文档视界 最新最全的文档下载
当前位置:文档视界 › 高考数学解析分类汇编(2)---导数与积分 理

高考数学解析分类汇编(2)---导数与积分 理

高考数学解析分类汇编(2)---导数与积分 理
高考数学解析分类汇编(2)---导数与积分 理

2012年高考真题理科数学解析汇编:导数与积分

一、选择题

1 .(2012年高考(新课标理))已知函数1

()ln(1)f x x x

=

+-;则()y f x =的图像大致

2 .(2012年高考(浙江理))设a >0,b >0.

( )

A .若2223a b a b +=+,则a >b

B .若2223a b a b +=+,则a

C .若2223a b a b -=-,则a >b

D .若2223a b a b -=-,则a

3 .(2012年高考(重庆理))设函数()f x 在R 上可导,其导函数为()f x ',

且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是

( )

A .函数()f x 有极大值(2)f 和极小值(1)f

B .函数()f x 有极大值(2)f -和极小值(1)f

C .函数()f x 有极大值(2)f 和极小值(2)f -

D .函数()f x 有极大值(2)f -和极小值(2)f 4 .(2012年高考(陕西理))设函数()x

f x xe =,则

( )

A .1x =为()f x 的极大值点

B .1x =为()f x 的极小值点

C .1x =-为()f x 的极大值点

D .1x =-为()f x 的极小值点

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x

f x a =在R 上是减函数 ”,

是“函数3

()(2)g x a x =-在R 上是增函数”的

( )

A .充分不必要条件

B .必要不充分条件

C .充分必要条件

D .既不充分也不必要条件

6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴所围图

形的面积为

( )

A .2π5

B .

43

C .

32

D .

π2

7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一

点P,则点P 恰好取自阴影部分的概率为 ( )

A .

14

B .

15

C .

16

D .

17

8 .(2012年高考(大纲理))已知函数3

3y x x c =-+的图像与x 轴恰有两个公共点,则c = ( )

A .2-或2

B .9-或3

C .1-或1

D .3-或1

二、填空题

9 .(2012年高考(上海理))已知函数)(x f y =的图像是折线段ABC ,若中

A (0,0),

B (21,5),

C (1,0).

函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x =

与直线,0x a y ==所围成封闭图

形的面积为2

a ,则a =______.

11.(2012年高考(江西理))计算定积分

1

21

(sin )x x dx -+=?

___________.

12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为

___________________. 三、解答题

13.(2012年高考(天津理))已知函数()=ln (+)f x x x a -的最小值为0,其中>0a .

(Ⅰ)求a 的值;

1-y x

O

第3题图

1

1

(Ⅱ)若对任意的[0,+)x ∈∞,有2

()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明=12

ln (2+1)<221

n

i n i --∑*()n N ∈.

14.(2012年高考(新课标理))已知函数()f x 满足满足1

21

()(1)(0)2

x f x f e

f x x -'=-+;

(1)求()f x 的解析式及单调区间; (2)若2

1()2

f x x ax b ≥++,求(1)a b +的最大值.

15.(2012年高考(浙江理))已知a >0,b ∈R,函数

()342f x ax bx a b =--+.

(Ⅰ)证明:当0≤x ≤1时,

(ⅰ)函数()f x 的最大值为|2a -b |﹢a ; (ⅱ) ()f x +|2a -b |﹢a ≥0;

(Ⅱ) 若﹣1≤()f x ≤1对x ∈[0,1]恒成立,求a +b 的取值范围.

16.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)

设13

()ln 1,22

f x a x x x =+++其中a R ∈,曲线()y f x =在点(1,(1))f 处的切线垂直于y 轴. (Ⅰ) 求a 的值;

(Ⅱ) 求函数()f x 的极值.

F

G

17.(2012年高考(陕西理))设函数()(,,)n

n f x x bx c

n N b c R +=++∈∈

(1)设2n ≥,1,

1b c ==-,证明:()n f x 在区间1,12??

???

内存在唯一的零点;

(2)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (3)在(1)的条件下,设n x 是()n f x 在1,12??

???

内的零点,判断数列23,,,n

x x x 的增减

性.

18.(2012年高考(山东理))已知函数ln ()x

x k

f x e +=

(k 为常数, 2.71828e =???是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;

(Ⅱ)求()f x 的单调区间;

(Ⅲ)设2

()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意

20,()1x g x e -><+.

19.(2012年高考(辽宁理))设()ln(1)(,,,)f x x ax b a b R a b =++

+∈为常数,

曲线()y f x =与 直线3

2

y x =

在(0,0)点相切. (Ⅰ)求,a b 的值.

(Ⅱ)证明:当02x <<时,9()6

x

f x x <+.

20.(2012年高考(江苏))若函数)(x f y =在0x x =处取得极大值或极小值,则称0x 为

函数)(x f y =的极值点.

已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点.

(1)求a 和b 的值;

(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;

(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.

21.(2012年高考(湖南理))已知函数()f x =ax

e x =-,其中a ≠0.

(1) 若对一切x∈R,()f x ≥1恒成立,求a 的取值集合.

(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由. 22.(2012年高考(湖北理))(Ⅰ)已知函数()(1)(0)r f x rx x r x =-+->,其中r 为有理数,

且01r <<. 求()f x 的 最小值;

(Ⅱ)试用(Ⅰ)的结果证明如下命题:

设120,0a a ≥≥,12,b b 为正有理数. 若121b b +=,则12121122b b a a a b a b ≤+; (Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题. 注:当α为正有理数时,有求导公式1()x x ααα-'=.

23.(2012年高考(广东理))(不等式、导数)设1a <,集合

{}0A x R x =∈>,(){}

223160B x R x a x a =∈-++>,D A B =.

(Ⅰ)求集合D (用区间表示);

(Ⅱ)求函数()()322316f x x a x ax =-++在D 内的极值点.

24.(2012年高考(福建理))已知函数2

()()x

f x e ax ex a R =+-∈.

(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间; (Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .

25.(2012年高考(大纲理))(注意:在试题卷上作答无效.........

) 设函数()cos ,[0,]f x ax x x π=+∈. (1)讨论()f x 的单调性;

(2)设()1sin f x x ≤+,求a 的取值范围.

26.(2012年高考(北京理))已知函数2

()1f x ax =+(0a >),3

()g x x bx =+.

(1)若曲线()y f x =与曲线()y g x =在它们的交点(1,c )处具有公共切线,求,a b 的值;

(2)当2

4a b =时,求函数()()f x g x +的单调区间,并求其在区间(,1]-∞-上的最大值.

27.(2012年高考(安徽理))(本小题满分13分)设1

()(0)x

x f x ae b a ae

=+

+> (I)求()f x 在[0,)+∞上的最小值;

(II)设曲线()y f x =在点(2,(2))f 的切线方程为3

2

y x =;求,a b 的值.

2012年高考真题理科数学解析汇编:导数参考答案

一、选择题

1. 【解析】选B

()ln(1)()1()010,()00()(0)0x

g x x x g x x

g x x g x x g x g '=+-?=-

+''?>?-<<?<= 得:0x >或10x -<<均有()0f x < 排除,,A C D 2. 【答案】A

【解析】若2223a b a b +=+,必有2222a b a b +>+.构造函数:()22x f x x =+,则

()2ln 220x f x '=?+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.

其余选项用同样方法排除.

3. 【答案】D

【解析】2,10x x <-->,由(1)()0()0x f x f x ''->?>,函数()f x 为增;

21,10x x -<<->,由(1)()0()0x f x f x ''-?<,函数()f x 为减; 2,10x x >-<,由(1)()0()0x f x f x ''-,函数()f x 为增.

【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0,则函数为增,当导函数小于0则函数递减.

4. 解析:()(1)x

f x x e '=+,令()0,f x '=得1x =-,1x

时,()0f x '<,()x f x xe =为

减函数;1x 时,()0f x '>,()x f x xe =为增函数,所以1x =-为()f x 的极小值点,

选D.

5. 【解析】若函数x a x f =)(在R 上为减函数,则有10<

)2()(x a x g -=为增

函数,则有02>-a ,所以2

a x f =)(在R 上为减函数”是“函数

3)2()(x a x g -=为增函数”的充分不必要条件,选A.

6. 考点分析:本题考察利用定积分求面积.

解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为

1

2311114

(1)()33

S x dx x x --=-+=-+=?. 7. 【答案】C

【解析】

31

22

01211)()1326

0S x dx x x S ==-==?正阴影

,故16P =,答案C 【考点定位】本题主要考查几何概型的概率和定积分,考查推理能力、计算求解能力.

8. 答案A

【命题意图】本试题主要考查了导数在研究三次函数中的极值的运用.要是函数图像与x 轴有两个不同的交点,则需要满足极佳中一个为零即可. 【解析】因为三次函数的图像与x 轴恰有两个公共点,结合该函数的图像,可得极大值或

者极小值为零即可满足要求.而2

()333()(1)f x x x x '=-=-+,当1x =±时取得极值

由(1)0f =或(1)0f -=可得20c -=或20c +=,即2c =±. 二、填空题

9. [解析]如图1,???≤<-≤≤=1

,10100,10)(21

2

1x x x x x f

所以???≤<+-≤≤==1

,10100,10)(21

22

12x x x x x x xf y 易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MNO 与OMP 全等,面积相等,故所求面积即为矩形ODMP 的面积

S=45

2521=?.

[评注]对于曲边图形,上海现行教材中不出微积分,能用微积分求此面积的考生恐是极少的,而对于极大部分考生,等积变换是唯一的出路. 10. 【解析】由已知得2230230

32|32a a x x S a a

====?

,所以3221

=a ,所以9

4=a .

11.

2

3

【解析】本题考查有关多项式函数,三角函数定积分的应用. 31

2

111

11112

(sin )cos |cos1cos1333333x x x dx x --??-????+=-=---=+= ? ? ???????

?. 【点评】这里,许多学生容易把原函数写成3

cos 3

x x +,主要是把三角函数的导数公式记混而引起的.体现考纲中要求了解定积分的概念.来年需要注意定积分的几何意义求曲面面积等.

12.解析:210x y -+=.21|3112x y ='=?-=,所以切线方程为()321y x -=-,即

210x y -+=.

三、解答题

13. 【命题意图】本试题主要考查导数的运算、利用导数研究函数的单调性、不等式等基础

知识,考查函数思想、分类讨论思想、考查综合分析和解决问题的能力.

图1

图2

(1)()f x 的定义域为(,)a -+∞

()ln()f x x x a =-+11

()101x a f x x a a x a x a

+-'?=-

==?=->-++ ()01,()01f x x a f x a x a ''>?>-

得:1x a =-时,min ()(1)101f x f a a a =-?-=?= (2)设2

2

()()ln(1)(0)g x kx f x kx x x x =-=-++≥ 则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ?≥=(*)

(1)1ln 200g k k =-+≥?>

1(221)

()2111x kx k g x kx x x +-'=-+

=

++ ①当1210()2k k -<<时,0012()00()(0)02k

g x x x g x g k -'≤?≤≤=?<=与

(*)矛盾

②当1

2

k ≥时,min ()0()(0)0g x g x g '≥?==符合(*) 得:实数k 的最小值为1

2

(lfxlby)

(3)由(2)得:2

1ln(1)2

x x x -+<对任意的0x >值恒成立

取2

(1,2,3,,)21

x i n i =

=-:

2

22[ln(21)ln(21)]21(21)

i i i i -+--<-- 当1n =时,2ln32-< 得:

=12

ln (2+1)<221

n

i n i --∑(lb ylfx ) 当2i ≥时,

2211

(21)2321

i i i <----

得:

1

21[

ln(21)ln(21)]2ln 3122121

n

i i i i n =-++-<-+-<--∑ 【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说

没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行. 14. 【解析】(1)1

211

()(1)(0)()(1)(0)2

x x f x f e

f x x f x f e f x --'''=-+?=-+

令1x =得:(0)1f =

1211

()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+?==?=

得:21()()()12

x x

f x e x x

g x f x e x '=-+?==-+

()10()x g x e y g x '=+>?=在x R ∈上单调递增

()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?<

得:()f x 的解析式为21()2

x

f x e x x =-+

且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ (2)2

1()()(1)02

x f x x ax b h x e a x b ≥

++?=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>?=在x R ∈上单调递增

x →-∞时,()h x →-∞与()0h x ≥矛盾

②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>?>+

22(1)(1)(1)ln(1)(10)a b a a a a +≤+-+++>

令2

2

()ln (0)F x x x x x =->;则()(12ln )F x x x '=-

()00()0F x x F x x ''>?<<

当x =,max ()2

e F x =

当1,a b =

=,(1)a b +的最大值为

2

e 15. 【解析】本题主要考察不等式,导数,单调性,线性规划等知识点及综合运用能力.

(Ⅰ)

(ⅰ)()2122f x ax b '=-.

当b ≤0时,()2122f x ax b '=->0在0≤x ≤1上恒成立,

此时()f x 的最大值为:()1423f a b a b a b =--+=-=|2a -b |﹢a ; 当b >0时,()2122f x ax b '=-在0≤x ≤1上的正负性不能判断, 此时()f x 的最大值为:

()max 2max{(0)1}max{()3}32b a b a

f x f f b a a b a b b a ->?==--=?

-

,,(),(),=|2a -b |﹢a ; 综上所述:函数()f x 在0≤x ≤1上的最大值为|2a -b |﹢a ; (ⅱ) 要证()f x +|2a -b |﹢a ≥0,即证()g x =﹣()f x ≤|2a -b |﹢a . 亦即证()g x 在0≤x ≤1上的最大值小于(或等于)|2a -b |﹢a , ∵()342g x ax bx a b =-++-,∴令(

)21220g x ax b x '=-+=?=当b ≤0时,()2122g x ax b '=-+<0在0≤x ≤1上恒成立, 此时()g x 的最大值为:()03g a b a b =-<-=|2a -b |﹢a ; 当b <0时,()2122g x ax b '=-+在0≤x ≤1上的正负性不能判断, (

)max max{1}g x g g =,()

4max{2}

346362a b b a b a a b b a b a =--?≤-?=?>?-?

,,,

≤|2a -b |﹢a ;

综上所述:函数()g x 在0≤x ≤1上的最大值小于(或等于)|2a -b |﹢a . 即()f x +|2a -b |﹢a ≥0在0≤x ≤1上恒成立.

(Ⅱ)由(Ⅰ)知:函数()f x 在0≤x ≤1上的最大值为|2a -b |﹢a , 且函数()f x 在0≤x ≤1上的最小值比﹣(|2a -b |﹢a )要大. ∵﹣1≤()f x ≤1对x ∈[0,1]恒成立, ∴|2a -b |﹢a ≤1.

取b 为纵轴,a 为横轴. 则可行域为:21b a b a ≥??

-≤?和231b a

a b

,目标函数为z =a +b .

作图如下:

由图易得:当目标函数为z =a +b 过P (1,2)时,有max 3z =,min 1z =-.

∴所求a +b 的取值范围为:[]13-,

.

【答案】(Ⅰ) 见解析;(Ⅱ) []13-,

. 16. 【考点定位】本小题主要考查利用导数研究曲线上某点切线方程、函数的最值及其几何

意义,两条直线平行的判定等基础知识,考查运算求解能力.

解:(1)因()13ln 122f x a x x x =+

++,故()21322

a f x x x '=-+ 由于曲线()y f x =在点()()

1,1f 处的切线垂直于y 轴,故该切线斜率为0,即

()10f '=,

从而13

022

a -

+=,解得1a =- (2)由(1)知()()13

ln 1022

f x x x x x =-+++>,

()222

113321

222x x f x x x x --'=--+=

()2

(31)(1)

2x x f x x +-'∴=

令()0f x '=,解得1211,3

x x ==-

(因21

3x =-不在定义域内,舍去),

当()0,1x ∈时,()0f x '<,故()f x 在()0,1上为减函数; 当()1,x ∈+∞时,()0f x '>,故()f x 在()1,+∞上为增函数; 故()f x 在1x =处取得极小值()13f =.

17.解析:(1)1,1b c ==-,2n ≥时,()1n

n f x x x =+-

∵111()(1)(

)102

22n n n

f f =-?<,∴()n f x 在1,12??

???

内存在零点. 又当1,12x ??∈ ???

时,1

()10n n f x nx -'=+>

∴ ()n f x 在1,12??

???上是单调递增的,所以()n f x 在1,12??

???

内存在唯一零点. (2)当2n =时,2

2()f x x bx c =++

对任意12,[1,1]x x ∈-都有2122|()()|4f x f x -≤等价于2()f x 在[1,1]-上最大值与最小值之差4M ≤,据此分类讨论如下:(ⅰ)当|

|12

b

>,即||2b >时, 22|(1)(1)|2||4M f f b =--=>,与题设矛盾

(ⅱ)当102

b

-≤-

<,即02b <≤时, 222(1)()(1)422

b b

M f f =---=+≤恒成立

(ⅲ)当012

b

≤≤,即20b -≤≤时,

222(1)()(1)422

b b

M f f =---=-≤恒成立.

综上可知,22b -≤≤

注:(ⅱ)(ⅲ)也可合并证明如下: 用max{,}a b 表示,a b 中的较大者.当112

b

-≤

≤,即22b -≤≤时, 222max{(1),(1)}()2

b

M f f f =---

22222(1)(1)|(1)(1)|()222

f f f f b f -+--=+--

2

1||()4

b c b c =++--+

2

||(1)42

b =+

≤恒成立 (3)证法一 设n x 是()n f x 在1,12??

???

内的唯一零点(2)n ≥ ()1n n n n n f x x x =+-,1

1111()10n n n n n f x x x +++++=+-=,11,12n x +??∈ ???

于是有11111111()0()11()n n

n n n n n n n n n n f x f x x x x x f x ++++++++===+-<+-=

又由(1)知()n f x 在1,12??

???上是递增的,故1(2)n n x x n +<≥, 所以,数列23,,

,n

x x x 是递增数列.

证法二 设n x 是()n f x 在1,12??

???

内的唯一零点 1

111()(1)(1)(111)n n n n n n n f x f x x ++++=+-+- 1110n n n n n n x x x x +=+-<+-=

则1()n f x +的零点1n x +在(,1)n x 内,故1(2)n n x x n +<≥, 所以,数列23,,

,n

x x x 是递增数列.

18.解析:由f(x) = x e k x +ln 可得=')(x f x

e x

k x ln 1

--,而0

)1(='f ,即01=-e k ,解得1=k ;

(Ⅱ)=')(x f x

e

x x ln 11

--,令0)(='x f 可得1=x , 当10<--='x x x f ;当1>x 时,0ln 11

)(<--='x x

x f .

于是)(x f 在区间)1,0(内为增函数;在),1(+∞内为减函数.

(Ⅲ)x

x e

x x x x e x

x x x x g ln )(1ln 11

)()(222+--=--+=, (1)当1≥x 时, 0,0,0ln ,012

2

>>+≥≤-x

e x x x x ,2

10)(-+<≤e

x g .

(2)当10<

)()(-+<--+=e e

x

x x x x g x

. 只需证)ln 1(1112

x x e e

x x +-+<+-即可

设函数)1,0(),ln 1(1)(,1

)(∈+-=+=x x x x q e x x p e

. 则)1,0(,ln 2)(,0)(∈--='<-=

'x x x q e

x

x p x ,

则当10<

)(=<+=

p e x x p e

, 令0ln 2)(=--='x x q 解得)1,0(2

∈=-e

x ,

当),0(2

-∈e x 时0)(>'x q ;当)1,(2

-∈e x 时0)(<'x q ,

则当10<

2

1)()ln 1(1)(--+=≤+-=e e q x x x q ,且0)(>x q ,

则≥+-+-)ln 1(112x x e 1112

2

=++--e e ,于是可知当10<

x x +-+<+-成立 综合(1)(2)可知对任意x>0,2

1)(-+

另证1:设函数)1,0(,1)(∈+=

x e x x p e ,则0)(<-='x e x

x p ,

则当10<

)(=<+=p e

x x p x ,

于是当10<

)()(-+<--<--+=e x x x e

x

x x x x g x

, 只需证2

1)ln 11(-+<--e x x

x 即可,

设)1,0(),ln 1(1)(∈+-=x x x x q ,)ln 1(1)(x x x q +-=', 令0ln 2)(=--='x x q 解得)1,0(2

∈=-e

x ,

当),0(2

-∈e x 时0)(>'x q ;当)1,(2

-∈e x 时0)(<'x q , 则当10<

2

1)()ln 1(1)(--+=≤+-=e e q x x x q ,

于是可知当10<

)(-+<--+e e

x

x x x x

成立 综合(1)(2)可知对任意x>0,2

1)(-+

另证2:根据重要不等式当10<

e x <+1,

于是不等式221)ln 11(ln 11

)()(-+<--<--+=e x x x e

x

x x x x g x

, 设)1,0(),ln 1(1)(∈+-=x x x x q ,)ln 1(1)(x x x q +-=', 令0ln 2)(=--='x x q 解得)1,0(2

∈=-e

x ,

),0(2-∈e x 时0)(>'x q ;当)1,(2

-∈e x 时0)(<'x q , 则当10<

2

1)()ln 1(1)(--+=≤+-=e e q x x x q ,

于是可知当10<

)(-+<--+e e

x

x x x x

成立. 19. 【答案及解析】

【点评】本题综合考查导数的概念、几何意义、导数在判断函数单调性与最值中的运用.

本题容易忽略函数)(x f 的定义域,根据条件曲线()y f x =与直线3

2y x =

在(0,0)点相切,求出,a b 的值,然后,利用函数的单调性或者均值不等式证明9()6

x

f x x <+即可.

从近几年的高考命题趋势看,此类型题目几乎年年都有涉及,因此,在平时要加强训练.本题属于中档题.

20. 【答案】解:(1)由32()f x x ax bx =++,得2()32f'x x ax b =++.

∵1和1-是函数32()f x x ax bx =++的两个极值点,

∴ (1)32=0f'a b =++,(1)32=0f'a b -=-+,解得==3a b -0,. (2)∵ 由(1)得,3()3f x x x =- ,

∴()()2

3()()2=32=12g x f x x x x x '=+-+-+,解得123==1=2x x x -,. ∵当2x <-时,()0g x <';当21', ∴=2x -是()g x 的极值点.

∵当21时,()0g x >',∴ =1x 不是()g x 的极值点. ∴()g x 的极值点是-2.

(3)令()=f x t ,则()()h x f t c =-.

先讨论关于x 的方程()=f x d 根的情况:[]2, 2d ∈-

当=2d 时,由(2 )可知,()=2f x -的两个不同的根为I 和一 2 ,注意到()f x 是奇函数,∴()=2f x 的两个不同的根为一和2.

当2d <时,∵(1)=(2)=20f d f d d >----,(1)=(2)=20f d f d d <----- , ∴一2 , -1,1 ,2 都不是()=f x d 的根. 由(1)知()()()=311f'x x x +-.

① 当()2x ∈+∞,

时,()0f'x > ,于是()f x 是单调增函数,从而()(2)=2f x >f . 此时()=f x d 在()2+∞,

无实根. ② 当()1 2

x ∈,时.()0f'x >,于是()f x 是单调增函数. 又∵(1)0f d <-,(2)0f d >-,=()y f x d -的图象不间断,

∴()=f x d 在(1 , 2 )内有唯一实根.

同理,()=f x d 在(一2 ,一I )内有唯一实根.

③ 当()1

1x ∈-,时,()0f'x <,于是()f x 是单调减两数. 又∵(1)0f d >--, (1)0f d <-,=()y f x d -的图象不间断,

∴()=f x d 在(一1,1 )内有唯一实根.

因此,当=2d 时,()=f x d 有两个不同的根12x x ,满足12=1 =2x x ,;当2d < 时 ()=f x d 有三个不同的根315x x x ,,,满足2 =3, 4, 5i x

. 现考虑函数()y h x =的零点:

( i )当=2c 时,()=f t c 有两个根12t t ,,满足12==2t t 1,

.

而1()=f x t 有三个不同的根,2()=f x t 有两个不同的根,故()y h x =有5 个零点.

( 11 )当2c <时,()=f t c 有三个不同的根345t t t ,,,满足2 =3, 4, 5i t

. 而() =3,() 4, = 5i f x t i 有三个不同的根,故()y h x =有9 个零点.

综上所述,当=2c 时,函数()y h x =有 5 个零点;当2c <时,函数()y h x =有9 个零点.

【考点】函数的概念和性质,导数的应用.

【解析】(1)求出)(x f y =的导数,根据1和1-是函数)(x f y =的两个极值点代入列方程组求解即可.

(2)由(1)得,3()3f x x x =-,求出()g x ',令()=0g x ',求解讨论即可.

(3)比较复杂,先分=2d 和2d <讨论关于x 的方程()=f x d 根的情况;再考虑函数

()y h x =的零点.

21. 【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax

e x =-<,这与题设矛盾,又0a ≠,

故0a >.

而()1,ax

f x ae '=-令11()0,ln .f x x a a

'==

得 当11ln x a a <

时,()0,()f x f x '<单调递减;当11

ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111

(ln )ln .f a a a a a

=-

于是对一切,()1x R f x ∈≥恒成立,当且仅当

111

ln 1a a a

-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-

当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1

1a

=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.

(Ⅱ)由题意知,21

212121()() 1.ax ax f x f x e e k x x x x --==---

令21

21

()(),ax ax ax

e e x

f x k ae x x ?-'=-=--则

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

最新-2017新课标高考数学导数分类汇编(文)

2011-2017新课标(文科)导数压轴题分类汇编 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )> ln x x -1 【解析】 (1)22 1 ( ln ) '()(1)x x b x f x x x α+-= -+ 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 1 1ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h -- =---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

相关文档 最新文档