文档视界 最新最全的文档下载
当前位置:文档视界 › 一个完整的液压系统由五个部分组成

一个完整的液压系统由五个部分组成

一个完整的液压系统由五个部分组成

一个完整的液压系统由五个部分组成,即能源装置、执行装置、控制调节装置、辅助装置、液体介质。在产品研发时,设计一套完整的液压系统装配,需要用到哪些模型呢?

根据液压系统的组成部分,一套完整的液压系统装配也由四部分组成,即动力元件、执行元件、控制元件、辅助元件,有了对应模型,即可组成一套完整的装配体。

动力元件:液压泵。液压泵的结构形式一般有齿轮泵、叶片泵、柱塞泵。

执行元件:液压缸和液压马达。

控制元件:液压阀。

辅助元件:包括蓄能器、过滤器、分配器、减震器、指示器、管接头、压力仪表、流量仪表、密封装置等。

最近常用的一个3D模型免费下载平台,里面包含了常用的液压元件及上海油威、康百世朝田、黎明液压、哈威液压等厂商模型,还提供其他门类模型下载,如螺丝、螺母、电机、减速机、齿轮、轴承等。有图有真相,需要的可以收藏起来。

液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。 液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。 根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。 DIN ISO1219-2标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。 实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控制回路都与其系统编号相对应 国产液压系统的发展 目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。 其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。 液压附件: 目前在世界上,做附件较好的有: 派克(美国)、伊顿(美国)颇尔(美国) 西德福(德国)、贺德克(德国)、EMB(德国)等 国内较好的有: 旭展液压、欧际、意图奇、恒通液压、依格等 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

液压系统基本结构及工作原理

液压系统基本结构与工作原理 一、概述 液路系统主要包括主油泵,液压油箱,滤清器,减压阀,溢流阀,起升液缸,伸缩液缸,吊钳液缸,支腿液缸,液压马达,及各种液压操作阀等部件。设备出厂前溢流阀、减压阀及各种压力阀的压力已调定,确保液压系统安全运行,用户在使用中不得轻率更改。 液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。 1、主液压系统 主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。 2、转向液压系统 转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。 二、结构特点 液压系统由以下组成: ?主液压系统 ?转向液压系统 1、主液压系统 由以下部件组成: 1)液压油箱:存储、冷却、沉淀和过滤液压油。油箱安装有: ●人孔盖,安装在油箱顶部,设置有两个,其中在油箱回油区的人孔盖上安 装液压空气滤清器; ●液压空气滤清器,过滤油箱流通空气,油箱加油时过滤油液; ●液位计,2个,安装在油箱的前侧面,设置有高低两个液位计,高位液位 计,显示井架降落后的油面;低位液位计,显示井架竖起后油面; ●油温表,安装在油箱的前侧面,测量油箱内油温,正常工作油温在30~ 70℃;主回油口,2个,设置在油箱的底板上,配置单向阀,分别连接主

回油管和溢流阀回油口;单向阀在维修液压管路时自动关闭,防止油箱中 的油液流失; ●排泄油口,设置在油箱的底板上,用堵头封堵;打开堵头可排放油箱液压 油; ●主油泵吸油口,设置在油箱的前侧面,安装主吸油滤清器; ●转向油泵吸油口,设置在油箱的前侧面,安装转向吸油滤清器; ●转向系统回油口,设置在油箱的底板上,配置单向阀,单向阀在维修液压 管路时自动关闭,防止油箱中的油液流失; 2)液压油泵:单联齿轮结构,2台,分别安装在两台液力变速箱取力箱上, 由变矩器泵轮驱动,发动机转动,取力箱就可驱动油泵。取力箱配置有液压离合器,当需要液压动作时,可操作司钻控制箱“液泵离合”手柄,置“油泵I合”位,油泵I结合,输出工作压力油液;手柄置“油泵II合” 位,油泵II结合,输出工作压力油液;。手柄置中位,两油泵均脱离停转。 3)溢流阀:先导式结构,2台,分别安装在主液压油泵的出油口端。调定系 统压力,防止系统过载,保护系统及元件安全。 溢流阀的结构原理:由先导阀和主滑阀组成,先导阀部分包括阀体,滑阀,调压弹簧等零件。主阀滑阀上开有一个小孔a,使进口压力油能进入滑阀上腔B,当作用在锥阀上的液压力小于弹簧的预紧力时,先导阀锥阀在弹簧力的作用下关闭,因为阀体内没有油液流动,滑阀上下两端油腔液压力相等。因此,滑阀在上端弹簧的作用下处于下端的极限位置。溢流阀的进出油口被滑阀切断,溢流阀不溢流;当作用在锥阀上的液压力因溢流阀进口压力的升高而增大到等于弹簧力时,锥阀被顶开,滑阀上腔B的油液经回油口b和滑阀中心通孔流入阀的出油口,然后溢流回油箱,这时溢流阀进油口的压力油从小孔a,向上补充到B腔,因为油液经小孔a时存在压力损失,因此B腔的压力低于进油口压力,滑阀上下两端出现压力差。 于是,在上下两端压力差的作用下滑阀克服弹簧力,滑阀自重以及摩擦力向上移动,打开溢流阀的进回油口,油液流回油箱,滑阀开启后,受液动力的影响,进口的压力P还要继续上升,滑阀继续上移,到某一位置滑阀受力平衡时,溢流阀进口压力稳定在一定值,该值称为溢流阀的调定压力。

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

一、液压站组成及工作原理:

一、液压站组成及工作原理: 液压站又称液压泵站,是独立的液压装置,它按驱动装置(主机)要求供油,并控制油流的方向、压力和流量,它适用于主机与液压装置可分离的各种液压机械下。用户购买后只要将液压站与主机上的执行机构(油缸和油马达)用油管相连,液压机械即可实现各种规定的动作、工作循环。 液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功用如下: 泵装置——上装有电机和油泵,它是液压站的动力源,将机械能转化为液压油的动力能。 集成块——是由液压阀及通道体组合而成。它对液压油实行方向、压力、流量调节。 阀组合——是板式阀装在立板上,板后管连接,与集成块功能相同。 油箱——是钢板焊的半封闭容器,上还装有滤油网、空气滤清器等,它用来储油、油的冷却及过滤。 电器盒——分两种形式。一种设置外接引线的端子板;一种是配置了全套控制电器。 液压站的工作原理如下:

电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后经外接管路传输到液压机械的油缸或油马达中,从而控制了液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。 二、液压站结构形式及主要技术参数: 液压站的结构形式,主要以泵装置的结构形式、安装位置及冷却方式来区分,按泵装置的机构形式安装位置可分三种: 1、上置立式:泵装置立式安装在油箱盖板上,主要用于定量泵系统一思想。 2、上置卧式:泵装置卧式安装在油箱盖板上,主要用于变量泵系统,以便于流量调节。 3、旁置式:泵装置卧式安装在油箱旁单独的基础上,旁置式可装备备用泵,主要用于油箱容量大250升,电机功率7.5千瓦以上的系统。 按站的冷却方式可分为两种: 1、自然冷却:靠油箱本身与空气热交换冷却,一般用于油箱容量小于250 升的系统一思想。 2、强迫冷却:采取冷却器进行强制冷却,一般用于油箱容量大于250升的系统。 液压站以油箱的有效贮油量度及电机功率为主要技术参数。

液压系统主要由哪五部分组成

液压系统主要由哪五部分组成? 液压传动就是指在密封容积内利用液体的(),能来传递动力和运动的一种()。液压控制阀按其用途来分,可分为:()()() 压油的粘度随液压油的温度和压力而变化,当压力()时,液压油的粘度增大,当温度升高时,粘度() SW 9:57:24 双联叶片泵系统中,当运动部件高速轻载时可由()供给低压油,当重载慢速时,可由()供油 根据度量基准不同,液体压力分为()和()两种,大多数表测得的压力为() 齿轮泵,齿轮传动时,密闭容器发生变化,使其中液体膨胀或受压缩,此现象称为(),为了减少此现象的危害,常在啮合部位侧面泵盖上开() 液压泵的按结构分()()()三种,他们利用密封容积的大小变化来进行工作的,所以称为()。 对单向阀的主要性能要求,油液泵通过时,()要小,反向截止时()要好。 一般的外啮合齿轮泵,进口()出口()这主要为了解决外啮合齿轮泵径向力不平衡问题。某三位换向阀中位机能为H型,则换向精度(),缸被(),泵() 常见的密封方法有()密封,()密封,()密封三种 工作压力高或温度高时,宜采用粘度()的液压油以减少泄露 斜盘式轴向柱塞泵的缸体、柱塞、斜盘,配油盘中随输入轴一起转动的为() 当液压系统中液压缸的有效面积一定时,其内的工作压力P由()来决定,活塞运动速度由()决定 结构上所有液体阀都是由()、()和()阀芯动作的元件等组成的 调速阀是由()和()构成的一种组合阀 所有的液压阀都是通过,控制()和()的相对运动而实现控制目的的。 单活塞杆液压缸作为差动液压缸使用时,若使其往复运动速度相等,其活塞面积应为活塞杆面积的()倍 当不考虑阀芯自重,摩擦力和液压力的影响时,直动式溢流阀()压力不变,而减压阀()压力不变。 为防止立式液压缸运动部件在上位时因自垂而下滑或在下行时超速常采用()回路,即在下行时的回路上设置()使其产生适当阻力。 液压油排号采用()温度时的()的平均值来标号 液压油粘度的表示方法有(),()和() 液压缸的结构包括(),(),密封装置,缓冲设置,排气装置等五部分。 根据改变流量方法的不同,液压系统的调速方法可以分为()()() 9、某定量液压泵的排量排量为V=100ML/R 。转速为N=1450R/MIN。容积效率0.95,总效率为0.9,泵输出油的压力P=100MPA则泵所需电机驱动功率是() A20.66KW B137.75KW C22.96KW D 25.5KW 限制齿轮泵压力提高的主要因素是() A流量脉动B困油现象C泄露大D改变控制油路的方向 电液换向阀是由电磁换向阀和液体换向阀组成,其中磁换向阀的作用() A 切换大流量B控制主回路的方向C改变控制油路的方向 为使减压回路可靠工作,其减压阀最高调整压力应比系统压力() A低一定值B高一定值C相等 泵的实际流量()理论流量

液压气压传动及系统的组成

液压传动 液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。 液压传动系统的组成 液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。 1、动力元件(油泵) 它的作用是利用液体把原动机的机械能转换成液压力能;是液压传动中的动力部分。2、执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。 3、控制元件 包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。 4、辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。 5、工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。编辑本段液压传动的优缺点 1、液压传动的优点 (1)体积小、重量轻,例如同功率液压马达的重量只有电动机的10%~20%。因此惯性力较小,当突然过载或停车时,不会发生大的冲击;(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速,且调速范围最大可达1:2000(一般为1:100)。(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;(6)操纵控制简便,自动化程度高;(7)容易实现过载保护。(8)液压元件实现了标准化、系列化、通用化、便于设计、制造和使用。 2、液压传动的缺点 (1)使用液压传动对维护的要求高,工作油要始终保持清洁;(2)对液压元件制造精度要求高,工艺复杂,成本较高;(3)液压元件维修较复杂,且需有较高的技术水平;(4)液压传动对油温变化较敏感,这会影响它的工作稳定性。因此液压传动不宜在很高或很低的温度下工作,一般工作温度在-15℃~60℃范围内较合适。(5)液压传动在能量转化的过程中,特别是在节流调速系统中,其压力大,流量损失大,故系统

液压系统工作原理

液压系统工作原理 1) 启动 电磁铁全部不得电,主泵输出油液通过阀6、21中位卸载。 2) 主缸快速下行 电磁铁1Y、5Y 得电,阀6 处于右位,控制油经阀8 使液控单向阀9 开启。 进油路:泵1-阀6右位-阀13-主缸上腔。 回油路:主缸下腔-阀9-阀6右位-阀21中位-油箱。 主缸滑块在自重作用下迅速下降,泵1 虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,

上位油箱15 的油液经充液阀14 进入主缸上腔。 3) 主缸慢速接近工件、加压 当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀9 关闭,主缸下腔油液经背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上腔压力升高,阀14 关闭,主缸在泵1 供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵1 的输出流量自动减小。 4) 保压 当主缸上腔压力达到预定值时,压力继电器7发信号,使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵经阀6、21的中位卸载。 5) 泄压,主缸回程保压结束,时间继电器发出信号,2Y 得电,阀6 处于左位。由于主缸上腔压力很高,液动滑阀12 处于上位,压力油使外控顺序阀11 开启,泵1输出油液经阀11 回油箱。泵1 在低压下工作,此压力不足以打开充液阀14 的主阀芯,而是先打开该阀的卸载阀芯,使主缸上腔油液经此卸载阀芯开口泄回上位油箱,压力逐渐降低。 当主缸上腔压力泄到一定值后,阀12 回到下位,阀11关闭,泵1 压力升高,阀14完全打开,此时进油路:泵1-阀6左位-阀9-主缸下腔。回油路:主缸上腔-阀14-上位油箱15。实现主缸快速回程。 6) 主缸原位停止 当主缸滑块上升至触动行程开关1S,2Y失电,阀6 处于中位,液控单向阀9将主缸下腔封闭,主缸原位停止不动。泵1 输出油液经阀6、21中位卸载。 7) 下缸顶出及退回 3Y得电,阀21 处于左位。进油路:泵1-阀6中位-阀21左位-下缸下腔。回油路:下缸上腔-阀21 左位-油箱。下缸活塞上升,顶出。 3Y失电,4Y得电,阀21 处于右位,下缸活塞下行,退回。 8) 浮动压边

液压传动——典型液压系统

第八章典型液压系统 近年来,液压传动技术已经广泛应用于很多工程技术领域,由于液压系统所服务的主机的工作循环、动作特点等各不相同,相应的各液压系统的组成、作用和特点也不尽相同。以下通过对几个典型液压系统的分析,进一步熟悉各液压元件在系统中的作用和各种基本回路的组成,并掌握分析液压系统的方法和步骤。 阅读一个较为复杂的液压系统图,大致可按以下步骤进行: (1)了解设备的工艺对液压系统的动作要求; (2)初步游览整个系统,了解系统中包含有哪些元件,并以各个执行元件为中心,将 系统分解为若干子系统。 (3)对每一子系统进行分析,搞清楚其中含有哪些基本回路,然后根据执行元件的动 作要求,参照动作循环表读懂这一子系统。 (4)根据液压设备中各执行元件间互锁、同步、防干涉等要求,分析各子系统之间的 联系。 (5)在全面读懂系统的基础上,归纳总结整个系统有哪些特点,以加深对系统的理解。 第一节组合机床液压系统 一、组合机床液压系统 组合机床液压系统主要由通用滑台和辅助部分(如定位、夹紧)组成。动力滑台本身不带传动装置,可根据加工需要安装不同用途的主轴箱,以完成钻、扩、铰、镗、刮端面、铣削及攻丝等工序。 图8—1液压系统工作原理 所示为带有液压夹紧的他驱式动力滑台的液压系统原理图,这个系统采用限压式变量泵

供油,并配有二位二通电磁阀卸荷,变量泵与进油路的调速阀组成容积节流调速回路,用电液换向阀控制液压系统的主油路换向,用行程阀实现快进和工进的速度换接。它可实现多种工作循环,下面以定位夹紧→快进→工进→二工进→死挡铁停留→快退→原位停止松开工件的自动工作循环为例,说明液压系统的工作原理。 1. 夹紧工件夹紧油路一般所需压力要求小于主油路,故在夹紧油路上装有减压阀6,以减低夹紧缸的压力。 按下启动按钮,泵启动并使电磁铁4DT通电,夹紧缸24松开以便安装并定位工件。当工件定好位以后,发出讯号使电磁铁4DT断电,夹紧缸活塞夹紧工作。其油路:泵1→单向阀5→减压阀6→单向阀7→换向阀11→左位夹紧缸上腔,夹紧缸下腔的回油→换向阀11左位回油箱。于是夹紧缸活塞下移夹紧工件。单向阀7用以保压。 2.进给缸快进前进当工件夹紧后,油压升高压力继电器14发出讯号使1DT通电,电磁换向阀13和液动换向阀9均处于左位。其油路为: 进油路:泵1→单向阀5→液动阀9→左位行程阀23右位→进给缸25左腔 回油路:进给缸25右腔→液动阀9左位→单向阀10→行程阀23右位→进给缸25左腔。 于是形成差动连接,液压缸25快速前进。因快速前进时负载小,压力低,故顺序阀4打不开(其调节压力应大于快进压力),变量泵以调节好的最大流量向系统供油。 3.一工进当滑台快进到达预定位置(即刀具趋近工件位置),挡铁压下行程阀23,于是调速阀12接入油路,压力油必须经调速阀12才能进入进给缸左腔,负载增大,泵的压力升高,打开液控顺序阀4,单向阀10被高压油封死,此时油路为: 进油路:泵1→单向阀5→换向阀9左位→调速阀12→换向阀20右位→进给缸25左腔回油路:进给缸25右腔→换向阀9左位→顺序阀4→背压阀3→油箱。 一工进的速度由调速阀12调节。由于此压力升高到大于限压式变量泵的限定压力p B,泵的流量便自动减小到与调速阀的节流量相适应。 4.二工进当第一工进到位时,滑台上的另一挡铁压下行程开关,使电磁铁3DT通电,于是阀20左位接入油路,由泵来的压力油须经调速阀12和19才能进入25的左腔。其他各阀的状态和油路与一工进相同。二工进速度由调速阀19来调节,但阀19的调节流量必须小于阀12的调节流量,否则调速阀19将不起作用。 5.死挡铁停留当被加工工件为不通孔且轴向尺寸要求严格,或需刮端面等情况时,则要求实现死挡铁停留。当滑台二工进到位碰上预先调好的死挡铁,活塞不能再前进,停留在死挡铁处,停留时间用压力继电器21和时间继电器(装在电路上)来调节和控制。 6.快速退回滑台在死挡铁上停留后,泵的供油压力进一步升高,当压力升高到压力继电器21的预调动作压力时(这时压力继电器入口压力等于泵的出口压力,其压力增值主要决定于调速阀19的压差),压力继电器21发出信号,使1DT断电,2DT通电,换向阀13和9均处于右位。这时油路为: 进油路:泵1→单向阀5→换向阀9右位→进给缸25右腔。 回油路:进给缸25左腔→单向阀22→换向阀9右位→单向阀8→油箱。 于是液压缸25便快速左退。由于快速时负载压力小(小于泵的限定压力p B),限压式变量泵便自动以最大调节流量向系统供油。又由于进给缸为差动缸,所以快退速度基本等于快进速度。 7.进给缸原位停止,夹紧缸松开当进给缸左退到原位,挡铁碰行程开关发出信号,使2DT、3DT断电,同时使4DT通电,于是进给缸停止,夹紧缸松开工件。当工件松开后,夹紧缸活塞上挡铁碰行程开关,使5DT通电,液压泵卸荷,一个工作循环结束。当下一个工件安装定位好后,则又使4DT、5DT均断电,重复上述步骤。 二、液压系统的特点 本系统采用限压式变量泵和调速阀组成容积节流调速系统,把调速阀装在进油路上,而在回油路上加背压阀。这样就获得了较好的低速稳定性、较大的调速范围和较高的效率。而且当滑台需死挡铁停留时,用压力继电器发出信号实现快退比较方便。 采用限压式变量泵并在快进时采用差动连接,不仅使快进速度和快退速度相同(差动缸),而且比不采用差动连接的流量可减小一倍,其能量得到合理利用,系统效率进一步得到提高。 采用电液换向阀使换向时间可调,改善和提高了换向性能。采用行程阀和液控顺序阀来

液压站组成及工作原理

液压站又称液压泵站,是独立的液压装置,它按驱动装置(主机)要求供油,并控制油流的方向、压力和流量,它适用于主机与液压装置可分离的各种液压机械下。用户购买后只要将液压站与主机上的执行机构(油缸和油马达)用油管相连,液压机械即可实现各种规定的动作、工作循环。 液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功用如下: 泵装置——上装有电机和油泵,它是液压站的动力源,将机械能转化为液压油的动力能。 集成块——是由液压阀及通道体组合而成。它对液压油实行方向、压力、流量调节。 阀组合——是板式阀装在立板上,板后管连接,与集成块功能相同。 油箱——是钢板焊的半封闭容器,上还装有滤油网、空气滤清器等,它用来储油、油的冷却及过滤。 电器盒——分两种形式。一种设置外接引线的端子板;一种是配置了全套控制电器。 液压站的工作原理如下: 电机带动油泵旋转,泵从油泵中吸油后打油,将机械能转化为液压油的压力能,液压油通过集成块(或阀组合)被液压阀实现了方向、压力、流量调节后经外接管路传输到液压机械的油缸或油马达中,从而控制了液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。 二、液压站结构形式及主要技术参数: 液压站的结构形式,主要以泵装置的结构形式、安装位置及冷却方式来区分,按泵装置的机构形式安装位置可分三种: 1、上置立式:泵装置立式安装在油箱盖板上,主要用于定量泵系统一思想。 2、上置卧式:泵装置卧式安装在油箱盖板上,主要用于变量泵系统,以便于流量调节。 3、旁置式:泵装置卧式安装在油箱旁单独的基础上,旁置式可装备备用泵,主要用于油箱容量大250升,电机功率7.5千瓦以上的系统。 按站的冷却方式可分为两种: 1、自然冷却:靠油箱本身与空气热交换冷却,一般用于油箱容量小于250升的系统一思想。 2、强迫冷却:采取冷却器进行强制冷却,一般用于油箱容量大于250升的系统

液压系统基本原理

液压系统基本原理 图8.1 YT4543型动力滑台液压系统图 1—背压阀;2—顺序阀;3、6、13、15—单向阀;4、16—节流阀; 5—压力继电器;7—液压缸; 8—行程阀;9—电磁阀;10—调速阀;11—先导阀;12—换向阀;14—液压泵 第一节液压传动的发展史 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠 定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 第二节液压系统地组成

液压系统的组成及其作用

液压系统的组成及其作用.txt23让我们挥起沉重的铁锤吧!每一下都砸在最稚嫩的部位,当青春逝去,那些部位将生出厚晒太阳的茧,最终成为坚实的石,支撑起我们不再年轻但一定美丽的生命。液压系统的组成及其作用 2011-08-11 09:55 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、无件和液压油。 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、无件和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵,它们的性能比较如1-1所示。执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 表1-1 各种液压泵性能比较项目齿轮泵(外啮合)叶片泵斜轴式柱塞泵斜盘式柱塞泵 排量(cm3/r)1-500平衡式1-350 不平衡式10-230100-10004-500 最高压力(MPa)1-25平衡式3.5-40 不平衡式3.5-1421-4021-40 最高转速(r/min)900-4000平衡式1200-3000 不平衡式1200-1800750-3600750-3600 最高效率(%)70-85平衡式70-90 不平衡式60-7088-9585-92 对污染敏感性不易受污染影响,随着齿轮的磨损,效率有所降低对污染较敏感,叶片磨损时,效率降低到很小对污染最敏感,配流盘受损伤时效率降低对污染的斜轴式高,配流盘滑靴磨损时效率降低 吸油性能转速为1800r/min时,允许吸入真空度为-26664.4-54328.8Pa(-20-40cmHg)转速为1800r/min时,允许吸入真空度为-13332.2~-26664.4Pa(-10-20cmHg)转速为1800r/min时,允许吸入真空度为-3.9997-0Pa(-3-0cmHg)同轴斜式柱塞泵 噪声(dB)额定转速300r/min时,噪声83dB额定转速1450-2400r/min时,噪声76dB额定转速1450-2400r/min时,噪声87dB额定转速1450-2400r/min时,噪声77dB 对过滤精度要求30-50μm20-30μm15-25μm15-25μm 易出故障的部位内部摩擦副;支承轴套端面、齿轮及轴颈磨损,引起橡胶密封损坏、泵体内孔及两侧板磨损配油盘三角槽极易堵塞,污染物侵入摩擦副,发生异常磨损或卡殆,应注意油液清洁和吸油通畅,易出现突发性故障连杆组件磨损,连杆球头从驱动轴球窝中脱出,功率调节弹簧失效,两对摩擦副磨损所有变量泵的变量机构,三对摩擦副磨损

液压阀的基本结构及工作原理

液压阀的基本结构主要包括阀芯、阀体和驱动阀芯在阀体内做相对运动的操纵装置。阀芯的主要形式有滑阀、锥阀和球阀;阀体上除有与阀芯配合的阀体孔或阀座孔外,还有外接油管的进、出油口和泄油口;驱动阀芯在阀体内做相对运动的装置可以是手调机构,也可以是弹簧或电磁铁,有些场合还采用液压力驱动。 在工作原理上,液压阀是利用阀芯在阀体内的相对运动来控制阀口的通断及开口的大小,以实现压力、流量和方向控制。液压阀工作时,所有阀的阀口大小、阀进、出油口间的压差以及通过阀的流量之间的关系都符合孔口流量公式(q=KA·Δp m),只是各种阀控制的参数各不相同而已。

1.1液压阀块的结构特点 按照结构和用途划分,液压阀块有条形块、小板块,盖板、夹板、阀安装底板、泵阀块、逻辑阀块、叠加阀块、专用阀块、集流排管和连接块等多种形式。实际系统中的液压阀块是由阀块体以及其上安装的各种液压阀、管接头、附件等元件组成。 (1)阀块体 阀块体是集成式液压系统的关键部件,它既是其它液压元件的承装载体,又是它们油路连通的通道体。阀块体一般都采用长方体外型,材料一般用铝或可锻铸铁。阀块体上分布有与液压阀有关的安装孔、通油孔、连接螺钉孔、定位销孔,以及公共油孔、连接孔等,为保证孔

道正确连通而不发生干涉有时还要设置工艺孔。一般一个比较简单的阀块体上至少有40-60个孔,稍微复杂一点的就有上百个,这些孔道构成一个纵横交错的孔系网络。阀块体上的孔道有光孔、阶梯孔、螺纹孔等多种形式,一般均为直孔,便于在普通钻床和数控机床上加工。有时出于特殊的连通要求设置成斜孔,但很少采用。 (2)液压阀 液压阀一般为标准件,包括各类板式阀、插装阀、叠加阀等,由连接螺钉安装在阀块体上,实现液压回路的控制功能。 (3)管接头 管接头用于外部管路与阀块的连接。各种阀和阀块体组成的液压回路,要对液压缸等执行机构进行控制,以及进油、回油、泄油等,必须与外部管路连接才能实现。 (4)其它附件 包括管道连接法兰、工艺孔堵塞、油路密封圈等附件。 1.2液压阀块的布局原则

液压系统主要由哪五部分组成

液压系统主要由哪五部分组成 液压传动就是指在密封容积内利用液体的(),能来传递动力和运动的一种()。 液压控制阀按其用途来分,可分为:()()() 压油的粘度随液压油的温度和压力而变化,当压力()时,液压油的粘度增大,当温度升高时,粘度() SW 9:57:24 双联叶片泵系统中,当运动部件高速轻载时可由()供给低压油,当重载慢速时,可由()供油 根据度量基准不同,液体压力分为()和()两种,大多数表测得的压力为() 齿轮泵,齿轮传动时,密闭容器发生变化,使其中液体膨胀或受压缩,此现象称为(),为了减少此现象的危害,常在啮合部位侧面泵盖上开() 液压泵的按结构分()()()三种,他们利用密封容积的大小变化来进行工作的,所以称为()。 对单向阀的主要性能要求,油液泵通过时,()要小,反向截止时()要好。 一般的外啮合齿轮泵,进口()出口()这主要为了解决外啮合齿轮泵径向力不平衡问题。 某三位换向阀中位机能为H型,则换向精度(),缸被(),泵() 常见的密封方法有()密封,()密封,()密封三种 工作压力高或温度高时,宜采用粘度()的液压油以减少泄露 斜盘式轴向柱塞泵的缸体、柱塞、斜盘,配油盘中随输入轴一起转动的为() 当液压系统中液压缸的有效面积一定时,其内的工作压力P由()来决定,活塞运动速度由()决定 结构上所有液体阀都是由()、()和()阀芯动作的元件等组成的 调速阀是由()和()构成的一种组合阀 所有的液压阀都是通过,控制()和()的相对运动而实现控制目的的。 单活塞杆液压缸作为差动液压缸使用时,若使其往复运动速度相等,其活塞面积应为活塞杆面积的()倍 当不考虑阀芯自重,摩擦力和液压力的影响时,直动式溢流阀()压力不变,而减压阀()压力不变。 为防止立式液压缸运动部件在上位时因自垂而下滑或在下行时超速常采用()回路,即在下行时的回路上设置()使其产生适当阻力。 液压油排号采用()温度时的()的平均值来标号 液压油粘度的表示方法有(),()和() 液压缸的结构包括(),(),密封装置,缓冲设置,排气装置等五部分。 根据改变流量方法的不同,液压系统的调速方法可以分为()()() 9、某定量液压泵的排量排量为V=100ML/R 。转速为N=1450R/MIN。容积效率,总效率为,泵输出油的压力P=100MPA则泵所需电机驱动功率是() D 限制齿轮泵压力提高的主要因素是() A流量脉动 B困油现象 C泄露大 D改变控制油路的方向 电液换向阀是由电磁换向阀和液体换向阀组成,其中磁换向阀的作用() A 切换大流量 B控制主回路的方向 C改变控制油路的方向 为使减压回路可靠工作,其减压阀最高调整压力应比系统压力() A低一定值 B高一定值 C相等

简单说明液压传动系统的组成

简单说明液压传动系统的组成。答:动力装置。是把机械能转换为液体压力能的装置。执行元件。是将液体的压力能转换为机械能的装置。控制调节元件。是指控制或调节系统压力、流量、方向的元件。辅助元件。是在系统中起散热、贮油、蓄能、连接、过滤、测压等等作用的元件。工作介质。在系统中起传递运动、动力及信号的作用。简述伯努利方程的物理意义。答:其物理意义是:在密闭的管道中作恒定流量的理想液体具有三种形式的能量(动能、位能、压力能),在沿管道流动的过程中,三种能量之间可以相互转化,但是在管道任一断面处三种能量总和是一常量。试述液压泵工作的必要条件。答:1)必须具有密闭容积。2)密闭容积要能交替变化。3)吸油腔和压油腔要互相隔开,并且有良好的密封性。为什么说先导式溢流阀的定压精度比直动式溢流阀高?答:先导式溢流阀将控制压力的流量与主油路分开,从而减少了弹簧力变化以及液动力等对所控制压力的干扰。帕斯卡原理(静压传递原理)在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。)液压卡紧现象(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。)液压冲击 (在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。)简述气穴和气蚀现象。答:油液中都溶解有一定量的空气,油液能溶解的空气量与绝对压力成正比,在大气压下正常溶解于油液的空气,当压力低于大气压时,就成为过饱和状态。当压力降低到某一值时,过饱和的空气将从油液中分离出来形成气泡。这些气泡流到压力较高的地方时,会因承受不了高压而破裂,产生局部的液压冲击,产生振动和噪声,称为空穴现象。当这些气泡在金属表面破裂时,它所产生的局部高温和高压会使金属剥落,是表面粗糙,这种现象称为气蚀现象。困油现象 (液压泵工作时,在吸、压油腔之间形成一个闭死容积,该容积的大小随着传动轴的旋转发生变化,导致压力冲击和气蚀的现象称为困油现象。)消除困油现象的危害主要可采取的措施是:在泵端盖上开设卸荷槽,当封闭油腔容积变小时,可通过卸荷槽与压油腔相通,避免产生过大的局部压力;而当封闭油腔容积增大时,通过另一卸荷槽与吸油腔相通,避免形成局部真空,从而消除困油现象带来的危害。滑阀的中位机能 (三位滑阀在中位时各油口的连通方式,它体现了换向阀的控制机能。)液体的静压力的特性是什么?答:(1)液体静压力垂直于其承受压力的作用面,其方向永远沿着作用面的内法线方向。(2)静止液体内任意点处所受到的静压力在各个方向上都相等。什么叫做差动液压缸?差动液压缸在实际应用中有什么优点?答:差动液压缸是由单活塞杆液压缸将压力油同时供给单活塞杆液压缸左右两腔,使活塞运动速度提高。差动液压缸在实际应用中可以实现差动快速运动,提高速度和效率。什么是液体的粘性?常用的粘度方法表示有哪几种?如何定义?答:(1)液体在外力作用下流动时,分子内聚力的存在使其流动受到牵制,从而沿其界面产生内摩擦力,这一特性称为液体的粘性。(2)度量粘性大小的物理量称为粘度,常用的粘度有三种,即动力粘度、运动粘度、相对粘度。(3)动力粘度:液体在以单位速度梯度流动时,单位面积上的内摩擦力,即:s Pa dy du u ?-/τ.(4)运动粘度:液体动力粘度与其密度之比成为运动粘度,即:)/(/2s m v ρμ=。(5)相对粘度:依据特定测试条件而制定的粘度,故称为条件粘度。 解释局部压力损失。答:局部压力损失:液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失。 影响节流阀的流量稳定性的因素有哪些?答:1)节流阀的两端压差变化时,通过它的流量也发生变化; 2)油温影响到油液粘度,油温变化时,流量也随之改变; 3)节流口的堵塞,改变了节流口的通流面积的大小,使流量发生变化。

简述液压系统的组成形式

来源于:注塑财富网https://www.docsj.com/doc/7714940526.html, 简述液压系统的组成形式 从不同的角度出发,可以把液压系统分成不同的形式。 (1)按油液的循环方式,液压系统可分为开式系统和闭式系统。开式系统是指液压泵从油箱吸油,油经各种控制阀后,驱动液压执行元件,回油再经过换向阀回油箱。这种系统结构较为简单,可以发挥油箱的散热、沉淀杂质作用,但因油液常与空气接触,使空气易于渗入系统,导致机构运动不平稳等后果。开式系统油箱大,油泵自吸性能好。闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。其结构紧凑,与空气接触机会少,空气不易渗入系统,故传动较平稳。工作机构的变速和换向*调节泵或马达的变量机构实现,避免了开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,因无油箱,油液的散热和过滤条件较差。为补偿系统中的泄漏,通常需要一个小流量的补油泵和油箱。由于单杆双作用油缸大小腔流量不等,在工作过程中会使功率利用下降,所以闭式系统中的执行元件一般为液压马达。 (2)按系统中液压泵的数目,可分为单泵系统,双泵系统和多泵系统。 (3)按所用液压泵形式的不同,可分为定量泵系统和变量泵系统。变量泵的优点是在调节范围之内,可以充分利用发动机的功率,但其结构和制造工艺复杂,成本高,可分为手动变量、尽可能控变量、伺服变量、压力补偿变量、恒压变量、液压变量等多种方式。 (4)按向执行元件供油方式的不同,可分为串联系统和并联系统。串联系统中,上一个执行元件的回油即为下一个执行元件的进油,每通过一个执行元件压力就要降低一次。在串联系统中,当主泵向多路阀控制的各执行元件供油时,只要液压泵的出口压力足够,便可以实现各执行元件的运动的复合。但由于执行元件的压力是叠加的,所以克服外载能力将随执行元件数量的增加而降低。 并联系统中,当一台液压泵向一组执行元件供油时,进入各执行元件的流量只是液压泵输出流量的一部分。流量的分配随各件上外载荷的不同而变化,首先进入外载荷较小的执行元件,只有当各执行元件上外载荷相等时,才能实现同时动作。 全液压传动机械性能的优劣,主要取决于液压系统性能的好坏,包括所用元件质量优劣,基本回路是否恰当等。系统性能的好坏,除满足使用功能要求外,应从液压系统的效率、功率利用、调速范围和微调特性、振动和噪声以及系统的安装和调试是否方便可*等方面进行。 现代工程机械几乎都采用了液压系统,并且与电子系统、计算机控制技术结

相关文档
相关文档 最新文档