年3月21日

1.本课题所涉及的问题及应用现状综述 图像分割就是指把图像分成各具特性的区域并提取感兴趣目标的技术和过程。它是图像处理、模式识别和人工智能等多个领域中的重要课题,也是计算机视觉技术中首要的、重要的关键步骤。图像分割的目的在于根据某些特征(如灰度级、频谱、纹理等)将一幅图像分成若干有意义的区域,使得这些特征在某一区域内表现一致或相似,而在不同区域间表现出明显的不同。图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域,如:工业自动化、在线产品检验、生产过程控制、文档图像处理、图像编码、遥感和生物医学图像分析、保安监视,以及军事、体育、农业工程等方面。在各种图像应用中,只需对图像目标行提取、测量等都离不开图像分割。虽然人们对图像分割已经进行了大量的研究,但还没一种适合于所有图像的通用的分割算法。所以,图像分割一直以来都是图像技术中的研究热点。 图像边缘是是图像的最基本的特征之一, 边缘是由灰度的不连续性所反映的,有方向和幅度两个特性。边缘中包含着有价值的目标边界信息, 这些信息可以用作图像分析、目标识别。边缘检测基本思想是先检测图像中的边缘点, 在按照某种策略将边缘点连接成轮廓,构成分割域。SUSAN算子是一种基于灰度的特征点获取方法, 适用于图像中边缘和角点的检测, 可以去除图像中的噪声, 它具有简单、有效、抗噪声能力强、计算速度快的特点。SUSAN 算子的模板与常规卷积算法的正方形模板不同, 它采用一种近似圆形的模板, 用圆形模板在图像上移动, 模板内部每个图像像素点的灰度值都和模板中心像素的灰度值作比较, 若模板内某个像素的灰度与模板中心像素(核)灰度的差值小于一定值, 则认为该点与核具有相同(或相近)的灰度。 本课题对基于SUSAN算子的图像分割进行研究,并进行仿真验证。

数字图像边缘检测技术的研究

数字图像边缘检测技术的研究 Research on the Techniques of Digital Image Edge Detection 作者姓名张洁 学位类型学历硕士 学科、专业 (工程领域)计算机应用技术 研究方向计算机辅助设计与图形学 导师姓名檀结庆教授 2009年4月

合肥工业大学 本论文经答辩委员会全体委员审查,确认符合合肥工业大学硕士学位论文质量要求。 答辩委员会签名(工作单位、职称) 主席: 委员: 导师:

独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得合肥工业大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名:签字日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解合肥工业大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权合肥工业大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:导师签名: 签字日期:年月日签字日期:年月日 学位论文作者毕业后去向: 工作单位:电话: 通讯地址:邮编

数字图像边缘检测技术的研究 摘要 随着计算机技术的飞速发展,图像边缘检测已成为图像处理的重要内容,它是图像分析的基本问题,是图像分割、特征提取和图像识别的前提。本文的主要内容如下。 首先,介绍了数字图像处理的概念及其应用领域、边缘检测研究的背景意义,历史现状,以及边缘检测的一些基本概念。 然后,分别介绍了经典的图像边缘检测算子,如Robert算子、Sobel算子、Prewitt算子等,并通过理论分析和仿真计算比较了他们各自的优缺点及适用性。接着概述了几种新的边缘检测方法,如小波理论、数学形态学、模糊理论等。在本文的第四章里,讨论了基于线性滤波技术的边缘检测算法:Marr-Hildreth方法和Canny算法。 最后,提出了一种基于各向异性扩散方程的Canny边缘检测算法。Canny 边缘检测算法由于使用高斯滤波对图像进行平滑,往往使得算法的信噪比和定位精度下降,从而产生一些虚假边缘,使角点变圆。针对Canny算法所出现的问题,运用各向异性扩散方程代替高斯滤波,并对扩散后的图像做图像增强。实验结果表明,改进后的算法有效地提高了边缘检测的准确性,得到了比较理想的边缘检测效果。 关键词: 边缘检测;Canny算法;高斯滤波;各向异性扩散方程;非线性滤波

相关文档
相关文档 最新文档