文档视界 最新最全的文档下载
当前位置:文档视界 › 铁基超导体简介及研究

铁基超导体简介及研究

铁基超导体简介及研究
铁基超导体简介及研究

2014—2015学年第二学期《前沿物理学世界名题欣赏》考查论文

专业班级

姓名

学号

出题教师

开课系室理学院基础物理系

铁基超导体中的化学掺杂研究

李彦博1309070221

中国石油大学华东理学院化学1302班

摘要目前已经发现的绝大部分铁基超导体都是通过化学掺杂而得到的。铁基超导体的母体通过适当的元素替代可以在FeAs层产生额外的电子、空穴、巡游

性或化学压力,从而有效地抑制SDW序,实现超导电性。

关键字铁基超导体化学掺杂电子态相图

一、引言

铁基超导体是指化合物中含有铁,在低温时具有超导现象,且铁扮演形成超导的主体的材料。2006年日本东京工业大学Hideo Hosono教授的团队发现第一个以铁为超导主体的化合物LaFeOP ,打破以往普遍认定铁元素不利形成超导迷思。超导研究在将近一个世纪的发展历程中,长盛不衰。新型超导材料的不断涌现是促进超导研究蓬勃发展的原动力。目前,有关铁基超导体的研究论文已逾千篇。超导研究有过去的铜氧化物高温超导体的“青铜时代”逐步过渡到铁基高温超导体的“铁器时代”。值得自豪的是,我国科学家在铁基超导体的研究热潮中取得了一系列令国际同行刮目相看的研究成果。这里说的化学掺杂不仅是实现超导电性的方法,它作为一种“探针”也是探明超导机理的重要手段。作为一个化学专业的学生,以下就是我对铁基超导体中化学掺杂效应的了解和简单的总结。

超导体材料

超导体材料 超导体的定义 1911年,荷兰发明氦液化器的昂尼斯〔H.K.Onnes)偶然发现,在液氦温度(4.2K)下,汞的电阻突然消失,这种现象被称为超导。但是,象汞这样金属的超导状态在很弱的磁场中就会被破坏。进一步的研究表明,要成为超导状态,温度丁,磁场强度H和电流密度J都必须分别处于临界温度T c,临界磁场强度H c和临界电流密度J c以下。如图1所示,在T-H-J 坐标空间中有一个临界面,其内部就是超导状态。临界条件下具有超导性的物质称为超导材料或超导体。 图 1 超导状态的T-H-J临界面(区面内:超导状态;曲面外:正常状态) 【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】 超导体的应用 50年代后期,发现超导状态的温度提高,而且发现丁能产生强磁场的银及钒的合金和化合物,促使超导现象的应用登上了科技舞台。由于电阻近于0Ω,在超导体内流动的电流将没有损耗.这样,很细的导线就可以通过很强的电流,可产生很强的磁场。问题是它必须在液氦温度下工作,液氮的价格、供应和使用方式使得它的普遍应用受到了严格的限制。即使如此,超导磁体仍大量被使用于加速器、聚变装置、核磁共振和磁分析等仪器上。例如美国费密实验室用了1000多个超导磁体,每年的被氮费用高达500万美元,但因此而节省的电力为18500万美元;美国于1990年建成的周长为83km的超级质子对撞机使用10000个超导磁体,每年可节省电力6亿美元。【唐小真,杨宏秀,丁马太.材料化学导论[M].高等教育出社,1997.】超导核磁共振层析仪能给出人体任一部位的剖面图.其分辨本领远远超过x射线或超声层祈仪.是现代高级医院重要的诊断设备之一。 超导技术在医疗上可用于外科手术。例如导管牵引术,将导管插入血管后,靠强磁体引导到脑部等血管瘤部位后,将磁性胶体注入血管,靠强磁体引导到肿瘤前提供血管定位,使给养阻塞,从而使肿瘤萎缩死亡。【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】利用超导体送电的超导电缆已经出现,利用超导体储存电能的超导储能器可在瞬间释放出极强的电能。这种储能器为激光技术提供了储存条件。它可将强电流存储在超导线圈之中,然后启动开关,一瞬间便会释放出巨能,从而发出强大的激光。 用超导体做的超导磁体,可以得到极强的磁场。因为超导线圈没有电阻,超导磁体可以比普通电磁体轻得多:几千克超导磁体抵得上几十吨常规磁体产生的磁场这将给电力工业带来一系列的变革,发电机会因使用超导体而提高输出功率几十倍、上百倍;已试制出来的

※超导简介与超导材料的历史

神奇的超导:超导简介与超导材料的历史 神奇的超导 罗会仟周兴江 一、什么是超导? 电阻起源于载流子(电子或空穴)在材料中运动过程中受到的各种各样的阻尼。按照材料的常温电阻率从大到小可以分为绝缘体、半导体和导体。绝大部分金属都是良导体,他们在室温下的电阻率非常小但不为零,在10-12 mΩ?cm量级附近。自然界是否存在电阻为零的材料呢?答案是肯定的,这就是超导体。当把超导材料降到某个特定温度以下的时候,将进入超导态,这时电阻将突降为零(图1),同时所有外磁场磁力线将被排出超导体外,导致体内磁感应强度为零,即同时出现零电阻态和完全抗磁性。超导态开始出现的温度一般称为超导临界温度,一般定义为Tc。微观上来说,当超导材料处于超导临界温度之下时,材料中费米面附近的电子将通过相互作用媒介而两两配对,这些电子对将同时处于稳定的低能组态,叫“凝聚体”。在外加电场驱动下,所有电子对整体能够步调一致地运动,因此超导又属于宏观量子凝聚现象。对于零电阻态,实验上已经证实超导材料的电阻率小于10-23 mΩ?cm,在实验精度允许范围内已经可以认为是零。如果将超导体做成环状并感应产生电流,电流将在环中流动不止且几乎不衰减。超导体的完全抗磁性并不依赖于超导体降温和加场的次序,也称为迈斯纳(Meissner)效应。一个材料是否为超导体,零电阻态和完全抗磁性是必须同时具有的两个独立特征。

超导态下配对的电子对又称库珀(Cooper)对。配对后的电子将处于凝聚体中,打破电子对需要付出一定的能量,称为超导能隙,它反映了电子间的配对强度。一般来说,超导态在低外磁场及低温下是稳定的有序量子态。超导体的一系列神奇特性意味着我们可以在低温下稳定地利用超导体,比如实现无损耗输电、稳恒强磁场和高速磁悬浮车等。正因如此,自从超导发现以来,人们对超导材料的探索脚步一直不断向前,对超导微观机理和超导应用的研究热情也从未衰减。随着对超导研究的深入,一系列新的超导家族不断被发现,它们展现的新奇物理现象也在不断挑战人们对现有凝聚态物理的理解,同时实验技术手段也因此得以加速进步,理论概念更是取得了诸多飞跃。已逾百年的超导研究,在诸多科学家的推动下,依旧不断展示新的魅力! 金属Hg在4.2K以下的零电阻态

铁基高温超导体研究进展

物理四38卷(2009年)9期 h t t p :∕∕w w w.w u l i .a c .c n 铁基超导体专题 铁基高温超导体研究进展* 陈仙辉? (中国科学技术大学物理系 合肥微尺度物质科学国家实验室 合肥 230026 )摘 要 最近,由于在铁基L n (O ,F )F e A s 化合物及其相关化合物中发现具有高于40K 的超导电性,层状的铁基化合物引起了凝聚态物理学界很大的兴趣和关注.在随后的研究中发现,在该类材料中最高超导临界温度可达到55K.这些重要的发现使得人们又重新对高温超导体的探索产生了极大的兴趣,并且为研究高温超导的机理提供了新的一类材料.文章主要介绍了作者所在组在新型铁基超导体方面的最新研究进展,包括:(1)铁基超导材料探索研究;(2) 铁基超导体的单晶制备及物性研究;(3)铁基超导体的电子相图及自旋密度波(S DW )和超导共存研究;(4)同位素交换对超导转变和S DW 转变的效应.最后,在已完成的工作基础上提出了一些今后的研究方向和发展前景.关键词 铁基超导体,自旋密度波,相图,结构相变 N e w i r o n -p n i c t i d e s u p e r c o n d u c t o r s C H E N X i a n - H u i ? (H e f e iN a t i o n a lL a b o r a t o r y f o rP h y s i c a l S c i e n c e a tM i c r o s c a l e a n dD e p a r t m e n t o f P h y s i c s ,U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y o f C h i n a ,H e f e i 230026,C h i n a )A b s t r a c t T h ed i s c o v e r y o f s u p e r c o n d u c t i v i t y w i t hac r i t i c a l t e m p e r a t u r e (T c )h i g h e r t h a n40Ki nt h e i r o na r s e n i d eL n (O ,F )F e A s h a s d r a w nm u c h i n t e r e s t i n c o n d e n s e dm a t t e r p h y s i c s .L a t e r d i s c o v e r i e s ,i n c l u -d i n g t h e e n h a n c e m e n t o f T c u p t o 55K ,h a s e v o k e d i n t e n s e e x c i t e m e n t i n t h e p i l g r i m a g e t o w a r d s t h e u n d e r -s t a n d i n g o f t h em e c h a n i s mo f h i g hT c s u p e r c o n d u c t i v i t y ,w h i l e p r o v i d i n g a b r a n d n e wf a m i l y o fm a t e r i a l s t o a d d r e s s t h i s i s s u e .I n t h i s r e v i e ww e p r e s e n t o u r g r o u p 'sm a j o r r e s e a r c h o n n e w i r o n b a s e d s u p e r c o n d u c t o r s ,i n c l u d i n g :(1)o u r i n i t i a l i n v e s t i g a t i o n s ;(2)t h e s y n t h e s i s o f i r o n a r s e n i d e s i n g l e c r y s t a l s a n d t h e c h a r a c t e r -i z a t i o no f i t s p h y s i c a l p r o p e r t i e s ;(3)t h e e l e c t r o n i c p h a s e d i a g r a mo f i r o n b a s e d s u p e r c o n d u c t o r s a n d t h e c o -e x i s t e n c eb e t w e e n s p i n d e n s i t y w a v e s a n d s u p e r c o n d u c t i v i t y ;(4)t h e e f f e c t o f i s o t o p e e x c h a n g e o n s p i n d e n -s i t y w a v e s a n d s u p e r c o n d u c t i n g t r a n s i t i o n s .T o f i n i s h ,w e p r o p o s e p o s s i b l e f u t u r e d i r e c t i o n s i n t h i s f i e l d .K e y w o r d s i r o n - p n i c t i d e s u p e r c o n d u c t o r ,s p i nd e n s i t y w a v e (S DW ),p h a s e d i a g r a m ,s t r u c t u r a l t r a n s i t i o n * 国家自然科学基金二 国家重点基础研究发展计划(批准号:2006C B 601001,2006C B 922005 )和中国科学院资助项目2009-07-15收到 ? E m a i l :c h e n x h @u s t c .e d u .c n 1 引言 1986年,I B M 研究实验室的物理学家B e d n o r z (柏诺兹)和M ül l e r (缪勒)发现了临界温度为35K (零下238.15℃)的镧钡铜氧超导体[1]. 这一突破性发现导致了一系列铜氧化物高温超导体的发现.自那以后,铜基高温超导电性及其机理成为凝聚态物理的研究热点.然而直至今日,铜基高温超导机制仍未解决,这使得高温超导成为当今凝聚态物理学中最大的谜团之一.因此科学家们都希望在铜基超导材料以外再找到新的高温超导材料,能够从不同的 角度去研究高温超导机制,最终解决高温超导的机制问题. 最近,由于在铁基L a O 1-x F x F e A s (x =0.05 0.12)化合物中发现有26K 的超导电性[2] , 层状的Z r C u S i A s 型结构的L n O MP n (L n =L a ,P r ,C e ,S m ;M =F e ,C o ,N i ,R u 和P n =P 和A s )化合物引起了科学家很大的兴趣和关注[3,4] .2008年3月, 四 906四

传统超导体简介

2014年5月24日 传统超导体简介 LH·ZW 摘要:如今超导体在社会生产中扮演着越来越重要的作用,不管是急速发展着的电子工业 还是磁悬浮列车的发展都与超导体的发展息息相关。并且一直以来有着神秘色彩超导体在我们心目中都是高端得遥不可及的,而当今社会的发展却因之而大放异彩,所以对于超导体的机制及其应用我们还是应该学习的。 关键词:电磁学超导体零电阻现象迈斯纳效应超导发电磁悬浮列车 引言 超导体与电磁相关原理不无关系。超导体没有电阻是一材料宏观表现出来的性质,并且在我们现有的认知当中,当温度到达(升高或降低)该材料的某一临界值时,其温度会变为让人们一直以来都不为理解且震惊的零值,即是不可思议的没有电阻现象。且超导的最具特点与价值的是其完全导电性和完全抗磁性,由此使得其在社会生活生产中扮演着重要的角色。 一.超导体分类 现在对于超导体的分类并没有统一的标准,通常的分类方法有以下几种: ?通过材料对于磁场的相应可以把它们分为第一类超导体和第二类超导体:对于第一类超导体只存在一个单一的临界磁场,超过临界磁场的时候,超导性消失;对于第二类超导体,他们有两个临界磁场值,在两个临界值之间,材料允许部分磁场穿透材料。 ?通过解释的理论不同可以把它们分为:传统超导体(如果它们可以用BCS理论或其推论解释)和非传统超导体(如果它们不能用上述理论解释)。 ?通过材料达到超导的临界温度可以把它们分为高温超导体和低温超导体:高温超导体通常指它们的转变温度达到液氮温度(大于77K);低温超导体通常指它们需要其他特殊的技术才可以达到它们的转变温度。 ?通过材料可以将它们分为化学材料超导体比如:铅和水银;合金超导体比如:铌钛合金;氧化物超导体,比如钇钡铜氧化物;有机超导体,比如:碳纳米管。 二.一般超导体(即第一类超导体)的微观机制 1.电阻成因:很多宏观现象可以从微观领域中得到解释。电流是导体中电子的定向移动。电子在原子间移动时,由于电子与原子核间的电磁力的作用,会引起原子振动。众所周知,在正常导体中,一些电子没有被束缚到个别原子上,而是可以通过正离子的晶格自由运动。而电流通过晶格运动时),特别是金属中电子与晶格缺陷碰撞散射,以及在运动过程中其会与晶格振动相互作用而带来宏观上的电阻现象(1)(2)。这就是电阻的成因。 2.超导形成:由电阻成因知我们欲形成超导则要使得那电磁力的作用得到消除进而使得原子消除振动,从而使得电阻为零形成超导。并且由科学研究知在低温下核外电子运转速率

铁基超导体

铁基超导体 对于现代人来说,超导已经不再是一件什么神秘的事情了,普通的中学生就已经知道了所谓的超导现象:当导体的温度降到一个临界温度时电阻会突然变为零。处于超导状态的导体称之为超导体。超导体除了电阻为零的特殊性质之外,人们后来又发现了它的另一个神奇的性质——完全抗磁性,也就是说超导体内的磁感应强度为零,把原来存在于体内的磁场也完全“排挤”出去。这一现象也被称为“迈斯纳效应”。正是由于超导体的这一性质,而铁基材料通常具有铁磁性,因此被认为最不具备成为高温超导材料的条件。但最近的科研结果却打破了这一传统的束缚,铁基超导材料成为了高温超导研究领域的一个“重大进展”。 铁基超导体的发现历程 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,美国科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点,超导体的临界温度也不断“飙升”,在短短几年中,铜氧化合物的超导临界转变温度就被提高到134K(常压)和164K(高压)。然而直至今日,对于铜基超导材料的高温超导机制,物理学界仍未形成一致看法,这也使得高温超导成为当今凝聚态物理学中最大的谜团之一。因此很多科学家都希望在铜基超导材料以外再找到新的高温超导材料,从而能够使高温超导机制更加明朗。

2008年2月23日,日本科学技术振兴机构和东京工业大学联合发布公报称,东京工业大学教授Hosono的研究小组合成了氟掺杂钐氧铁砷化合物。该化合物是一种由绝缘的氧化镧层和导电的砷铁层交错层叠而成的结晶化合物。纯粹的这种物质没有超导性能,但如果把化合物中的一部分氧离子转换成氟离子,它就开始表现出超导性,并且在26K(零下247摄氏度)时具有超导特性。其实在2006和2007年Hideo Hosono小组就已经分别报道在LaFePO 和LaNiPO 材料中发现转变温度为2到7K的 超导电性。但这一次却立刻引发 了人们对这一体系的强烈关注 (下图为LaFeAsO的晶体结构)。 3月14日,中科院物理所闻海虎, 在镧氧铁砷 (LaOFeAs) 材料中用二价金属替换三价的La,在空穴型掺杂中取得重要进展,临界温度达到25K。3月25日,中国科技大学陈仙辉领导的科研小组又报告,氟掺杂钐氧铁砷化合物在临界温度43开尔文(零下230.15℃)时也变成超导体。3月28日,中国科学院物理研究所赵忠贤领导的科研小组报告,氟掺杂镨氧铁砷化合物的高温超导临界温度可达52开尔文(零下221.15℃)。4月13日该科研小组又有新发现:氟掺杂钐氧铁砷化合物假如在压力环境下产生作用,其超导临界温度可进一步提升至55开尔文(零下218.15℃,将这场追求铁基高临界温度的竞争推向高潮,并保持着目前为止铁基超导体的临界温度最高纪录。 新的超导机制有望取得突破

铁基超导体研究取得重要进展

铁基超导体研究取得重要进展 [本刊讯]近日,中国科学技术大学合肥微尺度物质科学国家实验室、中国科学院强耦合量子材料物理实验室的陈仙辉教授研究组在铁基超导研究领域取得了重大进展,成功发现了一种新的铁基超导材料(Li0.8Fe0.2)OHFeSe,其超导转变温度高达40开以上,并与美国国家标准技术研究所中子研究中心的黄清镇博士以及中科大吴涛教授等几个研究组合作,确定了该新材料的晶体结构并发现超导电性和反铁磁共存。相关研究成果在线发表在12月15日的Nature Materials上。 铁基高温超导体是目前凝聚态物理领域的研究热点,其机理还没有得到完全理解,FeSe类超导体以其诸多独特的性质被认为是研究铁基超导机理的理想材料体系。尤其是近期报道的生长于SrTiO3衬底上的FeSe单层薄膜的零电阻转变温度高达100开以上,更加激起了科学家对于这一体系的浓厚兴趣。然而,对于FeSe类超导材料,目前研究较为广泛的AxFe2Se2(A=K,Rb,Cs)体系存在严重的相分离,反铁磁绝缘相与超导相的共生导致该类材料的结构与性质非常复杂,从而使得研究其内在的物理机制变得非常困难。而FeSe 单层薄膜以及通过液氨等低温液相插层方法合成的Lix(NH2)y(NH3)1-yFe2Se2等化合物在空气中极不稳定,无法深入研究其物理性质。为了能够深入探究铁基高温超导的物理机制,亟需寻找到新的具有高的超导转变温度且空气稳定。并适合物理测量的FeSe类超导材料。 陈仙辉研究组首次利用水热反应方法成功发现了一种新的FeSe类超导材料(Li0.8Fe0.2)OHFeSe,超导转变温度高达40开以上。通过结合X射线衍射。中子散射和核磁共振三种技术手段精确确定了该新材料的晶体结构。此外,发现该结构中严重畸变的FeSe4四面体

铁基超导体材料

[键入公司名称] 铁基超导体材料[键入文档副标题] 吕鸿燕 14园林本2 1407220221

铁基超导体材料 以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所和中国科学技术大学研究团队因为在“40K以上铁基高温超导体的发现及若干基本物理性质研究”方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。 超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 通常的低温超导材料中,电子是通过晶格各结点上的正离子振动而结合在一起的。但大多数的物理学家都认为,这一电子对结合机制并不能解释临界温度最高可达138开尔文(零下135.15℃)的铜基材料超导现象。每一种铜基超导材料都是由层状的“铜-氧”面组成,其中的电子是如何成对的,仍是未解难题。 在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。 继铜基超导材料之后,日本和中国科学家最近相继报告发现了一类新的高温超导材料——铁基超导材料。美国《科学》杂志网站报道说,物理学界认为这是高温超导研究领域的一个“重大进展”。 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点。

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

铁基超导

铁基超导 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 传统的解释常规超导体的超导电性的微观理论预言,超导体的最高温度不会超过麦克米兰极限的39K。在以往的研究中,只有1987年发现的铜氧化合物超导体打破了这一极限,被称为高温超导体。最近,在铁基磷族化合物中发现的超导电性其超导临界温度可达55K,同样突破了传统理论预言的麦克米兰极限。这是第一个非铜基的高温超导体,掀起了高温超导研究的又一次热潮。 铁基超导的研究进入了一个空前发展的阶段,各国都在进行这一新材料的研究,铁基超导体薄膜研究进展与铁基超导体大同位素效应就是其中的热点。 从2008年新的铁基高温超导体发现以来,铁基超导薄膜的研究进展相对缓慢。这是因为较难精确控制人们所需要的亚稳相中的多元素配比、以及多种热力学相之间的互相竞争。由于元素配比和不同热力学相竞争所导致的较少量的杂质,在块状材料的合成中有时可以接受,但对低维的薄膜材料却不能允许。迄今已发现四种主要晶体结构的铁基超导体,包括含砷或磷(chalcogens)的1111相、122相、111相,以及含氧硫族元素(pnictogens)的11相。它们都具有超导的Fe-X (X为As、P、Se、S或Te等)层,且前三类超导体中这些层由La-O等隔离层隔开,而超导的11相FeSe、Fe(Se,Te)只有Fe-X层,晶体结构最简单。目前人们只得到了11相的单相、外延、超导薄膜。而对含砷的铁基超导体而言,经过近两年的探索,仍未能得到单相的超导薄膜。 中国科学院物理研究所/北京凝聚态物理国家实验室(筹)超导实验室的曹立 新副研究员带领博士生韩烨、李位勇,与相关科研人员合作,在国际上率先制备出单相的外延FeSe超导薄膜(第十届全国超导薄膜和超导电子器件学术研讨会,大连,2008年10月11日-15日),率先发表文章(Journal of Physics: Condensed Matter 21, 235702, 2009),并申请了国家专利。 此后,他们又系统研究了FeSe 、Fe(Se,Te)以及FeTe薄膜,他们发现FeTe 母体在薄膜状态下超导,转变温度13 K,接近Fe(Se,Te)固溶体所能达到的最高值,远高于FeSe薄膜的超导转变温度。而到目前为止,FeTe块材在常压和高压状态下都没有发现超导。人们普遍认为铁基超导电性与自旋密度波密切相关,实验发现高压下自旋涨落在FeSe中明显增强而且超导转变温度提高到37 K;同时,理论计算表明FeTe比FeSe有更强的自旋涨落并可能有更高的超导转变温度。但是实验上FeTe并没有在高压下观察到预期的现象。曹立新等人注意到,在超导的FeTe薄膜中,晶格在生长平面内不是被压缩,而是被拉伸,类似于一种“负压力效应”。同时他们发现,在非超导的FeTe块材中70 K左右出现的结构和自旋涨落的一级相变,在超导薄膜中被明显弱化。 图1 在4种不同基片上沉积生长的FeTe超导薄膜的X射线衍射图谱,32个薄膜的c-轴晶格常数,以及薄膜中Fe-Te-Fe键角的变化情况。可以看出,超导的FeTe薄膜表现出较小的c-轴和较大的a-轴晶格常数以及显著增大的 Fe-Te-Fe键角。

铁基超导材料制备研究进展

2009年第54卷第5期:557~568《中国科学》杂志社 SCIENCE IN CHINA PRESS 评述 铁基超导材料制备研究进展 马廷灿, 万勇, 姜山 中国科学院国家科学图书馆武汉分馆情报研究部, 武汉 430071 E-mail: matingcan@https://www.docsj.com/doc/7c7865390.html, 2008-12-24收稿, 2009-01-22接受 摘要超导现象于1911年首次被发现, 此后科学家们一直都在寻找拥有更高临界温度的超导材料, 研究重点也逐渐从金属系物质转到铜氧化物. 目前, 物理学界对高温超导机制仍未形成一致看法, 研究人员希望在铜氧化物超导材料以外再找到新的高温超导材料, 以期从新的途径来破译高温超导机理.2008年初, 日本学者发现了临界温度可以达到26 K的新型超导材料——LaO1?x F x FeAs, 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 随后, 科研人员在这一体系中展开了积极的实验和理论研究. 中国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置. 铁基超导材料的研究正在持续升温, 新的发现层出不穷. 本文按照体系分类, 以时间顺序, 分别对铁基超导材料的四大主要研究体系(“1111”体系、“122”体系、“111”体系和“11”体系)的具体材料制备研究进展进行了分析, 比较全面地介绍了各种铁基超导材料的合成方法及其关键物理参数. 关键词 铁基超导 氧磷族元素化合物临界温度 上临界磁场 固相反应法 自熔法 20世纪最后10年中, 具有ZrCuSiAs结构的稀土过渡金属氧磷族元素化合物陆续被发现, 但研究人员并未发现其中的超导现象[1,2]. 2006年和2007年, 日本东京工业大学前沿合作科学研究中心的细野秀雄教授带领的研究小组(以下简称“细野秀雄小组”)先后发现LaOFeP[3]和LaNiPO[4]在低温下展现出超导电性, 但是由于临界温度皆在10 K以下, 并没有引起特别的关注及兴趣. 2008年1月初, 细野秀雄小组发现在铁基氧磷族元素化合物LaOFeAs中, 将部分氧以掺杂的方式用氟取代, 可使LaO1?x F x FeAs的临界温度达到26 K[5], 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 我国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置: 3月初, 中国科学院物理研究所王楠林研究员领导的研究小组(以下简称“王楠林小组”)很快就合成了LaO0.9F0.1-δFeAs多晶样品, 并测量了基本物理性质[6]; 3月中旬, 中国科学院物理研究所闻海虎研究员领导的研究小组(以下简称“闻海虎小组”)成功合成出第一种空穴掺杂型铁基超导材料——La1?x Sr x OfeAs[7]; 3月25日和3月26日, 中国科学技术大学陈仙辉教授领导的研究小组(以下简称“陈仙辉小组”)[8]和中国科学院物理研究所王楠林小组[9]分别独立发现临界温度超过40 K的超导体; 3月29日, 中国科学院物理研究所赵忠贤院士领导的小组(以下简称“赵忠贤小组”)发现PrO1?x F x FeAs的超导转变温度可达52 K[10]. 4月中旬, 该小组又先后发现在压力环境下合成的SmO1?x F x FeAs[11]和REFeAsO1?δ[12]超导转变温度进一步升至55 K等. 此外, 研究人员也在不断探索新型铁基超导材料的应用. 4月下旬, 中国科学院电工研究所应用超导重点实验室马衍伟研究员领带的研究小组(以下简称“马衍伟小组”)率先成功研制出超导起始转变温度达25 K的LaO1?x F x FeAs线材[13]. 在此基础上, 该小组与闻海虎小组合作又制备出超导起始转变温度高达52 K的SmO1?x F x FeAs线材[14]. 另据报道, 细野秀雄小组已经在新型铁基超导薄膜制作上取得初步成功[15]. 目前, 根据母体化合物的组成比和晶体结构, 新 https://www.docsj.com/doc/7c7865390.html, https://www.docsj.com/doc/7c7865390.html,557

高温超导材料及应用

高温超导材料及应用 《物理学在高新技术材料中的应用》 主要内容 .超导体的基本知识 .超导研究的历史 .高温超导体的发现和特性 .铁基高温超导体新进展 .超导材料的应用 一、超导体的基本知识 1、超导体的零电阻特性 .电阻为零R=0 (Superconductor) TC:超导临界温 度,T

高温超导体YBCO的电阻-温度曲线 2. Meissner效应 Meissner效应(完全抗磁性, 理想抗磁性) 完全抗磁性是指磁场中的金属处于超导状态时,体内的磁感应强度为零的现象。这一现象是荷兰科学家迈斯纳发现的,因此又称为迈斯纳效应。他在实验中发现,放在磁场中的球形的锡在过渡到超导态的时候,锡球周围的磁场都突然发生了变化,磁力线似乎一下子被排斥到导体之外。进一步研究发现,原来超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,恰巧抵消了超导体内部的磁场。 磁感应强度B=0(超导体内) Meissner 和Ochsenfeld 1933年发现 ----和理想导体不同 ----存在一临界磁场 H> HC 超导态到.正常态 7 完全抗磁性 球体 置于外磁场中的超导体会表现出完全抗磁性,即超导体内部磁感应强度恒为零的现象—称为“迈斯纳效应” Meissner 效应 由于Meissner效应,磁铁和超导体之间存在很强的排斥作用,----磁悬浮 右图:小磁体悬浮在超导体上。 3. 表征超导体的重要物理量 .超导临界温度:Tc ~ 165 K (5万大气压), record, Hg-1223 .临界磁场:Hc .穿透深度:. λ磁场在超导体表面穿透进入超导体的深度,~ 10 –100 nm

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

超导现象简介

超导现象简介 超导现象:某些物质在温度降低到一定值时电阻会完全消失,这种现象称为超导电性。超导技术的开发和应用对国民经济、军事技术、科学实验与医疗卫生等具有重大价值。 具有超导电性的物质称为超导材料或超导体。超导材料包括金属低温超导材料、陶瓷高温超导材料和有机超导材料等。 发展概况:超导电性是荷兰科学家H.K.昂尼斯1911年发现的,他在做低温实验时,意外发现汞线冷却到4ZK时电阻突然消失了。随后科学家们发现许多金属、合金和金属间化合物也具有这种特性。1933 年,德国人W.迈斯纳发现超导体具有高抗磁性,使磁力线不能透人,人们称之为迈斯纳效应。1957年美国人J.巴丁、LN.库泊、J.R.施里弗共同提出超导微观理论(BCS理论)。1962年,英国人BD.约瑟夫森从理论上预言超导电流能够穿过一层极薄的绝缘体进入另一超导体,形成隧道超导电流。这种约瑟夫森效应随后为实验所证实。1986 年初,美国国际商用机器公司苏黎世研究所的K.A.马勒和J.G.贝诺斯发现,钡钢铜氧化合物在30K时呈现超导电性。这种陶瓷超导材料的发现,为超导技术的发展开辟了新的途径。1986年以前发现的超导材料是良导体金属、合金和金属间化合物,其临界温度最高不过232K,而马勒和贝诺斯发现的超导材料却是氧化物,临界温度比低温超导体高得多,对超导研究具有划时代的意义,世界各国对此都十分重视。1987年中国成立了超导技术专家委员会和国家超导技术联合研究开发中心,统一领导全国的超导研究工作;同年7月美国总统提出《总统超导倡议》,要求政府采取必要措施支持高温超导研究;日本政府和民间企业、大学制订了共同开发超导材料的计划。各国超导科学家以陶瓷材料为对象寻找高临界温度的超导材料,形成了一股世界性的超导研究热,忆钡铜氧化合物、秘锯钙铜氧化合物、铂钡钙铜氧化合物等高温超导材料不断涌现。自1986年以来,中国在高温超导技术攻关中取得了一系列重大成就,在某些领域达到了国际领先水平。超导材料特性超导材料最重要的特性是完全电导性和完全抗磁性。完全电导性是指在一定的温度条件下超导体的电阻为零,在这种状态下,超导体不仅可以无损耗地输送电流,而且在储存电能时也不会有损失。完全抗磁性是指材料一旦进人超导状态,磁力线就不能穿过超导体,其内部磁通量等于零。这两个特性是衡量

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

相关文档