文档视界 最新最全的文档下载
当前位置:文档视界 › 我国城轨车辆制动系统介绍及选型_吕晓晖

我国城轨车辆制动系统介绍及选型_吕晓晖

我国城轨车辆制动系统介绍及选型_吕晓晖
我国城轨车辆制动系统介绍及选型_吕晓晖

我国城轨车辆制动系统介绍及选型

吕晓晖

(中国北方机车车辆工业集团,266031,青岛∥高级工程师)

摘 要 介绍了日本N A BCO、德国K N O RR和英国WEST IN G HO US E制动系统控制装置的组成、工作原理及在我国各地城轨车辆上的应用。提出了选用城轨车辆制动系统需注意的几个方面:在保证安全性的同时,尽量减少制动系统的运用。应考虑制动控制系统的寿命周期成本;在选用城轨制动控制系统时,需要研究其零部件维修的可能性,而不是自始至终从国外购买整机。

关键词 城轨车辆;制动控制系统;电空制动

中图分类号 U260.352

Selection of Vehicle Brake System in C hina

Lv Xiaohui

A bstract Compar ed with the br ake systems in Japan, Ge mar y and UK(NABCO,KNORR and Westing House), the com position and func tions of the contempor ar y urban ra il vehicle bra ke syste m adopted in China's ur ban r ail tra nsit ar e introduced,meanwhile suggestions and analysi s are pr ese nted on the selec tion of ur ban r ail vehicle br ake system.The auther ar gues that a fe asibility study on br ake parts maintenance should be car ried out be fore the pur chase of the wh ole car body f rom abr oud.

Key words urban r ail vehicle;br ake contr ol syste m; elec tropne uma tic br ake

Author's address Chinese Norther n Loco.and Ca r I ndustr ial Gr oup,266031,Qingdao,China

城轨车辆制动系统的整体使用寿命要求20~30年,是影响城轨车辆安全性和寿命成本最重要的因素之一。本文介绍了当前我国城轨车辆主要选用的制动系统,从组成、功能和原理上进行了剖析,以便于城轨车辆制动系统的选用及维护。

1 城轨车辆制动系统介绍

目前我国城轨车辆主要选用国外进口的制动系统,主要包括日本NABCO制动系统、德国KNORR 制动系统、英国WES TING HO US E制动系统和SABWABCO(FAIVELEY)制动系统。以上均属于当今主型的模拟式直通电空制动系统,具有反应快速、操纵灵活,以及与牵引、TCMS(列车控制管理系统)和A TC等系统协调配合等特点。由于不同制动系统的风源和基础制动单元差别不大,下面主要对这些制动系统的控制系统或单元进行介绍。

1.1 日本NABC O制动系统

日本NABCO制动系统主要指NABCO的H RDA型电空制动系统,1992年投入应用,是一种传统的直通电空制动系统。在我国,该电空制动系统主要应用于北京和天津的城轨项目。

H RDA型电空制动系统的制动控制单元包括制动电子控制装置和气动控制装置两部分:电子控制装置为贮有定制程序的标准机箱,气动控制装置主要由电空中继阀、空重车调整阀和气路板等组成。制动控制单元的原理框图如图1所示。

如图2所示,制动电子控制装置和气动控制装置同装于一个制动控制箱内。制动控制箱外形尺寸为710mm×615mm×590m m,总重100kg。

1.1.1 制动电子控制装置

H RDA型电空制动系统的电子控制装置整体结构采用6U标准机箱,主要芯片采用日本日立公司的H8系统微控制器。该电子控制装置主要包括制动控制、防滑控制、通信及显示三个部分。

制动控制部可接收列车制动控制线的PWM 制动指令,进行空气和电制动的混合制动计算,控制电空中继阀上电空转换(EP)阀的电流,实现对制动缸的预控压力控制;同时,电子控制装置又根据两路空气弹簧压力(AS1、AS2)对预控压力按载荷进行自动调整,通过气动控制装置实现对制动力的控制。

防滑控制部可以测定各车轴的速度,一旦检测到有车轮滑行,便控制防滑阀降低滑行轴的制动缸压力,使滑行车轮恢复到正常的粘着状态。

通信及显示部用于与TM S通信及故障诊断信息的显示与存贮。

·

56·

图1 H RDA 型制动控制单元原理框图

图2 H RDA型制动控制单元组成

1.1.2 制动气动控制装置

制动气动控制装置主要由电空中继阀、空重车调整阀、压力传感器和气路板等组成。其中电空中继阀包括电空转换(EP)阀、紧急电磁阀和中继阀。

常用制动时空气制动力是通过电空转换(EP)阀对预控压力进行控制,然后再由中继阀进行流量放大,产生与预控压力相对应的制动缸压力。

紧急制动为纯空气制动模式,当接收到紧急制动指令时将空重车调整阀调整后的紧急制动预控压力直接由紧急电磁阀进入中继阀,产生能随载荷调整的紧急制动缸压力。

整个气动控制装置采用模块化设计。各种阀安装在一块内部气路连接的集成气路板上,并与电子控制装置组装于可吊装在车体上的制动控制箱内。

1.2 德国KNORR制动系统

德国KNORR制动系统主要指KNO RR的ESRA电空制动系统。该电空制动系统是一种标准化的制动系统,是传统的直通电空制动系统,可用于机车、动车组和城轨等项目。该电空制动系统1993年研发,1995年投入应用。在我国,该电空制动系统主要应用于上海、广州、北京和天津等地铁项目。

KNORR的ES RA制动系统的制动控制单元包括制动电子控制装置和气动控制装置两部分:电子控制装置为贮有定制程序的标准机箱,主要由包括微处理器的主电路板、辅助电路板和通信板组成;气动控制装置主要由电空模拟转换(EP)阀、紧急电磁阀、中继阀、空重车调整阀和气路板等组成。其组成如图3和图4所示

图3 ES RA制动电子控制装置组成

ESRA的制动电子控制装置和气动控制装置可

·

57

·

分别安装也可集中安装,安装方式及位置根据客户要求。制动电子控制装置为3U 19″标准机箱,气动控制装置外形尺寸为360mm ×360mm ×357m m ,总重30kg 。通常须加上安装箱体(只考虑安装ES RA 的制动电子控制装置,至少约10kg ),整个制动控制单元总重约50kg

图4 ESRA 制动气动控制装置组成

1.2.1 常用制动工况

常用制动时,总风压力经过电空转换模块(图5中A )转换为与电子控制装置制动指令成比例的预控压

力,然后驱动KR6AA 中继阀(图5中D )为制动缸充风,从而施加制动。常用制动时,输入电空转换模块的电控信号基于制动指令进行了载荷调整和冲动限制;电空转换模块输出的预控压力须通过紧急阀(图5中E )和空重车调整阀(图5中F ),然后进入中继阀

注:A1、A2—电空转换阀;J —电空转换压力传感器;A —电空转换模块;E —紧急制动电磁阀;F —空重车调整阀;D —中继阀;K —载荷压力传感器;H —总风压力传感器

图5 ES RA 制动气动控制装置气路图

1.2.2 紧急制动工况

紧急制动时,紧急电磁阀失电使总风不经电空转换模块直接进入空重车调整阀,产生一个经载荷调整的紧急预控压力,通过中继阀给制动缸施加紧急制动压力。1.3 英国WESTINGHOUSE 制动系统

英国WESTINGHO USE 制动系统主要指英国WEST INGH OUSE (现为KNORR 英国子公司)的EP2002电空制动系统,是一种基于架控的城轨直

通电空制动系统。该电空制动系统2000年开始研发,2005年装车应用。在我国,该电空制动系统主要应用于上海、广州、北京等地铁项目。

EP2002电空制动控制单元包括一系列高度机电一体化的制动控制阀,即网关阀(Gateway Valve )、扩展阀(RIO Valve )和智能阀(Smart Valve )。网关阀主要用于制动网络控制和本车制动控制,扩展阀主要用于本车制动控制和扩展电气连接,智能阀用于本车制动控制。以上各种EP2002制动控制阀(以下简称EP2002阀)外形和重量基本相似(如图6),一般外形尺寸325mm ×210mm ×210mm ,总重23

kg (EP2002阀重19kg ,阀安装座重4kg )

图6 EP 2002阀外形

对于EP2002的网关阀、扩展阀和智能阀,其气动部分都是相同的,称为气动阀单元。该气动阀单

元包括多个功能部,如图7所示。

(1)主调节部(Primary Reg ulation ),根据经载荷调整的紧急制动压力进行压力调节。

(2)次调节部(Secondary Regulato r ),位于主调节部的上游装置,根据在超员状态下紧急制动压

力限制制动缸的最大压力。(3)称重部(Load Weigh ),用于向主调节部提供一个预控压力。在常用和紧急制动时,称重部将产生与空簧压力(ASP )成比例的预控压力。(4)制动缸压力部(BCP Regulatio n ),用于将主调节部的输出压力调节到要求的制动缸压力,还用于在防滑器动作时对制动缸压力进行控制。对于每根轴,它由两个电磁阀和两个活塞阀组成。(5)连接部(Link V alve ),用于在气路上连接或隔断制动缸的压力输出。

·

58·

(6)压力传感器,用来进行内部调节和(或)外部指示(制动风缸、载荷、制动缸压力、停放制动)。

(7)远程缓解部(Remo te Release ),用于当列车在隧道中遭遇严重的影响安全的风险时。

EP2002阀与防滑阀或高度阀类似,是一个高度集成的电空控制阀,它不可能进一步分解出单个

的气路图或完整的生产部件清单。该阀体结构在部件级只能拆分成数百个具有基本结构体的单独零件(螺杆、垫片等);反之,这些零件必须装配起来才构成EP2002电空控制阀。因此,使用维修时需彻底分解,对维修条件有很高的要求。

图7 EP2002阀气动部分气路图

1.4 SABWABC O (FAIVELEY )的EPAC 制动系统

该制动系统包括基于架控的EPAC 电空制动系统和基于车控的EPAC Lite 电空制动系统。该电空制动系统2000年开始研发,2003年装车应用。在我国,该电空制动系统(EPAC Lite )主要应用于上海轨道交通等项目。

与电空制动系统相对应,EPAC 制动控制单元

主要分两类:一是用于架控的EPAC 制动控制单元,二是用于车控的EPAC Lite 制动控制单元。本文主要介绍用于车控的EPAC Lite 制动控制单元(如图8)。EPAC Lite 制动控制单元的外形尺寸405mm ×275mm ×285mm ,其总重为30kg (EPAC Lite 重24kg ,其安装座重6kg )

图8 EPA C Lite 制动控制单元

·

59·

EPAC Lite 制动控制单元衍生于基于架控的EPAC 制动控制单元,采用模块化结构,它包括了轨道车辆摩擦制动用所有标准模块。各种模块(如常用制动控制模块、停放制动控制模块等)经有机组合后形成基于项目的不同配置。EPAC Lite 是一个高

度集成的电空制动单元,由多个标准化的小型气动元件、安装板和微机电控装置等组成,并集成在一个封闭的箱体内。制动风缸、空簧压力和停放风缸等为EPAC Lite 的输入气路,其输出气路与制动缸和停放制动缸等相连,如图9所示

注:AR —制动风缸;LP —空气弹簧;PR —停放风缸;DIS —安全制动控制;BP —列车管;BC1—制动缸1;BC2—制动缸2;PBA —停放制动缸

图9 EP AC LIT E 制动控制单元气路图

EPAC Lite 的微机电控装置集成在内部,不需要另加制动电子控制装置。该微机电控装置使系统能响应及处理制动指令和大量的系统外界参数。

从维护来说,EPAC Lite 是一个在线可替代单元,方便现车维护,实现了列车下线时间最小化。

常用制动时,EPAC Lite 通过列车线接收制动指令,根据空簧压力进行载荷调整,另外根据来自牵引系统的电制动信号进行空电混合,然后,EPAC Lite 由电空转换模块产生常用制动预控压力,继而控制中继阀输出制动缸压力,如图10所示。

EPAC Lite 设有紧急制动模块,如图11所示,紧急制动由列车的安全回路控制。当安全回路断开时,即施加紧急制动时,紧急制动阀失电,制动缸产生紧急制动压力。

EPAC Lite 通过读取4个轴速度和控制转向架附近的防滑阀来实现WS P 的单轴控制。由于防滑阀不设在EPAC Lite 内,所以EPAC Lite 可安装在车辆中央

。注:AR —制动风缸;TA —制动风缸传感器;M GD —减压阀;EVF —充风电磁阀;EVS B —缓解电磁阀;EVS —排风电磁阀;T pil —常用制动传感器;R —中继阀;BC1—制动缸;RP —制动缸压力开关

图10 EP AC LIT E 的常用制动模块

·

60·

注:DIS —安全制动控制;LPP —载荷限压阀;TLP —载荷传感器;EVSOCC —紧急电磁阀;Tsaf —紧急制动传感器;R —中继阀

图11 EPA C LI T E 的紧急制动模块

EPAC LITE 设有停放制动模块,如图12所示。停

放制动由列车线来控制,是基于车辆的停放制动控制

注:PR —停放风缸;MGD —减压阀;PBA —停放制动缸;PB1、PB2—停放制动电磁阀;PBHIGH 、PBLOW —停放制动压力开关

图12 EPA C LI T E 的停放制动模块

2 城轨车辆制动系统选用分析

针对上述制动系统的组成和功能,结合一些当前新型直通电空制动系统的热点,如车控和架控制动系统等,提出了以下选用城轨车辆制动系统需注意的几个方面,在保证城轨车辆制动系统安全性的同时,尽量减少其运用风险和寿命成本。2.1 辨析车控和架控制动控制系统

实际应用证明,对城轨车辆制动系统,车控和架控制动控制系统在性能方面没有什么区别,例如制动响应时间、制动缓解灵敏度、制动缸充排风速度和

防滑控制水平等。这是由于实际上现有车控制动控制系统的性能已足够满足对制动的要求,所以制动系统的性能主要取决于制动管路的布置和状态。

另外,在制动管路的布置方面,车控和架控制动控制系统各有优缺点:对于车控系统,与架控系统相比在车辆上需布置沿车长方向的制动缸管;对于架控系统,与车控系统相比需要设置两个靠近转向架的制动控制装置;对于停放制动系统,车控和架控系统的管路布置是相同的。应该说现有的将停放制动集成在内的车控制动控制单元更具有优势。总的来说,对于大于2辆车编组的列车,选择车控制动控制系统更加经济实用;对于1~2辆车编组的列车,可以选用架控制动控制系统,在理论上更加安全可靠。但是,空气制动系统采用车控或架控方式还应与电气传动系统采用的控制方式相协调。2.2 制动控制单元小型化趋势

由上述城轨车辆制动控制单元介绍可知,与20世纪90年代NABCO 的H RDA 制动控制单元和KNORR 的ES RA 制动控制单元相比,制动控制单元小型化已是现在以至未来制动控制单元的发展方向。制动控制单元小型化,如EP2002和EPAC 制动控制单元,使制动控制单元成为了一个可在线更换的装置,方便车辆的安装和维护,减轻了车辆的总重,减少了列车库停检修的时间。2.3 制动控制单元新解决方案的挑战

我国城轨车辆大多数制动控制单元采用传统的制动控制解决方案:即制动气动装置接受制动电子控制装置的控制,由电空转换阀产生与制动需求相一致的预控压力,然后通过中继阀进行流量放大,最终控制制动缸的压力;防滑控制由制动电子控制装置通过控制靠近转向架的防滑阀实现车轮防滑。值得注意的是,一些新的制动控制单元采用了全新的制动控制解决方案,将制动缸控制和防滑控制合并在一起。但由于制动缸控制和防滑控制不同的机械和气动特性,新的制动控制解决方案面临着较大的挑战。2.4 考虑制动控制系统的寿命成本

由于城轨交通的安全性要求较高,目前我国主要采用了国外的车辆制动控制系统。但在保证了安全性的同时,也不得不面对产品的寿命周期成本。这一大问题。面对上述我国采用的城轨制动控制系统,运用一定时期的可维修性需着重考虑。所以在选用城轨制动控制系统时,需要研究其零部件维修的可能性,而不是自始至终从国外购买整机。

(收稿日期:2008-07-24)

·

61·

城轨车辆空气制动系统

空气制动,又称为机械制动或摩擦制动。城市轨道交通车辆常用的空气制动方式有闸瓦制动和盘形制动。空气制动主要以压缩空气为动力,压缩空气由车辆的供气系统供给。 一空气制动系统的组成 城市轨道交通车辆的空气制动系统由供气系统、基础制动装置(常见的有闸瓦制动系统与盘形制动装置)、防滑装置和制动控制单元组成。 供气系统主要由空气压缩机、空气干燥剂、压力控制装置和管路组成,供气系统除了给车辆制动系统供气外,还向车辆的空气悬架设备,车门控制装置(气动门),气动喇叭,刮水器及车钩操作气动控制设备等需要压缩空气的设备供气。 防滑装置适用于车轮与钢轨黏着不良时,对制动力进行控制的装置。它的作用是:防止车轮即将抱死;避免滑动并最佳地利用粘着力,以获取最短的制动距离。 制动控制单元是空气制动的核心部件,它接受微机制动控制单元(EBCU)的指令,然后再指示制动执行部件动作。其组成部分有:模拟转换阀、紧急阀、称重阀和均匀阀等。这些部件都安装在一块铝合金的气路板上,实现了集成化。这样避免用管道连接而造成容易泄露和占用空间大等问题。 二、空气制动系统的控制方式 空气制动系统按其作用原理的不同,可以分为直通式空气制动机,自动式空气制动机和直通自动式空气制动机。 1.直通式空气制动机 直通式空气制动机的机构如图所示

空气压缩机将压缩空气储入总风缸内,经总风缸管至制动阀。制动阀有缓解位、保压位和制动位3个不同位置。在缓解位时,制动管内的压缩空气经制动阀Ex (Exhaust) 口排向大气;在保压位时,制动阀保持总风缸、制动管和Ex口各不相通;在制动位时,总风缸管压缩空气经制动阀流向制动管。 (1)制动位驾驶员要实施制动时,首先把操纵手柄放在制动位,总风缸的压缩空气经制动阀进入制动管。制动管是一根贯穿整个列车,两端封闭的管路。压缩空气由制动管进入各个车辆的制动缸,压缩空气推动制动缸活塞移动,并通过活塞杆带动基础制动装置,使闸瓦压紧车轮,产生制动作用。制动力的大小,取决于制动缸内压缩空气的压力,由驾驶员操纵手柄在制动位放置时间长短而定。 (2)缓解位要缓解时,驾驶员将操纵手柄置于缓解位,各车辆制动缸内的压缩空气经制动管从制动阀Ex口排入大气。操纵手柄在缓解位放置的时间应足够长,使制动缸内的压缩空气排尽,压力降至为零。此时制动缸活塞借助于制动缸缓解弹簧的复原力,使活塞回到缓解位,闸瓦离开车轮,实现车辆缓解。 (3)保压位制动阀操纵手柄放在保压位时,可保持制动缸内压力不变。当驾驶员将操纵手柄在制动位与保压位之间来回操纵,或在缓解位与保压位之间来回操纵时,制动缸压力能分阶段上升或降下,即实现阶段制动或阶段缓解。 直通式空气制动机的特点如下: 1)制动管增压制动、减压缓解,列车分离时不能自动停车。 2)能实现阶段缓解和阶段制动。 3)制动能力大小靠驾驶员操纵手柄在制动位放置时间的长短决定的,因而控制不太精确。4)制动时全列车制动缸的压缩空气都由总风缸供给;缓解时,各制动缸的压缩空气都需经制动阀排气口排入大气。因此前后车辆制动一致性不好。 自动式空气制动机 自动式空气制动机在直通式空气制动机的基础上增加了三个部件:在总风缸与制动阀之间增加了给气阀;在每节车辆的制动管与制动缸之间增加了三通阀和副风缸。给气阀的作用是限定制动管定压,人为规定制动管压力,即无论总风缸压力多高,给气阀出口的压力总保持在一个设定值。 自动式空气制动机的制动阀同样也有缓解位、保压位和制动3个作用位置,但内部通路与直通式空气制动机的制动阀有所不同。在缓解位时它联通给气阀与制动管的通路;制动位时它使制动管与制动阀上的Ex口相通,制动管压缩空气经它排向大气;保压位时仍保持各路不通。

城市轨道交通列车制动系统的特点及发展趋势初探

城市轨道交通列车制动系统的特点及发展趋势初探 发表时间:2018-06-07T11:18:32.193Z 来源:《基层建设》2018年第11期作者:刘艳虎 [导读] 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 苏州市轨道交通集团有限公司运营分公司江苏苏州 215000 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 关键词:城市轨道交通;车辆制动系统;空气压塑;制动盘;控制系统 城市轨道交通站间距短,列车制动频繁,其制动系统的可靠性决定了车辆运行安全,是现阶段城市轨道交通研究的重要内容这一。在科技快速发展的背景下,轨道交通车辆制动系统技术也得到很大程度的改进,为轨道交通发展奠定了坚实基础。 1空气压缩 1.1技术背景 如今,铁路对用气质量提出越来越高的要求,压缩气体必须达到较高的无水和无油条件,这使无油空压机进入快速发展时期。尽管现阶段铁路领域的无油空压机实际应用仍有限,但依靠其无油这一显著特征,将很快在市场占据主导地位。 若按压缩方式,可对无油空压机做以下分类:回转形式的无油空压机以及循环往复形式的无油空压机。后者与活塞式空压机相对应,前者则与最常用的螺杆形式的空压机相对应。从活塞式空压机的角度讲,主要有两种不同的润滑形式,即干式润滑及水润滑。 活塞与螺杆空压机常用于铁路领域,螺杆适合低压和中小流量,而活塞适合高压与多种压力范围。采用水润滑形式的无油螺杆,不仅结构复杂,而且对环境有严格要求,在铁路这种复杂环境下并不适用;采用干式的无油螺杆,其排量超过3m3/min,但仍未能达到出口压力,同样在铁路中不适用。从目前的铁路行业发展看,其对空压机有下列几项特殊要求:经久耐用;耐冲击、污染和高温;振动与噪声较低;维护难度与成本较低。 1.2技术原理 活塞式空压机进入随曲轴联动旋转状态后,在连杆提供的传动作用下促使活塞进行往复运动,此时活塞的顶部表面、气缸的内部表面和气缸盖三者形成的容积必定产生具有周期性特点的变化。活塞由气缸盖做运动后,容积不断增加,此时气体在进气管中推开进气阀门到达气缸,到容积不再增加为止,阀门关闭;活塞进入反向运动状态后,上述容积开始减少,但压力持续增大,超出排气压力以后,阀门打开,气体开始向外部不断排出,当活塞运动到最大行程后,阀门将自动关闭。活塞再次进入反向运动状态后,重复以上过程。 1.3特殊结构 对全无油形似的活塞空压机,其原理和油润滑形式的活塞空压机大致相同,区别为将油润滑换成自润滑。其中,气缸采用铝合金加工而成,表面做特殊处理,减小摩擦以延长使用寿命;活塞也采用铝合金加工而成,各活塞上设置导向环与密封环,二者都采用自润滑材料,能使摩擦达到最小;连杆和活塞由特殊销进行连接,配有全封闭式轴承,无需维护,并在设计过程中考虑了防超温使用。曲轴和各连杆间同样使用这种轴承;气阀为长寿命阀,能满足特殊的实际使用要求。 1.4优缺点 1.4.1优点 压缩空气输出更为洁净,只有极少量水和污染物,下游净化单元能直接去除,无油蒸汽和油滴,能防止下游管路被污染;压力范围较广,任何一种流量情况下,都能提供所需压力;具有很高的热效率,耗电省;具有较强的适用性,表现为排气范围广,受压力影响小等方面;可大幅降低维护成本,减少工作量;无润滑油方面的输出,过滤部件可长时间使用,负担小;由于不使用润滑油,所以还能解决低温启动方面的问题,而且对运转率也没有太高的要求。 1.4.2缺点 排气的连续性较差,存在一定气流脉动;在运转过程中可能产生较大的振动。 2制动盘 在当前的轨道交通车辆中,铝合金制动盘得到广泛应用,其优点有: 第一,自重轻,密度比铸钢与铸铁都小,能减轻车辆自重,尤其是簧下质量,若能减轻簧下质量,则能减小振动和噪音。此外,车辆自重减轻其能耗必定有所降低,能提高节能减排指标。 第二,有良好的耐磨性及导热性,且摩擦系数保持稳定,将钢铁替换为铝合金,能在减轻质量的同时,延长寿命,降低成本,保证可靠性与安全性。此外,出色的导热性能还能使制动盘适应反复变化的热负荷,降低了热疲劳裂纹产生率。 我国从九十年代起有相关院校开始研究铝基复合材料在列车制动盘中的应用,提出很多方法,如喷溅法和粉末冶金法等。然而,因研制难度相对较大,加之制造工艺十分复杂,所以成果主要为样件,要实现批量化生产的目标,还需要进一步的研究。 近几年,我国很多企业在广泛调研这项技术的前提下,对该行业现有技术能力进行综合,提出一套制造工艺,并通过一段时间的摸索与总结,初步掌握批量生产办法。制动盘摩擦副现已完成各项分析实验,其所有性能指标都达到要求,且优于同类产品。 3基于模块化的新制动系统 3.1系统特点 采用以CAN总线为基础的分布式控制,各控制单元均能在CAN总线的支持下构成整个控制网络。EP09/S能提供防滑控制与电空制动两项功能,仅存在紧急制动对应的输入输出接口,需由总线提供常用指令;对EP09/G而言,不仅具有EP09/S全部功能,而且还有列车总线接口及扩展接口,能起到类似网关的作用,并对制动力进行管理。 3.2性能要求 控制单元可提供的防滑控制与电空制动等功能都相对固定,具有实现模块化与小型化目标的条件。实际应用要求对于系统提出了很高的要求,集中在接口能力方面,如各模拟量实际扩展和不同接口方式等,而且对系统测试、故障诊断与时间存储也有着越来越高的实际要求,因受到架控单元机箱等因素的限制和影响,当前的网关单元在扩展能力上还有待于进一步提高。

新城市轨道交通车辆制动系统习题库

绪论 一、判断: 1、使运动物体减速,停车或阻止其加速称为制动。(×) 2、列车制动系统也称为列车制动装置。(×) 3、地铁车辆的常用制动为电空混合制动,而紧急制动只有空气制动。(√) 4、拖车空气制动滞后补充控制是指优先采用电气制动,不足时再补拖车的气制动(×) 5、拖车动车空气制动均匀补充控制是指优先采用电气制动,不足时拖车和动车同时补充气 制动(√) 6、为了保证行车安全,实行紧急制动时必须由司机按下紧急按钮来执行。(×) 7、轨道涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(√) 8、旋转涡流制动能把列车动能转化为热能,且不受黏着限制,轮轨间没有磨耗。(×) 9、快速制动一般只采用空气制动,并且可以缓解。(×) 10、制动距离和制动减速度都可以反映列车制动装置性能和实际制动效果。(√) 11、从安全的目的出发,一般列车的制动功率要比驱动功率大。(√) 12、均匀制动方法就是各节车各自承担自己需要的制动力,动车不承担拖车的制动力。(√) 13、拖车空气制动优先补足控制是先动车混合制动,不足时再拖车空气制动补充。(×) 14、紧急制动经过EBCU的控制,使BCU的紧急电磁阀得电而实现。(×) 二、选择题: 1、现代城市轨道交通车辆制动系统不包括(C)。 A.动力制动系统 B.空气制动系统 C.气动门系统 D.指令和通信网络系统 2、不属于制动控制策略的是(A)。 A.再生制动 B.均匀制动方式 C.拖车空气制动滞后补足控制 D.拖车空

气制动优先补足控制 3、直通空气制动机作为一种制动控制系统( A )。 A.制动力大小靠司机操纵手柄在制动位放置时间长短决定,因此控制不太精确 B.由于制动缸风源和排气口离制动缸较近,其制动和缓解不再通过制动阀进行, 因此制动和缓解一致性较自动制动机好。 C.直通空气制动机在各车辆都设有制动、缓解电空阀,通过设置于驾驶室的制动 控制器使电空阀得、失电 D.直通空气制动机是依靠制动管中压缩空气的压力变化来传递制动信号,制动管 增压时缓解,减压则制动 4、三通阀由于它和制动管、副风缸及制动缸相通而得名( B ) A.充气缓解时,三通阀内只形成以下一条通路:①制动管→充气沟i→滑阀室→副 风缸; B.制动时,司机将制动阀操纵手柄放至制动位,制动管内的压力空气经制动阀排 气减压。三通阀活塞左侧压力下降。 C.在制动管减压到一定值后,司机将制动阀操纵手柄移至保压位,制动管停止减 压。三通阀活塞左侧压力继续下降。 D.当司机将制动阀操纵手柄在制动位和保压位来回扳动时,制动管压力反复地减 压——保压,三通阀则反复处于冲压位。 5、城市轨道交通在运行过程中,乘客负载发生较大变化时,一般要求制动系统( B ) A.制动功率不变 B.制动率不变 C.制动力不变 D.制动方式不变. 6、下列不属于直通式空气制动机特点的是:(B) A.列车分离时不能自动停车B.制动管增压缓解,减压制动 C.前后车辆的制动一致性不好D.制动力大小控制不精确 7、下列制动方式中,不属于黏着制动的是:(C) A.空气制动B.电阻制动C.轨道涡流制动D.旋转涡流制动 8、下列制动方式中,属于摩擦制动的是:(A ) A.磁轨制动B.电阻制动C.再生制动D.轨道涡流制动 三、填空题:

城轨车辆制动系统的应用

城轨车辆制动系统的应用 李明,丁锋,盛朝霞 (大连机车车辆有限公司城轨技术开发部制动室,大连116022) 摘要:对国内外城轨车辆制动系统进行了对比、分析,阐述了各种制动系统的特点及其发展方向,在选用城轨制动系统时,应大力提倡采用国产化制动系统。 关键词:城轨车辆;制动控制系统;电空制动;应用 Application of Brake System in China Li Ming,Ding Feng,Sheng Zhaoxia (51 Zhongchang Street shahekou District,Dalian 116022, China) Abstract: Compared with the brake systems in CHINA and overseas.Elaborated each kind of braking system's characteristic and the development direction.When selects the urban rail vehicle braking system.We should promote with great effort uses the manufacture domestically braking system. Keywords:Urban rail Vehicle; Brake Control System; Electropneumatic Brake; Application 1 前言 现如今,城轨车辆在城市交通运输中将起着越来越重要的作用。城轨车辆具有大运量、低污染、快速、准点、安全等优点,并且能充分利用地下空间,对环境不产生污染,是解决城市交通拥挤的主要手段。 本文介绍了当前我国城轨车辆主要选用的国内和国外制动系统,从组成、功能和原理上进行了剖析,以利于对城轨车辆制动系统的选用。 2 城轨车辆国内外制动系统分析 目前,我国城轨车辆制动系统主要分为国内和国外产品,国内制动系统为铁道科学研究院机车车辆研究所所研制的制动系统,国外制动系统主要包括德国KNORR制动系统、日本NABTESCO制动系统.以上均属于当今主型的模拟式直通电空制动系统,具有反应快速、操纵灵活,以及与牵引、TCMS(列车控制管理系统)和ATC等系统协调配合等特点。主要对这些制动系统的制动控制、装置组成和功能进行介绍。 2.1 国产制动系统 由铁道科学研究院机车车辆研究所所研制的国产制动系统,已成功运用于各城市的地铁车辆中,如天津滨海线所采用的制动系统。该系统采用微机控制的模拟式电-空制动系统,制动控制系统采用车控方式,即每辆车都配有一套电空制动控制装置(EBCU),空气簧压力取自前后转向架各1点,将其平均后进行控制,EBCU内设有监控终端,具有自诊断和故障记录功能。 空气制动系统能在司机控制器、ATO 或ATP 的控制下对列车进行阶段或一次性的制动与缓解。该系统具有反应迅速、操纵灵活、能与电制动混合使用、防滑控制、紧急制动等功能。 2.1.1制动控制装置 制动控制装置主要由电子控制装置(EBCU)、电空中继阀等气动控制部件及压力传感器的气动控制单元组成。EBCU可分为制动控制、防滑控制、通信及故障诊断3个部分。EBCU的制动

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理 摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考 关键词:地铁车辆;制动系统 随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?” 1.地铁车辆的制动功能设计 地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。 制动系统设有载荷补偿功能。由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。 常用制动具有防冲动限制功能。制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。 2.制动系统功能 2.1常用制动 常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。 2.2快速制动 当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。快速制动是一种特殊的制动模式。快速制动与紧急制动的制动率相同。快速制动优先使用

城市轨道交通车辆制动技术题库

城市轨道交通车辆制动技术 题库 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 防滑控制系统主要由、和防滑动作机械部件组成。 2. 上海地铁基础制动装置采用制动机厂生产的。 3. BCU和BECU分别是和系统的缩写。 4. 上海地铁和广州地铁使用的电气指令制动控制系统为式电气指令式制动控制系统。 5. 模拟转换阀是上海地铁车辆KNORR制动系统中使用的一个电磁阀,它由三部分组成:电磁进气阀、和组成。 6. EP阀又称阀,是SD数字式制动控制单元中的一个转换阀。 7. 空压机的驱动电机一般有电机和电机。 8. 经空气压缩机压缩输出的空气压力单位,一般用bar来表示,1bar等于MPa。 9. 空气干燥塔可以将从空气压缩机输出的高压压缩空气中的和分离出去,以达到各用气系统对压缩空气的要求。 10. 空气压缩机组一般由、、、等装置组成。 11. 上海地铁knorr公司的空气压缩机,在进行压缩空气时一般经过两级冷却,分别为冷却和冷却。 12. 除空气制动系统用气外,城市轨道列车还有以下部件需要用到压缩空气:、、、等。 13. 空气压缩机组一般采用方式进行润滑。 14. 空气干燥器一般做成塔式的,有和两种。 15. 电阻制动所采用的制动电阻,材料一般采用合金带钢条,这种合金带钢条不仅具有稳定的,而且具有相当大的。 16. 再生制动失败,列车主电路会自动切断反馈电路转入制动电路。 17. 直流斩波器按列车控制单元及制动控制单元的指令,不断调节斩波器的,无级、均匀地控制,使制动力和再生制动电压持续保持恒定。 18. 电动车组中既有动车又有拖车,拖车没有电动机,只能使用制动,动车带有电动机,可以进行制动。 19. 一般列车在高速时,常用制动都先从制动开始,最后在列车10km/h 以下低速时,由制动将车停止。 20. 动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要(大or小)一些,情况要更复杂一点,其主要原因是由于的存在所导致。 21. 伴随着蠕滑产生静摩擦力,轮轨之间才能传递。 22. 一般城市轨道车辆的制动方式主要有三类:、和电磁制动。 23. 电磁制动有两种形式:和。 24. 轮对在钢轨上运行,一般承受载荷、载荷和载荷。 25. 城市轨道交通系统都有明确的车辆运行规程,对于列车制动能力,上海地铁规定,列车在满载乘客的条件下,任何运行速度时,其紧急制动距离不得超过米。 26. 现代城市轨道车辆的制动系统一般都应该具有以下组成部分:、和。 27. 城市轨道车辆制动技术正朝着、、和的目标不断前进。 28. 最近几十年来,制动技术取得了很大进展,出现使电气再生制动成为可能,使制动防滑系统更加精确完善。

地铁车辆制动系统浅析

毕业论文(设计)任务书题目城轨车辆制动系统浅析 学生姓名李星燃学号 11022315 班级: 110223 专业:城市轨道交通车辆 分院:工程技术分院 指导教师:王洋 2013 年 11 月 1 日

城轨车辆制动系统浅析 0、引言 为适应车辆运行速度高、站间距离短、起动制动频繁等要求,轻轨车辆采用了Knorr公司的微机控制电空制动系统,该系统具有反应迅速、制动距离短、部件集成化程度高、可以实现平稳停车等特点。 车辆在制动过程中电制动优先,然后施加空气摩擦制动。车辆正常状态下使用的空气制动是常用制动,紧急制动是在紧急情况下由司机触发或列车紧急制动环线失电而自动施加的,停放制动是制动系统自动施加的弹簧制动。 列车在运行过程中,当速度在电制动零速点( v=3km/h)与淡出点之间时,通过编码器输出“电制动力达到多大值”信号,使得电制动和空气摩擦制动混合施加。当列车运行在恒电制动力最高速度和电制动淡出点之间时,仅使用电制动,当列车运行速度超过恒电制动力最高速度时,电制动和空气摩擦制动又混合施加(图1)。

下面分别介绍这几种制动方式的制动原理及应用方式。 1、电制动 城市轨道车辆电制动采用再生制动与电阻制动。当“制动列车线”激活发出制动指令时,优先采用电制动。如果“运行系统网络”允许,使用的主要制动模式是再生制动,当接触网网压高于750 V时,不能够吸收再生制动反馈回来的能量,则采用牵引控制单元控制的电阻制动。 (1)再生制动。 在变频调速系统中,电机降速和停机是通过逐渐减小定子给定频率来实现的,由于惯性原因,电机的转子仍旧处于被动的运行状态,当同步转速ω1小于转子ω时,转子电流相位几乎改变了180°,电机从电动机状态变为发电机状态;与此同时,电机轴上的转矩变成制动转矩 T e,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路,再生循环使用。

城轨车辆制动控制系统

第六章制动控制系统 制动控制系统是空气制动系统的核心,它接受司机或自动驾驶系统(ATO)的指令,并采集车上各种与制动有关的信号,将指令与各种信号进行计算,得出列车所需的制动力,再向动力制动系统和空气制动系统发出制动信号。动力制动系统进行制动时将实际制动力的等值信号反馈给制动控制系统,制动控制系统通过运算协调动力制动和空气制动的制动量。空气制动系统将制动系统发来的制动力信号经流量放大后使执行部件产生相应的制动力。这就是制动控制系统的主要功能。 6.1 制动控制系统的组成 如图6.1制动控制系统主要由电子制动控制单元(EBCU)、空气制动单元(BCU)和电气指令单元等组成。 图6.1制动控制系统的组成 6.1.1 电子制动控制单元 在电子技术和微机技术的迅猛发展下,列车的制动控制由微机综合列车运行中的所有参数,经过判断和运算,给制动系统发出精确的指令。以微机为中心的电子控制装置被称为电子制动控制单元(EBCU)、微机制动控制单元(MBCU)

或制动控制电子装置(BCE)等。 它有一下主要功能: (1)接受司机控制器或ATO的指令,与牵引控制系统协调列车的制动和缓解。 (2)将接收到的动力制动实际值经 EP转换,将电信号转换成气动信号发送给空气制动控制单元。 (3)控制供气系统中空气压缩机组的工作周期,监控主风缸输出压力等参数。 (4)在列车制动过程中始终收集列车所有轮对速度传感器发来的速度参数,对轮对在制动过程中出现的滑行进行监视。 (5)对列车制动时的各种参数和故障进行监视与记录。 6.1.2空气制动控制单元 空气制动控制单元是制动系统中电气制动和空气制动的联系点,也是电子、电子信号与气动信号的转换点。在过去论述中称为中继阀或EP。 (一)EP 由电磁线圈、铁芯、顶杆和活塞等组成。当它的电磁线圈没有励磁时,铁芯和连杆落在阀底,通路阻断或通路与大气连通。当线圈励磁,铁芯被吸引上移,推动顶杆和活塞上移,通路与储风缸压力空气连通。 (二)中继阀 它上部是给排阀,下部是腔室。腔室中是活塞和膜板,活塞和膜板带动有空心通路的顶杆上下移动。 中继阀也是一个将电信号转换成压力空气的电磁阀,只是电信号的变化不是励磁电流的变化,而是通过电磁阀励磁线圈和消磁状态的不同组合,将多个电信号输入转换成对应空气压力输出。 (三)空重车调整阀 空重车调整阀的作用是根据车辆载重的变化,即根据乘客的多少,输出一个空气压力信号,并通过中继阀使单元制动机风缸保持一个恒定的制动力。 空重车调整阀的输入是车辆二系弹簧的空气压力信号。考虑到车辆载重的不平衡,一般采取前后转向架对角的两个空气弹簧压力为输入信号,这样就能比较准确地使空重车调整阀的输出压力信号与乘客负载成一定比例关系。

城市轨道车辆制动系统原理分析

2014届毕业设计说明书课题名称:城轨车辆制动系统分析 二级院校铁道牵引与动力学院 班级宁波检修11级 学生姓名周旺 指导老师左继红 完成日期 2013.12

2014届毕业设计任务书 一、课题名称:城轨车辆制动系统的原理分析 二、指导老师:左继红 三、设计内容与要求 1.课题概要 城市轨道交通运输是我国交通运输网络的重要组成部分,它的发展与城市经济的发展息息相关。目前,世界各地的主要政治、经济、文化等中心城市都兴建了不同形式的轨道交通运输网,有些还成为所在城市的重要景观和标志性建筑。我国北京、上海、广州、南京等城市的地下铁道已经开通,成为这些城市市内交通运输的支柱。另外还有许多其他的城市交通网也在筹建和建设之中。城市轨道交通运输的发展必将为我国经济的发展插上腾飞的翅膀。 地铁车辆制动系统用于保证地铁车辆的运行安全,具有多种操作模式,与传统列车制动系统相比,结构和工作原理更为复杂。 通过对此课题的学习和设计,使学生能更好的理解地铁车辆制动和空气管路系统的工作原理,培养学生运用所学的基础知识和专业知识的能力,提高学生利用所学基本理论和自身具备的技能来分析解决本专业相应问题的能力,使学生树立正确的设计思想,掌握工程设计的一般程序和方法,完成工程技术人员必须具备的基本能力的培养和训练。 2.设计内容与要求 1、熟悉地铁制动在铁路运输中的作用。 2、简单介绍地铁车辆制动系统的组成。 3、详细分析地铁车辆及列车制动系统的工作原理和工作过程。 4分析现有制动系统存在的不足之处,利用自己所学的专业知识,提出改进设计意见和具体实施方案。 四、设计参考书 1.《城市轨道交通车辆制动技术》殳企平编著水利水电出版社 2.《列车制动》侥忠主编中国铁道出版社 3.《电力机车制动机》那利和主编中国铁道出版社 4. https://www.docsj.com/doc/7a6183224.html,/ec/C356/kcms-2.htm 5 .https://www.docsj.com/doc/7a6183224.html, 6. https://www.docsj.com/doc/7a6183224.html, 7. https://www.docsj.com/doc/7a6183224.html, 五、设计说明书内容 1.封面 2.目录 3.内容摘要(200—400字左右,中英文)

城市轨道车辆制动系统设计毕业设计(开题报告)

毕业设计(论文) 开题报告 题目跨座式城市单轨交通车辆 制动系统设计 专业城市轨道车辆工程 班级08级城轨1班 学生戴学宇 指导教师赵树恩 重庆交通大学 2012年

1. 选题的目的和意义 随着我国城市化进程的加快,城市交通拥堵、事故频繁、环境污染等交通问题日益成为城市发展的难题。城市轨道交通以其大运量、高速准时、节省空间及能源等特点,已逐渐成为我国城市交通发展的主流。在城市轨道交通系统中,跨坐式单轨交通制式因其路线占地少,可实现大坡度、小曲率线径运行,且线路构造简单、噪声小、乘坐舒适、安全性好等优点而逐渐受到关注。 在我国城市轨道交通迅速发展的同时,其运营安全保障已成为目前面临的重要问题。车辆作为城市轨道交通运输的载体,由于速度快、载客量大、环境复杂,其运行安全状况不容乐观——车辆故障不断出现、事故常有发生,这些故障不但严重的影响到正常运营,一旦引发事故将会带来巨大的人员伤亡和经济损失。制动系统是城市轨道交通车辆的关键系统,直接影响其安全运行,为提高车辆运行的安全性,对制动系统的设计便显得尤为关键。 2.国内外研究现状及分析 基础制动装置是确保城市轨道交通车辆行车安全的措施之一。在分析城市轨道车辆运输特点基础上, 李继山,李和平,严霄蕙(2011)《盘形制动是城市轨道车辆基础制动装置的发展趋势》[1]结合城市轨道车辆基础制动装置具体类型,分析了城市轨道车辆踏面制动与盘形制动的优缺点, 用有限元模拟城轨车辆车轮 踏面温度场及热应力, 表明速度100 km/ h 及以上的城轨列车基础制动不适宜采用踏面制动, 指出盘形制动是城市轨道交通车辆基础制动的发展的必然趋势。丁锋(2004)在《城市轨道交通车辆制动系统的特点及发展趋势》[2]一文中介绍并分析了我国城市轨道交通车辆制动系统的形式、构成、技术特点及发展趋势。吴萌岭,裴玉春,严凯军(2005)在《我国城市轨道车辆制动技术的现状与思考》[3]中较为详细地回顾了我国城市轨道车辆制动系统的发展历程,分析了目前我国新型城市轨道车辆制动系统的特点,并与我国自主研发适用于高速动车组的同类型制动系统作了技术比较。分析了我国自主研发城市轨道车辆制动系统的技术基础,指出国内技术与产品和国外相比存在着系统理念、设计经验和系统可靠性方面的差距,同时指出自主研发城市轨道车辆制动系统存在的问题,并提出了建议。邹金财(2010)《一种轨道车辆空气制动系统优化及仿真》[4]利用Simulationx 仿真软件对工矿窄轨土渣车的空气制动系统的改进前以及改进方案进行仿真,在与试验真实值对比后得到了正确的结论,通过对该空气制动系统优化中仿真手段应用过程的阐述,为机车车辆系统优化方法提供了参考。师蔚,方宇(2010)《城

城轨车辆空气制动风源系统资料

一般情况下,城轨车辆采用电动车组模式,以单元进行编组,所以其风源系统也是以单元来供气,每一单元设置一套风源系统,相邻车辆的主风管通过截断塞门和软管相连,由两个以上单元组成的列车就具有两套以上风源系统。 风源系统包括:空气压缩机、主风缸、脚踏泵以及空气管路系统等。用风设备主要包括:制动装置,空气悬挂装置、车门控制装置、以及风喇叭、雨刮器、受电弓气动设备、车钩操作气动设备等。风源系统制造的空气压缩机为用风设备的驱动提供动力,而压缩空气的净化和干燥处理是不可或缺的,其目的是除去压缩空气中所含有的灰尘、杂质、油滴和水分等,保证制动系统及其他用风设备长时间可靠地工作。 3.1 空气压缩机 城轨车辆采用的空气压缩机要求噪声低、振动小、结构紧凑、维护方便、环境实用性强的特点。目前,城轨车辆中采用的主要有活塞式空气压缩机和螺杆式空气压缩机两种。 3.1.1 活塞式空气压缩机 由固定机构、运动机构、进排气机构、中间冷却装置和润滑装置等几部分组成。其中,固定机构包括机体、气缸、气缸盖;运动机构包括曲轴、连杆、活塞;进排气机构包括空气滤清器、气阀;中间冷却装置包括中间冷却器、冷却风扇;润滑装置包括润滑油泵、润滑油路等.如图3.1 图3.1活塞式空气压缩机结构图

1-润滑油泵;2-体;3-油压表;4-空气滤清器;5、8-进气阀片;6-排气阀片;7、9-低压活塞;10-高压活塞;11-主风缸;12-压力控制器;13-上集气箱;14-散热管;15-下集气 它是由电机通过联轴节驱动空压机曲轴转动,曲柄连杆机构带动高、低压缸活塞同时在气缸内做上下往复运动。由于曲柄中部的三个轴颈在轴向平面内互成120°,两个低压活塞和一个高压活塞分别相隔120°转角。当低压活塞下行时,活塞顶面与缸盖形成真空,经空气滤清器的大气推开进气阀门,进入低压汽缸,此时排气阀在弹簧和中冷器内空气压力的作品用下关闭。当低压活塞上行时,气缸内的空气被压缩,其压力大于排气阀片上方压力与排气弹簧的弹力之和时压缩排气阀弹簧而推开排气阀片,具有一定压力的空气排出缸外,而进气阀片在气缸内压力及其弹簧的作用下关闭。两个低压缸送出的低压空气,都经过汽缸盖的统一通道进入中冷器。经中冷器冷却后,再进入高压缸,进行第二次压缩,压缩后的空气经排气阀口、主风管路送入主风缸储存。高压活塞的进排气作用与压力活塞的进排气作用相同。 3.1.2 螺杆式空气压缩机 螺杆式空气压缩机具有以下特点:(1)噪声小、振动小。(2)可靠性高和寿命长。(3)维护简单。(4)螺杆式空气压缩机的工作原理分三个部分:压缩机的吸气、压缩、排气三个阶段。如图3.2 图3.2 螺杆式空气压缩机系统流程图

轨道交通技术之--日本制动系统

1 日本铁路制动系统发展历程 在1872年,装配有蒸汽制动装置的蒸汽机车在日本的第一条铁路(东京到横滨)上开始运营。在当时,只有蒸汽机车才安装有蒸汽制动装置(如图1)。后来,日本又开发出真空闸(vacuum brake),由蒸汽喷射器(steam ejector)提供动力,从而通过利用机车之间气压和真空的差异性来进行制动。真空阀大约在1895年被运用到客运列车上面,从此列车运行变得更加安全。 1906年,日本铁路在国有化以后,全国轨道线路总里程达到7153公里。由于空气制动比真空制可以更加方便地维护,在1918年,日本铁路部规定所有车辆均须安装空气制动装置。为了达到这一标准,日本从1920年开始对所有列车的制动装置进行改装,改装历时大约10年左右的时间。到1931年,日本所有的列车均使用空气制动,采用的k三通阀(k triple valve)是在Westinghouse 设计的基础上进行改进而成(图2)。 如今,日本绝大多数客运列车是电气化列车,并且每年大约制造出2000节客车车厢,其中97%是电气化列车。在1955年,电气化列车开始安装拥有电磁阀(solenoid valve)的空气制动装置,从而使得制动效果得到显著改善。与此同时,动态制动(dynamic brake),也称之为再生制动,

开始得到推广。当1964年东海道新干线路段开通时,列车采用了两套制动系统,一个是空气制动,另一个是动力制动。1970年,制动效果更好的电力控制空气制动系统(electric command air brake system)开始推广,被运用于新干线和窄轨动车组。 2 空气制动基本原理 图3显示了自动空气制动系统的内部结构。每两节或者四节车厢就安装有一台空气压缩机,空气首先被压缩至700-900kpa,然后压缩空气被送入储气缸(air reservoir)。通过压力调节器可以将压缩空气的气压降低至490kpa,再依次通过制动阀、制动导管和控制阀,最后到达辅助储气缸。当制动导管和辅助储气缸的压缩空气压力在490kpa时,制动器不启动。然而,当制动阀切断来自压力调节器的空气时,控制阀就会监测到制动导管的气压降低情况,从而根据气压降低的幅度,调节从辅助储气缸到制动汽缸的压缩空气流量。制动汽缸会驱动制动系统使列车减速。控制阀会根据制动管道气压降低的幅度相应调节从辅助储气缸到制动汽缸的空气流量。图4显示了直通空气制动机(straight air brake)的运作流程。与自动空气制动系统不同的是,直通空气制动机没有控制阀或辅助储气缸。制动阀通过将压缩空气输送到制动汽缸,来完成列车制动。 然而,在正常运行状态下,直通空气管道不含有压缩空气,当列车处于解钩状态下,制动会失效。为了解决上述问题,需要将直通空气制动系统和自动控制系统结合起来。还可以增设一条管道,其功能类似于自动空气制动系统中的制动管道。当主要空气储气缸压缩空气的压力下降,或者空气管道漏气,就能够监测出压力下降变化,制动系统就会相应运转。例如在新干线,如果管道气压低于600kpa,制动系统就好自动发挥作用。 3 列车制动原理 为了确保机车安全运行,政府部门往往会制定相应的规范,对制动距离和减速率进行了限定。日本的规定是窄轨机车在最大时速运行时的减速距离不得超过600米。为了使机车在尽可能短的距

城市轨道交通制动系统

城市轨道交通制动系统 1、制动与缓解 (1)制动。 制动是指人为地通过制动装置使车辆减速或阻止其加速的过程。从能量变化角度分析,制动过程是一个能量转移的过程,即将列车运行的动能人为控制地转化成其他形式能量的过程。 而制动力则是指使车辆减速或阻止其加速的外力,制动机是产生并控制制动力的装置。 (2)缓解。 缓解是对已经施行制动的列车,解除或减弱其制动作用。对于运动的列车而言,列车在停车后启动加速前或列车在运行途中限速制动后加速前均要解除制动作用,即施行缓解作用。 2、制动装置与制动系统 (1)制动装置。 制动装置是在车辆中产生制动力,使列车减速、停车的一套机械、电气装置,一般将机械装置称为基础制动装置,而将电气控制的部分称为制动机。制动作用的性能对保证车辆安全和正点运行具有极其重要的作用,制动装置也是提高列车运行速度和线路输送能力的重要条件之一。 (2)制动系统。 ①制动系统的组成。制动系统由动力制动系统、空气制动系统及指令和通信网络系统组成。

动力制动系统。动力制动系统一般与牵引系统连在一起形成主电路,包括再生反馈电路和制动电阻器,将动力制动产生的电能反馈给供电接触网或消耗在制动电阻器上。 空气制动系统。空气制动系统由供气部分、控制部分和执行部分组成。供气部分有空气压缩机组、空气干燥器的风缸等;控制部分有电-空转换阀、紧急阀、称重阀、中继阀等;执行部分主要是指基础制动装置,主要有闸瓦制动装置、盘形制动装置等。 指令和通信网络系统。指令和通信网络系统是传递司机指令的通道,也是制动系统内部数据传递交换及制动系统与列车控制系统进行数据通信的总线。 ②制动系统的作用。制动系统的主要作用如下: 车辆在运行过程中,司机通过制动装置使列车减速、停车或停止加速。 防止车辆在长大下坡道运行时加速。 防止城轨车辆在停车线或检修线上自动溜放而实施停放作用等。

我国城轨车辆制动系统介绍及选型_吕晓晖

我国城轨车辆制动系统介绍及选型 吕晓晖 (中国北方机车车辆工业集团,266031,青岛∥高级工程师) 摘 要 介绍了日本N A BCO、德国K N O RR和英国WEST IN G HO US E制动系统控制装置的组成、工作原理及在我国各地城轨车辆上的应用。提出了选用城轨车辆制动系统需注意的几个方面:在保证安全性的同时,尽量减少制动系统的运用。应考虑制动控制系统的寿命周期成本;在选用城轨制动控制系统时,需要研究其零部件维修的可能性,而不是自始至终从国外购买整机。 关键词 城轨车辆;制动控制系统;电空制动 中图分类号 U260.352 Selection of Vehicle Brake System in C hina Lv Xiaohui A bstract Compar ed with the br ake systems in Japan, Ge mar y and UK(NABCO,KNORR and Westing House), the com position and func tions of the contempor ar y urban ra il vehicle bra ke syste m adopted in China's ur ban r ail tra nsit ar e introduced,meanwhile suggestions and analysi s are pr ese nted on the selec tion of ur ban r ail vehicle br ake system.The auther ar gues that a fe asibility study on br ake parts maintenance should be car ried out be fore the pur chase of the wh ole car body f rom abr oud. Key words urban r ail vehicle;br ake contr ol syste m; elec tropne uma tic br ake Author's address Chinese Norther n Loco.and Ca r I ndustr ial Gr oup,266031,Qingdao,China 城轨车辆制动系统的整体使用寿命要求20~30年,是影响城轨车辆安全性和寿命成本最重要的因素之一。本文介绍了当前我国城轨车辆主要选用的制动系统,从组成、功能和原理上进行了剖析,以便于城轨车辆制动系统的选用及维护。 1 城轨车辆制动系统介绍 目前我国城轨车辆主要选用国外进口的制动系统,主要包括日本NABCO制动系统、德国KNORR 制动系统、英国WES TING HO US E制动系统和SABWABCO(FAIVELEY)制动系统。以上均属于当今主型的模拟式直通电空制动系统,具有反应快速、操纵灵活,以及与牵引、TCMS(列车控制管理系统)和A TC等系统协调配合等特点。由于不同制动系统的风源和基础制动单元差别不大,下面主要对这些制动系统的控制系统或单元进行介绍。 1.1 日本NABC O制动系统 日本NABCO制动系统主要指NABCO的H RDA型电空制动系统,1992年投入应用,是一种传统的直通电空制动系统。在我国,该电空制动系统主要应用于北京和天津的城轨项目。 H RDA型电空制动系统的制动控制单元包括制动电子控制装置和气动控制装置两部分:电子控制装置为贮有定制程序的标准机箱,气动控制装置主要由电空中继阀、空重车调整阀和气路板等组成。制动控制单元的原理框图如图1所示。 如图2所示,制动电子控制装置和气动控制装置同装于一个制动控制箱内。制动控制箱外形尺寸为710mm×615mm×590m m,总重100kg。 1.1.1 制动电子控制装置 H RDA型电空制动系统的电子控制装置整体结构采用6U标准机箱,主要芯片采用日本日立公司的H8系统微控制器。该电子控制装置主要包括制动控制、防滑控制、通信及显示三个部分。 制动控制部可接收列车制动控制线的PWM 制动指令,进行空气和电制动的混合制动计算,控制电空中继阀上电空转换(EP)阀的电流,实现对制动缸的预控压力控制;同时,电子控制装置又根据两路空气弹簧压力(AS1、AS2)对预控压力按载荷进行自动调整,通过气动控制装置实现对制动力的控制。 防滑控制部可以测定各车轴的速度,一旦检测到有车轮滑行,便控制防滑阀降低滑行轴的制动缸压力,使滑行车轮恢复到正常的粘着状态。 通信及显示部用于与TM S通信及故障诊断信息的显示与存贮。 · 56·

城市轨道交通车辆制动系统的特点及未来发展趋势探讨

城市轨道交通车辆制动系统的特点及未来发展趋势探讨 摘要本文重点研究了城市轨道交通车辆制动系统的特点,制动系统与轨道交通车辆的安全行驶、乘客的舒适度息息相关。并以制动系统的特点为基础,分析了未来城市轨道交通车辆制动系统的发展趋势,希望能够对相关的研究人员起到借鉴的作用,推动制动系统的不断完善和发展。 关键词城市轨道交通车辆;制动系统;发展趋势 引言 随着经济的发展,城市化的进程在不断地加快,城市轨道交通车的速度也越来越快,频繁的启动和制动,会对轨道车辆的制动系统带来很大的压力,因此这对軌道交通的制动系统提出了较高的要求。鉴于此,对我国轨道交通车辆制动技术有一个清晰的了解很有必要。 1 城市轨道交通车辆制动系统的特点 目前,城市轨道交通车辆的制动系统主要是两种,一种是通过微机控制的直通式电空制动系统,这种制动系统完美地弥补了传统直通制动系统的瑕疵和缺陷,解决了无法紧急刹车、缓解时间过长等问题。另一种是自动式空气制动系统,这两种系统各有各的优点,是我国轨道交通车辆制动系统中的顶梁柱。 1.1 制动控制 不同的轨道交通车具备着不同的制动特点。微机控制的直通式电空制动系统主要依靠电信号的传输来实现制动控制,而自动式空气制动系统是通过空气波来完成制动。微机控制的电空制动系统接收到的电信号指令要比空气制动系统接收空气波指令反应快速,间隔时间短;而空气波控制的制动系统,接收制动指令的间隔时间和反应速度都不如微机控制的制动系统。 1.2 制动指令的执行 微机控制的直通式电空制动系统可以通过微机进行搜集指令电信号,而自动式空气制动系统是通过制动管的压力变化来进行制动的,在制动的过程中,电空制动系统比空气制动系统的反映快速,接收到的信息不论是能力还是容量都要强于自动空气制动系统,对于制动指令执行,电空制动系统也要比空气制动系统更加准确[1]。 1.3 故障上的自我诊断 在故障的自我诊断上,微机除了能够做到系统的全面诊断之外,还可以即时的显示故障信息,做到对系统的实时维修;而空气制动系统只能依靠人力来进行

相关文档
相关文档 最新文档