文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学大题经典习题

高考数学大题经典习题

高考数学大题经典习题
高考数学大题经典习题

1. 对于函数()321

(2)(2)3

f x a x bx a x =-+-+-。

(1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过

22sin cos t t t -t 的取值范围;

(2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。

1. (1)由()321

(2)(2)3

f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+-

因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根

因为()f x 的图像上每一点的切线的斜率不超过22sin cos t t t -+

所以()2'2sin cos f x t t t x R ≤-∈恒成立, 而()()2

'21f x x =--+,其最大值为1.

故22sin cos 1t t t -≥

(2)当2a =-时,由()f x 在R 上单调,知0b =

当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2'(2)2(2)f x a x bx a =-+-+-,

2244(4)0b a ∴?=+-≤可得224a b +≤

从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为

4S π=

2. 函数cx bx ax x f ++=23)((0>a )的图象关于原点对称,))(,(ααf A 、))(,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

(Ⅰ)求b 的值;

(Ⅱ)求函数)(x f 的解析式;

(Ⅲ)若m

m x f x 6

)(],1,2[-

>-∈恒成立,求实数m 的取值范围. 2. (Ⅰ) b =0

(Ⅱ)3'2()()30,f x ax cx f x ax c αβ=+∴=+=Q 的两实根是

则 03c a αβαβ+=????=??

|AB|=2222()()()()4()2f f αβαβαβ?-+-=?-=

又0

1a a >∴= 3()3

2

x f x x =-

(Ⅲ) [2,1]x ∈-时,求()f x 的最小值是-5

3. 已知()d cx bx ax x f +++=23是定义在R 上的函数,其图象交x 轴于A ,B ,C 三点,若点B

的坐标为(2,0),且()x f 在]0,1[-和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.

(1)求c 的值;

(2)在函数()x f 的图象上是否存在一点M (x 0,y 0),使得()x f 在点M 的切线斜率为3b ?

若存在,求出点M 的坐标;若不存在,说明理由;

3. ⑴ ∵()x f 在[]0,1-和[]2,0上有相反单调性,

∴ x=0是()x f 的一个极值点,故()0'=x f ,

即0232=++c bx ax 有一个解为x=0,∴c=0 ⑵ ∵()x f 交x 轴于点B (2,0)

∴()a b d d b a 24,048+-==++即

令()0'=x f ,则a

b

x x bx ax 32,0,023212-

===+ ∵()x f 在[]2,0和[]5,4上有相反的单调性

∴4322≤-

≤a b , ∴36-≤≤-a

b

假设存在点M (x 0,y 0),使得()x f 在点M 的切线斜率为3b ,则()b x f 30'=

即 032302

=-+b bx ax ∵ △=()()??

? ??+=+=-??-94364334222a b

ab ab b b a b

又36-≤≤-a

b , ∴△<0

∴不存在点M (x 0,y 0),使得()x f 在点M 的切线斜率为

4. 已知函数x x f ln )(=

(1)求函数x x f x g -+=)1()(的最大值;

(2)当b a <<0时,求证2

2)

(2)()(b

a a

b a a f b f +->

-; 4. (1)x x f x g x x f -+==)1()(,ln )(Θ

)1()1ln()(->-+=∴x x x x g 11

1

)(-+=

'x x g 令,0)(='x g 得0=x 当01<<-x 时,0)(>'x g 当0>x 时0)(

∴ 当且仅当0=x 时,)(x g 取得最大值0

(2))1ln(ln ln

ln ln )()(b

b a b a a b a b a f b f -+-=-==-=- 由(1)知b

a

b b b a a f b f x x -=

--

≥-≤+)()()1ln( 又2

2

2222)

(2212,0b a a b b b a b b a a b ab b a b a +->-∴+>∴>+∴<<Θ 5. 已知)(x f 是定义在1[-,0()0Y ,]1上的奇函数,当1[-∈x ,]0时,2

1

2)(x ax x f +=(a 为实数).

(1)当0(∈x ,]1时,求)(x f 的解析式;

(2)若1->a ,试判断)(x f 在[0,1]上的单调性,并证明你的结论;

(3)是否存在a ,使得当0(∈x ,]1时,)(x f 有最大值6-.

5. (1)设0(∈x ,]1,则1[-∈-x ,)0,212)(x ax x f +

-=-,)(x f 是奇函数,则2

1

2)(x ax x f -=,

0(∈x ,]1;

(2))1(222)(33x a x a x f +=+

=',因为1->a ,0(∈x ,]1,113≥x ,01

3

>+x

a ,即0)(>x f ',所以)(x f 在0[,]1上是单调递增的.

(3)当1->a 时,)(x f 在0(,]1上单调递增,2

5

)1()(max -=?==a a f x f (不含题意,

舍去),当1-≤a ,则0)(=x f ',3

1a x -=,如下表)1

()(3

max a

f x f -=

0(2

2

226∈=

?-=?-=x a ]1,

所以存在22-=a 使)(x f 在0(,]1上有最大值6-.

6. 已知5)(23-+-=x x kx x f 在R 上单调递增,记ABC ?的三内角C B A ,,的对应边分别为

c b a ,,,若ac b c a +≥+222时,不等式[]

)4

33

2()cos(sin 2+

<+++m f C A B m f 恒成立. (Ⅰ)求实数k 的取值范围;

(Ⅱ)求角B cos 的取值范围;

(Ⅲ)求实数m 的取值范围.

19. (1)由5)(23-+-=x x kx x f 知123)(2+-='x kx x f ,Θ)(x f 在R 上单调递增,∴0)(>'x f 恒

成立,∴03>k 且0k 且0124<-k ,∴3

1

>k ,

当0=?,即3

1

=

k 时,22)1(123)(-=+-='x x kx x f , ∴1'x f ,1>x 时,0)(>'x f ,即当3

1

=

k 时,能使)(x f 在R 上单调递增,3

1≥

∴k . (2)Θac b c a +≥+2

2

2

,由余弦定理:2122cos 222=≥-+=

ac ac ac b c a B ,∴3

)4

33

2()cos(sin 2+

<+++m f C A B m f ,所以 4

33

2)cos(sin 2+<+++m C A B m =++=++-=+

+--429cos cos 433cos sin 433)cos(sin 222B B B B C A B 87)2

1

(cos 2≥++B ,---10分 故82<-m m ,即9)1(2<-m ,313<-<-m ,即40<≤m ,即160<≤m

7. 已知函数36)2(23

)(23-++-=x x a ax x f

(I )当2>a 时,求函数)(x f 的极小值

(II )试讨论曲线)(x f y =与x 轴的公共点的个数。

7. (I ))1)(2

(36)2(33)(2--=++-='x a

x a x a ax x f

,2>a Θ 12<∴

a ∴当a x 2<或1>x 时,0)(>'x f ;当12

<

时,0)(<'x f )(x f ∴在)2,(a -∞,(1,)∞+内单调递增,在)1,2

(a

内单调递减

故)(x f 的极小值为2

)1(a

f -

= (II )①若,0=a 则2)1(3)(--=x x f )(x f ∴的图象与x 轴只有一个交点。……6分

②若,0

12

<

时,0)(>'x f )(x f ∴的极大值为02

)1(>-

=a

f )(x f Θ的极小值为0)2

(

f )(x f ∴的图象与x 轴有三个公共点。

③若20<

12

>a

。 ∴当a x x 21>

<或时,0)(>'x f ,当12

<

时,0)(<'x f )(x f ∴的图象与x 轴只有一个交点

④若2=a ,则0)1(6)(2≥-='x x f )(x f ∴的图象与x 轴只有一个交点

⑤当2>a ,由(I )知)(x f 的极大值为043

)431(4)2(2<---=a a f

综上所述,若,0≥a )(x f 的图象与x 轴只有一个公共点;

若0

1. 已知点C (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满

足2

1

,0==?

(1)当点P 在y 轴上运动时,求点M 的轨迹C 的方程;

(2)是否存在一个点H ,使得以过H 点的动直线L 被轨迹C 截得的线段AB 为直径的圆始终过原点O 。若存在,求出这个点的坐标,若不存在说明理由。 6. (1)设M(x,y), P(0, t), Q(s, 0) 则),(),,3(t s PQ t CP -==

由0=?PQ CP 得3s —t 2

=0……………………………………………………①

又由MQ PM 21=

得),(2

1

),(y x s t y x --=- ???

????

-=--=∴)(21)(21y t y x s x , ?????==∴y t x s 233……………………………………②

把②代入①得2)23

(9y x -=0,即y 2=4x ,又x ≠0

∴点M 的轨迹方程为:y 2=4x (x ≠0) (2)如图示,假设存在点H ,满足题意,则

设),4

(),,4(22

2121y y

B y y A ,则由0=?OB OA 可得

016

212

2

2

1=+y y y y 解得1621-=y y 又2

1212

2124

4

4y y y y y y k AB +=--=

则直线AB 的方程为:)4

(42

1211y

x y y y y -+=-

即2

1212

1214)(y x y y y y y y -=--+把1621-=y y 代入,化简得 令y=0代入得x=4,∴动直线AB 过定点(4,0) 答,存在点H (4,0),满足题意。

2. 设j i R y x ?

?,,,∈为直角坐标平面内x,y 轴正方向上的单位向量,若向量

8,)2(,)2(=+-+=++=b a j y i x b j y i x a ???????

?且.

(1)求点M (x,y )的轨迹C 的方程;

(2)过点(0,3)作直线l 与曲线C 的交于A 、B 两点,设+=,是否存在这样的直线l ,使得四边形OAPB 为矩形?若存在,求出直线l 的方程;若不存在,说明理由.

2. (1)8),2,(),2,(=+-=+=b a y x b y x a ?

???Θ且

即点M(x,y)到两个定点F 1(0,-2)、F 2(0,2)的距离之和为8,

∴点M (x,y )的轨迹C 为以F 1(0,-2)、F 2(0,2)为焦点的椭圆,其方程为

112

162

2=+x y . (2)由题意可设直线l 方程为),(),,(,32211y x B y x A kx y +=,

由???

??==

+=112

16322x y kx y 消去y 得:(4+3k)x 2 +18kx-21=0.

此时,△=(18k)2-4(4+3k 2

(-21)>0恒成立,且???

????

+-

=+-=+22122134213418k x x k k x x

由+=知:四边形OAPB 为平行四边形.

假设存在直线l ,使得四边形OAPB 为矩形,则00,=?⊥即 .

因为),(),,(2221y x y x ==,所以02121=+y y x x , 而9)(3)3()3(212122121+++=+?+=x x k x x k kx kx y y ,

故0

9)3418(3)3421)(1(2

22=++-++-

+k k k k k ,即45,1852

±==k k 得. 所以,存在直线l :34

5

=x y ,使得四边形OAPB 为矩形. 3. 一束光线从点)0,1(1-F 出发,经直线032:=+-y x l 上一点P 反射后,恰好穿过点

)0,1(2F .

(Ⅰ)求点1F 关于直线l 的对称点1F '的坐标; (Ⅱ)求以1F 、2F 为焦点且过点P 的椭圆C 的方程;

(Ⅲ)设直线l 与椭圆C 的两条准线分别交于A 、B 两点,点Q 为线段AB 上的动点,求点

Q 到2F 的距离与到椭圆C 右准线的距离之比的最小值,并求取得最小值时点Q 的坐标.

12. (Ⅰ)设1F '的坐标为),(n m ,则

211-=+m n 且032

212=+--?n

m . 解得52,59=-=n m , 因此,点 1F '的坐标为)52

,59(-.

(Ⅱ)11PF F P ='Θ,根据椭圆定义,

得||||||22121F F PF F P a '=+'=22)05

2

()159(22=-+--=,

2=∴a ,112=-=b .

∴所求椭圆方程为12

22

=+y x . (Ⅲ)22

=c

a Θ,∴椭圆的准线方程为2±=x . 设点Q 的坐标为)32,(+t t )22(<<-t ,1d 表示点Q 到2F 的距离,2d 表示点Q 到椭圆的右准线的距离.

则10105)32()1(2221++=++-=t t t t d ,22-=t d .

22221)

2(225210105-++?=-++=t t t t t t d d , 令2

2)2(2

2)(-++=

t t t t f )22(<<-t ,则3

422)

2()

86()2()2(2)22()2()22()(-+-=--?++--?+='t t t t t t t t t f , Θ当0)(,

3

4

2<'-<<-t f t ,0)(,23

4

>'<<-

t f t , 3

4

-=t ,0)(='t f .

∴ )(t f 在3

4

-=t 时取得最小值.

因此,

21d d 最小值=22)34(5=-?f ,此时点Q 的坐标为)3

1,34(-.

注:)(t f 的最小值还可以用判别式法、换元法等其它方法求得.

说明:求得的点Q )3

1

,34(-即为切点P ,21d d 的最小值即为椭圆的离心

4. 已知椭圆的一个焦点)22,0(1-F ,对应的准线方程为249

-

=y ,且离心率e 满足3

2,e ,3

4

成等比数列. (1)求椭圆的方程;

(2)试问是否存在直线l ,使l 与椭圆交于不同的两点M 、N ,且线段MN 恰被直线2

1

-=x 平分?若存在,求出l 的倾斜角的取值范围;若不存在,请说明理由.

4. (1)∵34,,32e 成等比数列 ∴34322?=e 23

2

=e

设),(y x p 是椭圆上任意一点,依椭圆的定义得

99,3222

4

9)22(2222=+=+++y x y y x 化简得 即1922

=+y x 为所求的椭圆方程.

(2)假设l 存在,因l 与直线2

1

-=x 相交,不可能垂直x 轴

因此可设l 的方程为:m kx y +=由

0)9(2)9(222=-+++m kmx x k ①

方程①有两个不等的实数根

∴090)9)(9(44222222<-->-+-=?k m m k m k 即 ②

设两个交点M 、N 的坐标分别为),)(,(2211y x y x ∴9

22

21+-=

+k km

x x

∵线段MN 恰被直线21

-=x 平分 ∴19

2221221

-=+-+=-k km x x 即 ∵0≠k ∴k k m 292+= ③ 把③代入②得 0)9()29(

22

2<+-+k k

k ∵092

>+k ∴22

9104k k

+-< ∴32

>k 解得3>k 或3-

2,2()2,3(π

πππY

5. 已知向量(3),(1,0),(3)(3)a x y b a b a b ==+⊥-r r r r r r

且.

(Ⅰ)求点(,)Q x y 的轨迹C 的方程;

(Ⅱ)设曲线C 与直线y kx m =+相交于不同的两点M 、N ,又点(0,1)A -,当AM AN =时,求实数m 的取值范围。 5. 由题意得:

(II )由22

13

y kx m x y =+???+=??得222

(31)63(1)0k x mkx m +++-=, 由于直线与椭圆有两个不同的交点,0∴?>,即2231m k <+ ①

(1)当0k ≠时,设弦MN 的中点为(,),p p M N P x y x x 、分别为点M 、N 的横坐标,则

又22311

,,2313m k AM AN AP MN m k mk k

++=∴⊥-

=-=+则即 ②. 将②代入①得22m m >,解得02m <<, 由②得2211

0,32

m k m -=

>>解得 ,

故所求的m 取值范围是1

(,2)2

(2)当0k =时,22,,31,11AM AN AP MN m k m =∴⊥<+-<<解得

6. 设直线)1(:+=x k y l 与椭圆)

0(3222>=+a a y x 相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点.

(I )证明:2

2

2

313k k a +>;

(II )若OAB ?=求,2的面积取得最大值时的椭圆方程.

6. 依题意,直线l 显然不平行于坐标轴,故.11

)1(-=

+=y k

x x k y 可化为 将x a y x y k

x 消去代入,311

222=+-=

,得 .012)31(

2

22

=-+-+a y k y k

① 由直线l 与椭圆相交于两个不同的点,得

3)31

(

,0)1)(31(4422222>+>---=

?a k

a k

k 整理得, 即.3132

2

2

k

k a +> (II )解:设).,(),,(2211y x B y x A 由①,得2

21312k k

y y +=

+ 因为212,

2y y -==得,代入上式,得.3122

2k k

y +-=

于是,△OAB 的面积 ||2

3

||||21221y y y OC S =-?=

其中,上式取等号的条件是.3

3,132±

==k k 即 由.33

,31222

2±=+-=

y k

k y 可得 将3

3

,3333,3322=-=-==

y k y k 及这两组值分别代入①,均可解出.52=a 所以,△OAB 的面积取得最大值的椭圆方程是.5322=+y x

7. 如图,已知⊙O ':()2

228x y ++=及点A ()2,0,在 ⊙O '上任取一点A ′,连AA ′并作AA ′的中垂线l ,设l 与直线O 'A ′交于点P ,若点A ′取遍⊙O '上的点. (1)求点P 的轨迹C 的方程;

(2)若过点O '的直线m 与曲线C 交于M 、N 两点,且O N O M λ''=u u u u r

u u u u u r

,则当[6,)λ∈+∞时,求直线m 的斜率k 的取值范围.

7. (1) ∵l 是线段A A '的中垂线,∴PA PA '=,

∴||PA|-|P O '||=||P A '|-|P O '||=|O 'A '|=即点P 在以O '、A 为焦点,以4为

焦距,以C 的方程为22

122

x y -=.

(2)设11(,)M x y ,22(,)N x y ,则直线m 的方程为(2)y k x =+,则由O N O M λ''=u u u u r u u u u u r

,得

21(2)2x x λ=+-,21y y λ=.由22

(2)

2

y k x x y =+??

-=?,得222(1)420k y ky k --+=.∴

2

1241k k

y y -+=

,22

1221k

k

y y -=

,22222168(1)8(1)0k k k k k ?=--=+>.

由21y y λ=,2

1241k k

y y -+=

,22

1221k

k

y y -=

,

消去12,y y ,得2

2

8(1)

1

12k

λλ

λ

λ+-=

=+

+.∵6λ≥,函数1

()2g λ

λλ=+

+在[6,)+∞上单调递增.

2

814916

6

62k

-≥++=

,2

149

1k

≤<,所以 17

1k -<≤-或17

1k ≤<.

故斜率k 的取值范围为11

7

7

(1,][,1)--U .

8. 如图,已知⊙O ':()2

22

640x y m m m ??++=> ? ???

及点M 60,

m ?

?

? ??

?

,在 ⊙O '上任取一点M ′,连M M ′,并作M M ′的中垂线l ,设l 与O 'M ′交于点P , 若点M ′取遍⊙O '

上的点.

(1)求点P 的轨迹C 的方程;

(2)设直线:(1)(0)l y k x k =+≠与轨迹C 相交于A 、B 两个不同的点,与x 轴相交于点

D .若2,AD DB OAB =?u u u r u u u r

求的面积取得最大值时的椭圆方程.

8. (1) ∵l 是线段MM '的中垂线,∴

PM PM '=,

|PM|+|P O '|=|P M '|+|P O '|=|O 'M '|=2m ()0m >.

即点P 在以O '、M 为焦点,以

26

m 为焦距,以2m 为长轴长的椭圆上,故轨迹C 的方程为22

2213

y x m m

+=,

即2223x y m +=.

(2)由 (1)y k x =+(0)k ≠得1

1.x y k

=

- 将11x y k =

-代入2223x y m +=消去x ,得 22236

(1)30.y y a k k

+-+-= ①

由直线l 与椭圆相交于两个不同的点,得

222363

4(1)(3)0,

m k k

?=-+->整理得2

23(1)3m k

+>,即222

3.3k m k >+ 设).,(),,(2211y x B y x A 由①,得122

63k

y y k +=

+. ∵2,AD DB =u u u r u u u r

而点(1,0)D -, ∴1122(1,)2(1,)x y x y ---=+,所以122y y =-,

代入上式,得22

6.3k

y k -=

+ 于是,△OAB 的面积 12213||||||2

2

S OD y y y =?-

=29||3k k =

≤=+ 其中,上式取等号的条件是23,k =

即k =

由22

6.3k

y k -=

+

可得2y =.

将2k y =

2k y ==215.a = ∴△OAB 的面积取得最大值的椭圆方程是22315.x y += 第三组:数列不等式

一.先求和后放缩

例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式;

(2)设11+=

n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2

1

解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:

12

12224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所

以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n

(2))1

21

121(21)12)(12(111+--=+-==

+n n n n a a b n n n ,所以 注:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和.

二.先放缩再求和

1.放缩后成等差数列,再求和

例.已知各项均为正数的数列{}n a 的前n 项和为n S ,且2

2n

n n a a S +=. (1) 求证:22

14

n n n a a S ++<;

(2)

a a Θ ,又由条件n n n S a a 22

=+有112

12+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得

0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a Θ ∴11n n a a +-=

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

小升初数学训练典型例题分析-找规律篇

名校真题 测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

高考数学大题经典习题(2020年九月整理).doc

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1(2)(2)3 f x a x bx a x =-+-+-,则 ()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ?? ? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

全国名校高考数学经典复习题汇编(附详解)专题:可行域

全国名校高考数学经典复习题汇编(附详解)专题:可行域 1.(全国名校·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3) 答案 C 解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C. 2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为( ) 答案 B 解析 方法一:可转化为①?????x +2y +1≥0,x -y +4≤0或②? ????x +2y +1≤0,x -y +4≥0. 由于(-2,0)满足②,所以排除A ,C ,D 选项. 方法二:原不等式可转化为③?????x +2y +1≥0,-x +y -4≥0或④? ??? ?x +2y +1≤0,-x +y -4≤0. 两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B. 3.(全国名校·天津,理)设变量x ,y 满足约束条件?????2x +y ≥0, x +2y -2≥0, x ≤0,y ≤3,则目标函数z =x +y 的 最大值为( ) A.2 3 B .1

C.32 D .3 答案 D 解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合. 4.设关于x ,y 的不等式组???? ?2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0 =2,则m 的取值范围是( ) A .(-∞,4 3) B .(-∞,1 3) C .(-∞,-2 3) D .(-∞,-5 3 ) 答案 C 解析 作出可行域如图. 图中阴影部分表示可行域,要求可行域包含y =1 2x -1的上的点,只需要可行域的边界点(- m ,m)在y =12x -1下方,也就是m<-12m -1,即m<-2 3 . 5.(全国名校·北京,理)若x ,y 满足???? ?2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( ) A .0 B .3 C .4 D .5 答案 C

小升初数学测试题经典十套题及答案

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* (人教版)小升初入学考试数学试卷(一) 班级______姓名______得分______ 一、选择题:(每小题4分,共16分) 1、在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。 A、15点 B、17点 C、19点 D、21点 2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。 A、10 B、12 C、14 D、16 3、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。 A、提高了50% B、提高40% C、提高了30% D、与原来一样 4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。 A、18 B、19.2 C、20 D、32 二、填空题:(每小题4分,共32分) 1、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。 2、甲乙两桶油重量差为9千克,甲桶油重量的1/5等于乙桶油重量的1/2,则乙桶油重()千克。 3、两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是()。 4、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是()厘米。

5、如图,电车从A站经过B站到达C站,然后返回。去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时()千米。 6、扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作: 第一步,分发左中右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步,从左边一堆拿出两张,放入中间一堆; 第三步,从右边一堆拿出一张,放入中间一堆; 第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。 这时小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是()。 7、前30个数的和为()。 8、如图已知直角三角形的面积是12平方厘米,则阴影部分的面积是()。 三、计算:(每小题5分,共10分)

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式, 找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812 , ,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数 是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

高考数学常见题型汇总(经典资料)

一、函数 1、求定义域(使函数有意义) 分母 ≠0 偶次根号≥0 对数log a x x>0,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0 不等式法 222321111 33y x x x x x x x x =+ =++≥??= 导数法 特殊函数法 换元法 题型: 题型一: 1y x x =+ 法一: 111 (,222同号)或y x x x x x x y y =+ =+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 2 -2 -1 1

题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三: 2sin 1 1sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 22 2 2sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()11 4化简变形得即又由知解不等式,求出,就是要求的答案 y y y y y y x y x y y x y y θθ θθθθθθθ-= +-=+-=++++=++= +++≤≤+ 题型五

222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域 2、反函数的值域是原函数的定义域 3、原函数的图像与原函数关于直线y=x 对称 题型 1 ()(2)32,2322,2已知求解:直接令,解出就是答案 x x f f x x x x --=+-=+ 周期性 ()()()(2)()()(2)0 0(2,函数 -)式相减) 是一个周期是2t 的周期函数 x x t x t x t x x x t f f f f f f f +++++=+== 对称

全国名校高考数学经典复习题汇编(附详解)专题:众数、中位数

全国名校高考数学经典复习题汇编(附详解)专题:众数、中位数 1.(全国名校·云川贵百校联考)某课外小组的同学们从社会实践活动中调查了20户家庭某月的用电量,如下表所示: 则这20A .180,170 B .160,180 C .160,170 D .180,160 答案 A 解析 用电量为180度的家庭最多,有8户,故这20户家庭该月用电量的众数是180,排除B ,C ; 将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,180,故这20户家庭该月用电量的中位数是170.故选A. 2.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的2 5,且样本容量为140,则中间一组的频数为( ) A .28 B .40 C .56 D .60 答案 B 解析 设中间一个小长方形面积为x ,其他8个长方形面积为52x ,因此x +52x =1,∴x =2 7. 所以中间一组的频数为140×2 7 =40.故选B. 3.(全国名校·山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,7 答案 A

解析 根据两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以 56+62+65+74+(70+x )5=59+61+67+65+78 5 ,解得x =3.故选A. 4.(全国名校·山西长治四校联考)某学校组织学生参加数学测试,有一个班成绩的频率分布直方图如图,数据的分 组依次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15,则该班的学生人数是( ) A .45 B .50 C .55 D .60 答案 B 解析 ∵[20,40),[40,60)的频率为(0.005+0.01)×20=0.3,∴该班的学生人数是15 0.3 =50. 5.(全国名校·陕西西安八校联考)如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值为( ) A .2,4 B .4,4 C .5,6 D .6,4 答案 D 解析 x -甲=75+82+84+(80+x )+90+93 6=85,解得x =6,由图可知y =4,故选D. 6.(全国名校·河北邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为( ) A. 10 5 B.305 C. 2 D .2 答案 D 解析 依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=1 5(12+02+12+22+22)=2,即 所求的样本方差为2. 7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

小升初数学经典题型汇总

小升初数学:应用题综合训练1 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=份 所以,每亩原有草量60-30×=12份 第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份 新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛 所以,一共需要+=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=每亩原有草量为*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24**80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

高考数学经典选择题(含答案)

高考数学经典选择题(含答案) 1、点O 在ABC ?内部且满足23OA OB OC O ++=,则AOB ?面积与AOC ?面积之比为 A 、 2 B 、 3 2 C 、 3 D 、 53 2、已知定义在R 上的函数()f x 的图象关于点3,04??- ???成中心对称图形,且满足 3()()2f x f x =-+,(1)1f -=,(0)2f =-则(1)(2)(2006)f f f ++???+的值为 A 、1 B 、2 C 、 1- D 、2- 3、椭圆1:C 22 143x y +=的左准线为l ,左右焦点分别为12,F F 。抛物线2C 的准线为l ,焦点是 2F ,1C 与2C 的一个交点为P ,则2PF 的值为 A 、4 3 B 、83 C 、 4 D 、8 4、若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为 A 、 16(12)- B 、 18π C 、 36π D 、 64(6)- 5、设32 ()f x x bx cx d =+++,又k 是一个常数,已知当0k <或4k >时,()0f x k -=只有一个实根;当04k <<时,()0f x k -=有三个相异实根,现给出下列命题: (1)()40f x -=和()0f x '=有一个相同的实根, (2)()0f x =和()0f x '=有一个相同的实根 (3)()30f x +=的任一实根大于()10f x -=的任一实根 (4)()50f x +=的任一实根小于()20f x -=的任一实根 其中错误命题的个数是 A 、 4 B 、 3 C 、 2 D 、 1 6、已知实数x 、y 满足条件2040250x y x y x y -+≥??+-≥??--≤?则 24z x y =+-的最大值为 A 、 21 B 、 20 C 、 19 D 、 18 7、三棱锥P ABC -中,顶点P 在平面ABC 的射影为O ,满足0OA OB OC ++=,A 点在侧面PBC 上的射影H 是PBC ?的垂心,6PA =,则此三棱锥体积的最大值为 A 、 36 B 、 48 C 、 54 D 、 72 8、已知函数()f x 是R 上的奇函数,且 ()0,+∞在上递增,(1,2)A -、(4,2)B 是其图象上两点,则不等式(2)2f x +<的解集为 A 、 ()(),44,-∞-?+∞ B 、 ()(){}4,11,40--??

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

小升初数学典型题

升中典型题 1、一种商品按定价的75折出售,仍可获利20%,若按定价出售可获利()%。 2、圆柱体和圆锥体的底面半径的比是2:3,高的比是4:3,则圆柱与圆锥的体积比是(): ()。 3、有一个长方体,它的正面和上面的面积之和是209,如果它是长、宽、高都是质数,那么 这个长方体的体积是()。 4、小芳骑车从甲地到乙地每小时行30千米,然后按原路返回,若想往返的平均速度为40千 米,则返回时每小时应行()千米。 5、一个半圆形,半径是r,它的周长是()。 6﹑水结成冰后体积增了1 11 , 冰融化成水后,体积减少( ) 7.冰化成水后,体积比原来减少1 12,水结成冰后,体积比原来增加了(). 8、甲数为a,比乙数的3 4多b,表示乙数的式子是()。 9、一个圆柱和一个圆锥的体积相等。已知圆柱的高是圆锥高的 2 3,圆柱的底面积和圆锥底 面积的比是() .10、甲种商品降价20%后与乙商品涨价20%后的价格相等,甲乙两种商品的原价的比是()。 11.甲数比乙数少20%,乙数比甲数多()%。 12.甲乙两个数最大公因数是3,最小公倍数是45,若甲数是9,那么乙数是()。 13. 相同的小正方形拼成一个大正方形,至少要()个。相同的小正方体拼成一个大正方体,至少要()个。 二、解决问题。 1﹑用同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖(用比例解) 2﹑小明读一本书,第一天读了这本书的1 4 多6页,第二天读了这本书的 2 5 少2页,第三天读完剩 下的17页,这本书共有多少页 3、一筐梨,先拿走30kg,又拿出余下的70%,这时剩下的梨正好是原来的1 10。这筐梨原来 多少kg

近年高考数学选择题经典试题+集锦

近年高考数学选择题经典试题集锦 1、点O 在ABC ?内部且满足23OA OB OC O ++=,则A O B ?面积与AOC ?面积之比为 A 、 2 B 、 32 C 、3 D 、 5 3 2、已知定义在R 上的函数()f x 的图象关于点3,04??- ???成中心对称图形,且满足 3()()2f x f x =-+,(1)1f -=,(0)2f =-则(1)(2)(2006)f f f ++???+的值为 A 、1 B 、2 C 、 1- D 、2- 3、椭圆1:C 22 143x y +=的左准线为l ,左右焦点分别为12,F F 。抛物线2C 的准线为l ,焦 点是2F ,1C 与2C 的一个交点为P ,则2PF 的值为 A 、43 B 、8 3 C 、 4 D 、8 4、若正四面体的四个顶点都在一个球面上,且正四面体的高为4,则该球的体积为 A 、 16(12)- B 、 18π C 、 36π D 、 64(6)- 5、设32()f x x bx cx d =+++,又k 是一个常数,已知当0k <或4k >时,()0f x k -=只有一个实根;当04k <<时,()0f x k -=有三个相异实根,现给出下列命题: (1)()40f x -=和()0f x '=有一个相同的实根, (2)()0f x =和()0f x '=有一个相同的实根 (3)()30f x +=的任一实根大于()10f x -=的任一实根 (4)()50f x +=的任一实根小于()20f x -=的任一实根 其中错误命题的个数是 A 、 4 B 、 3 C 、 2 D 、 1 6、已知实数x 、y 满足条件2040 250x y x y x y -+≥??+-≥??--≤?则24z x y =+-的最大值为

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

相关文档 最新文档