文档视界 最新最全的文档下载
当前位置:文档视界 › 毕业设计- 基于MATLAB图像分割算法研究与实现

毕业设计- 基于MATLAB图像分割算法研究与实现

毕业设计- 基于MATLAB图像分割算法研究与实现
毕业设计- 基于MATLAB图像分割算法研究与实现

基于MATLAB图像分割算法研究与实现

摘要

图像分割是指把图像分解成各具特性的区域并提取出感兴趣目标的技术和过程,它是计算机视觉领域的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。因此从原理、应用和应用效果的评估上深入研究图像分割技术具有十分重要的意义。本课题主要介绍了图像分割的基本知识,研究了图像分割的两大类算法,即基于边缘检测的方法和基于区域生成的方法。采用MATLAB仿真了所有分割过程,得到了比较理想的分割结果,并分析了各个算法的优点和不足之处,以及适用于何种图像。

基于边缘检测方法种类繁多,主要介绍基于EDGE函数、检测微小结构、四叉树分解和阈值分割的方法实现对图像的边缘检测及提取。而基于区域的图像分割方法主要包括区域生长法和分裂-合并分割方法。通过多次的实验过后,总结出一般的图像分割处理可以用EDGE函数。而特定的图像应用阈值分割、检测微小结构和四叉树分解比较简单。

虽然近年来人们在图像分割方面做了大量的研究工作,但由于尚无通用的分割理论,因此现已提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法,有待于进一步解决。

关键字:图像分割;边缘检测;区域生成;阈值分割

Research of image segmentation algorithm

Abstract

Image Segmentation is the technique and the process to segment an image into different sub-mages with different characters and to extract the interested objects from the image. It is an important and basic procedure in the field of computer vision, the quality of image segmentation directly affects the performance of vision system. Therefore, from the theory, application and evaluation of application effect of depth of image segmentation is of great significance. This issue introduces the basics of image segmentation, image segmentation of the two major algorithms have been done, that is based on edge detection method and the method based on regional produce. Segmentation process is simulated and the results have shown perfect. Advantages and disadvantages of each algorithm are discussed at the end of the paper, and to apply to each image.

Edge detection method based on a wide range of EDGE-based functions are introduced, the detection of minimal structure, quadtree decomposition and threshold segmentation method to realize the edge detection and extraction. The region-based image segmentation methods include region growing and division - combined segmentation. Through many experiments later, summed up the general image segmentation can be EDGE function. The specific application of image segmentation, the detection of minimal structure and quadtree decomposition is simple.

Although a lot of image segmentation research has been done in recent years, but there is not general theory of segmentation, the proposed segmentation algorithm has been mostly issue-specific, and there is not a suitable segmentation algorithm for all common image, remains to be resolved.

Keywords: Image segmentation; Edge detection; Region segmentation; Threshold

引言

图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。由于分割中出现的误差会传播至高层次处理阶段,因此分割的精确程度是至关重要的,多年来一直受到研究人员的高度重视,被认为是计算机视觉中的一个瓶颈。

图像分割是图像处理中的主要问题,也是计算机视觉领域低层次视觉中的主要问题,同时它又是一个经典难题。由于问题的重要性和困难性,从七十年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力,但到目前为止还未存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。

近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法,随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少针对一些具体应用的好的分割方法。本文针对当前主流的灰度图像分割算法进行了分析、分类、归纳和总结,指出了各类方法的优缺点,为人们在不同的应用场合及不同的图像数据条件选择不同的分割算法提供了一定的依据。需要指出的是,由于从不同的角度将得到不同的分类结果,本文中涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点的某一类。

第一章数字图像分割概述

1.1 基本概念

1.1.1 图像和数字图像

图像就是用各种观察系统以不同的形式和手段观察客观世界而获得的,可以直接的或间接的作用于人眼而产生视知觉的实体。科学研究和试验表明,人类从外界获得的信息75%来自于视觉系统,也就是说,人类的大部分信息都是从图像中获得的。图像是人们从出生以来体验到的最重要、最丰富、信息量获得最大的部分。

图像能以各种各样的形式出现,例如,可视和不可视的,抽象的和实际的,适于计算机处理的和不适于计算机处理的。就其本质来说,可以将图像分为两大类:一类是模拟图像,包括光学图像、照相图像和电视图像等,例如,在生物医学研究中,人们在显微镜下看到的图像就是一幅光学模拟图像,照片、用线条画的图、绘画也都是模拟图像。模拟图像处理速度快,但精度和灵活性差,不易查找和判断。

另一类是将连续的模拟图像经过离散化处理后变成计算机能够识别的点阵图像,成为数字图像。严格的数字图像是一个经过等距离矩形网格采样,对幅度进行等间隔量化的二维函数,因此,数字图像就是实际上就是被量化的二维采样数组。

与模拟图像相比,数字图像具有以下显著特点:

(1)精度高:目前的计算机技术可以将一幅模拟图像数字化为任意的二维数组,

即数字图像可以由无限个像素组成,每个像素的亮度可以量化为12位(即4096个灰

度级),这样的精度使数字图像与彩色图像的效果相差无几;

(2)处理方便:由于数字图像本质上是一组数据,所以可以用计算机对它进行任

意方式的修改,例如,放大、缩小、改变颜色、复制和删除某一部分等;

(3)重复性好:模拟图像(例如,照片)即便使用非常好的底片和相纸,也会随

着时间的流逝而褪色、发黄,而数字图像可以储存在光盘中,上百年后再用计算机

重现也不会有丝毫的改变。

1.1.2 图像分割的定义

在图像的研究和应用中,人们往往只对一幅图像中的某些部分感兴趣,这些感

兴趣的部分一般对应图像中特定的、具有特殊性质的区域(可以对应单个区域,也

可以对应多个区域),称之为目标或前景;而其它部分称为图像的背景。为了辨识和

分析目标,需要把目标从一幅图像中孤立出来,这就是图像分割要研究的问题。所

谓图像分割,从广义上来讲,是根据图像的某些特征或特征集合(包括灰度、颜色、

纹理等)的相似性准则对图像像素进行分组聚类,把图像平面划分成若干个具有某

些一致性的不重叠区域。这使得同一区域中的像素特征是类似的,即具有一致性;

而不同区域间像素的特征存在突变,即具有非一致性。

从集合的角度出发,图像分割定义如下:

设R 代表整个图像区域,对R 的分割可看作将R 分成若干个满足一下5个条件的非空

子集(子区域)1R ,2R ,.Rn ... ,

(1)即分割成的所有子区域的并应能构成原来的区域R 。

(2)对所有的i 和j 及i ≠j ,有即分割

i j R R 成的各子区域互不重叠。 (3)对于;有1,2,i …,n;有()i P R TURE =。即分割得到的属于同一区域的像素应具

有某些相同的特性。

(4)对于i j ≠,有

()i j P R R FALSE =。即分割得到的属于不同区域的像素应具有

(5)对于;1,2,i …,i R 是连通的区域。即同一子区域的像素应当是连通的。

1.2 图像分割研究的发展和意义

1.2.1 图像技术的发展

图像处理是人类视觉延续的重要手段,可以使人们看到任意波长上所测得

的图像。例如,借助的伽马相机、X 光机,人们可以看到红外和超声图像;借助CT ,

人们可以看到物体内部的断层图像;借助相应工具,人们可以看到立体图像和剖视

图像。几十年前,美国在太空探索中拍回了大量的月球图片,但是由于种种环境因

素的影响,这些图片是非常不清晰的,为此,人们对这些照片进行了一些图像处理手段,使照片中的重要信息得以清晰再现。正是这一方法产生的效果引起了巨大的轰动,从而促进了图像处理技术的蓬勃发展。

总体来说,图像处理技术的发展大致经历了初创期、发展期、普及期和实用化期四个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机进行处理。在这一时期,由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入发展期,开始大量采用中、小型机进行处理,图像处理也渐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像处理的发展起到了很好的促进作用。到了20世纪80年代,图像处理技术进入普及期,此时的微机能够担当起图形图像处理的任务。VLSI的出现更使得处理速度大大提高,其造价也进一步降低,极大地促进了图像图像系统的普及和应用。20世纪90年代是图像技术的实用化时期,图像处理的信息量巨大,对处理速度的要求极高。据美国每日科学网2011年6月21日报道,美国普渡大学的研究人员开发出一种基于热映像的计算机图像分割算法,可使计算机迅速识别出物体的外形,即便其发生扭曲或轻度变形也不会受到影响。该技术将使机器视觉与人类视觉更加接近,可广泛应用于图像搜索、医疗影像以及无人机制造等多个领域。详细研究结果将分为两篇论文,在6月21日至23日举行的IEEE(美国电气及电子工程师学会)计算机视觉和模式识别大会上予以公布。新算法更接近于人类,是一种无监督机器学习(计算机或是机器人在无需任何事前训练的情况下就能具有感知和学习能力)技术,计算机可自行估计可分割的段数而无需预先提供。

21世纪的图像处理技术要向高质量化方面发展,主要体现在以下几点:

a.高分辨率、速度高:图像处理技术发展的最终目标是要实现图像的实时处理,这在移动目标的生成、识别和跟踪上有着重要意义;

b.立体化:立体化包括的信息量最为丰富和完整,未来采用数字全息技术将有助于达到这个目的;

c.智能化:其目的是实现图像的智能生成、处理、识别和理解。

1.2.2 图像分割的研究意义

图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。由于分割中出现的误差会传播至高层次处理阶段,因此分割的精确程度是至关重要的,多年来一直受到研究人员的高度重视,被认为是计算机视觉中的一个瓶颈。图像分割是一种重要的图像技术,在不同领域中有时也用其它名称:如目标轮廓(object delineation)技术,阈值化(threshold)技术,图像区分或求差(image discrimination)技术,目标检测(target detection)技术,目标识别(target recognition)技术,目标跟踪(target tracking)技术等,这些技术本身或其核心实际上也就是图像分割技术。图像分割是图像处理、分析的一项基本内容。

图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。图像分割在工业自动化、在线产品检验、生产程控、文件图像处理、遥感图像、保安监视、以及军事、体育、农业工程等方面都有广泛的应用。例如:在遥感图像中,合成孔径雷达图像中目标的分割、遥感云图中不同云系和背景分布的分割等;在医学应用中,脑部MR图像分割成灰质(GM)、白质(WM)、脑脊髓(CSF)等脑组织和其它脑组织区域(NB)等;在交通图像分析中,把车辆目标从

背景中分割出来等;在面向对象的图像压缩和基于内容的图像检索中将图像分割成不同的对象区域等。在各种图像应用中,只要需对图像目标进行提取,测量等都离不开图像分割。图像分割的准确性将直接影响后续任务的有效性,因此图像分割具有十分重要的意义。

1.2.1 图像分割的研究现状及发展趋势

对图像分割来说,如果不利用关于图像或所研究目标的先验知识,任何基于数学工具的解析方法都很难得到很好的效果。因此,在更多的时候,人们倾向于重新设计一个针对具体问题的新算法来解决所而临的图像分割问题。这在只有少量图像样本的时候,利用各种先验知识,设计一个具有针对性的算法进行图像分割是比较容易的。但是当需要构建一些实用的机器视觉系统时,所面临的将是具有一定差异性、数量庞大的图像库,此时如何很好的利用先验知识,设计一个对所有待处理图像都实用的分割算法将是一件非常困难的任务。其次,由于缺乏一个统一的理论作为基础,同时也缺乏对人类视觉系统(human vision system,HVS)机理的深刻认识,构造一种能够成功应用于所有图像的统一的图像分割算法,到目前为止还是难以实现的。那么,我们是否能研究出针对不同特点的图像使用不同的分割方法,以期都能获得满意的分割结果呢?遗憾的是迄今为止还没有一个完善的理论来指导如何根据图像的特点来选择合适的法。

现实生活中在分割一幅图像时,多是依据经验和直觉去选择方法,通过反复实践来找到一种最佳的方法。与计算机科学技术的确定性和准确性相比,图像分割更像是一种艺术行为,有经验的人能比较容易的选用出适当的方法,使不同的图像都得到最佳的分割效果。但是,当要处理的图像十分庞大时,图像分割就像是流水线上的一道简单工序,这种艺术行为就显得无能为力了。随着图像技术和多媒体技术的发展,包括图像、音频和视频等信息的多媒体数据己经广泛用于Internet和企事业信息系统中,而且越来越多的商业活动、信息表现和事务交易中都将包括多媒体数据,自然也就包含了大量的图像,基于内容的图像检索(intent based image retrieval,CBIR)的广泛应用就是一个例子,这些常常都是以图像分割作为基础的。

纵观图像分割技术这些年的发展,其中有几个明显的趋势:

第一,大量学者致力于将新的概念、新的方法引入图像分割领域,如这几年逐渐引起人们重视的模糊算法、神经网络与遗传算法、小波分析、粗集理论、数学形态学等理论都先后被应用于图像分割领域,为该领域中的研究注入了新的活力,有效的解决了原有理论的一部分缺陷,改善了分割效果,更重要的是为图像分割问题的最终解决开拓了新的思路。随着基础理论研究的深化,这一趋势是必将会继续下去。

第二,人们非常重视多种分割算法的有效结合。综合使用2种或2种以上的方法,能够部分克服单独的图像分割算法难以对一般图像取得令人满意的分割效果的问题,占据了分割领域中现有文献的大部分,而采取什么样的结合方式才能体现各种方法的优点,弥补各自的不足,取得好的预期效果,在未来将仍是人们关注的主要问题之一。

第三,针对特定领域的特殊问题,利用这些领域的专业知识来辅助解决图像分割问题,越来越多的吸引了研究人员的注意力。相应的,对图像分割作为一个统一对

象的研究在逐渐弱化。医学图像处理中的病理图像分割、工业图像分割、安全图像处理中的保密信息提取、军事图像处理中的雷达图像分割及卫星图像分割、交通图像处理中的车牌识别等都是近几年来图像分割领域中讨论较多的热点问题。

第二章 数字图像分割基本算法

2.1 阈值分割算法

阈值分割法是一种简单的基于区域的分割技术,是一种广泛使用的图像分割技术,它利用图像中要提取的目标和背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域的组合,选取一个合适的阈值,以确定图像中每个像素点是属于目标还是属于背景。它不仅可以极大的压缩数据量,而且也大大简化了图像信息的分析和处理步骤。阈值法是首先确定一个处于图像灰度级范围内的灰度阈值T ,然后将图像中每个像素的灰度值都与这个阈值T 比较,根据它是否超过阈值T 而将该像素归于两类中的一类。常用的方法就是设定某一阈值T ,用T 将图像分割成大于阈值T 的像素群(目标)和小于阈值T (背景)的像素群两部分。这两类像素一般属于图像中的两类区域,所以对像素根据阈值分类达到了区域分割的目的。输入图像是(,)F x y ,输出图像是(,)B x y ,则:

{(,)1

0(,)(,)F x y T F x y T B x y ><= (2-1)

从该方法中可以看出,确定一个最优阈值是分割的关键,同时也是阈值分割的一个难题。阈值分割实质上就是按照某个准则求出最佳阈值的过程。现有的大部分算法都是集中在阈值确定的研究上。

目前己提出的阈值化方法很多,相应的分类也有很多种,阈值化分割方法根据图像本身的特点,可分为单阈值分割方法和多阈值分割方法;也可分为基于像素值的阈值分割方法、基于区域性质的阈值分割方法和基于坐标位置的阈值分割方法。若根据分割算法所具有的特征或准则,还可以分为直方图峰谷法、最大类空间方差法、最大墒法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。

2.1.1 直方图阈值的双峰法

该阈值化方法的依据是图像的直方图,通过对直方图进行各种分析来实现对图像的分割。图像的直方图可以看作是像素灰度值概率分布密度函数的一个近似,设一幅图像仅包含目标和背景,那么它的直方图所代表的像素灰度值概率密度分布函数实际上就是对应目标和背景的两个单峰分布密度函数的和。图像二值化过程就是在直方图上寻找两个峰、一个谷来对一个图像进行分割,也可以通过用两级函数来近似直方图。 若灰度图像的直方图,其灰度级范围为…,L-1,当灰度级为k 时的像素数为

k N ,则一幅图像的总像素数N 为: 1

0110L i L i N n n n n --===++???+∑ (2-2)

灰度级i 出现的概率为: 011i i L n n P N n n n -=

=++???+

当灰度图像中画面比较简单且对象物的灰度分布比较有规律时,背景和对物象在图像的灰度值方图上各自形成一个波峰,由于每两个波峰间形成一个低谷,因而选择双峰间低谷处所对应的灰度值为阈值,可将两个区域分离。

把这种通过选取直方图阈值来分割目标和背景的方法称为直方图阈值双峰法。如图2-1所示,在灰度级和两处有明显的波峰,而在t 处是一个谷点。

直方图双峰法阈值分割图像 图 2-1

直方图双峰法阈值分割图像程序

clear

close all

I=imread('cameraman.tif');

imhist(I);

newI=im2bw(I,150/255);

subplot(121),imshow(I)

subplot(122),imshow(newI)

图2-2 双峰法分割前后的图像

将原始图像和阈值分割后的图像比较,可以发现有些前景图像和背景图像的灰度值太接近,导致有些前景图像没有从背景中分离出来,图像失真了。

双峰法比较简单,在可能情况下常常作为首选的阈值确定方法,但是图像的灰度直方图的形状随着对象、图像输入系统,输入环境等因素的不同而千差万别,当出现波峰间的波谷平坦、各区域直方图的波形重叠等情况时,用直方图阈值难以确定阈值,必须寻求其他方法来选择适宜的阈值。

2.1.2 迭代法

迭代式阈值选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个

近似阈值作为初始阈值,一个较好的方法就是将图像的灰度均值作为初始阈值;然后通过分割图像和修改阈值的迭代过程获得认可的最佳阈值[5]

。迭代式阈值选取过程可描述如下。

(1)选取一个初始阈值T 。

(2)利用阈值T 把给定图像分割成两组图像,记为1R ,2R 。

(3)计算1R 和2R 均值和1u , 2u 。 (4)选取新的阈值T ,且12

2u u T += (2-4)

(5)重复第(2)~(4)步,直至1R 和2R 均值1u 和2u 不再变化为止。

具体实现时,首先根据初始开关函数将输入图逐个图像分为前景和背景,在第一遍对图像扫描结束后,平均两个积分器的值以确定一个阈值。用这个阈值控制开关再次将输入图分为前景和背景,并用做新的开关函数。如此反复迭带直到开关函数不在发生变化,此时得到的前景和背景即为最终分割结果。迭代所得的阈值分割的图像效果良好。基于迭代的阈值能区分出图像的前景和背景的主要区域所在,但在图像的细微处还没有很好的区分度。对某些特定图像,微小数据的变化却会引起分割效果的巨大改变,两者的数据只是稍有变化,但分割效果却反差极大。对于直方图双峰明显,谷底较深的图像,迭代方法可以较快地获得满意结果,但是对于直方图双峰不明显,或图像目标和背景比例差异悬殊,迭代法所选取的阈值不如其它方法。

迭代法阈值分割图像程序和结果如下:

I=imread('rice.png');

ZMax=max(max(I));

ZMin=min(min(I));

TK=(ZMax+ZMin)/2;

bCal=1;

iSize=size(I);

while(bCal)

iForeground=0;

iBackground=0;

ForegroundSum=0;

BackgroundSum=0;

for i=1:iSize(1)

for j=1:iSize(2)

tmp=I(i,j);

if(tmp>=TK)

iForeground=iForeground+1; ForegroundSum=ForegroundSum+double(tmp); else

iBackground=iBackground+1; BackgroundSum=BackgroundSum+double(tmp); end

end

end

ZO=ForegroundSum/iForeground;

ZB=BackgroundSum/iBackground;

TKTmp=uint8((ZO+ZB)/2);

if(TKTmp==TK)

bCal=0;

else

TK=TKTmp;

end

end

disp(strcat('迭代后的阈值:',num2str(TK)));

newI=im2bw(I,double(TK)/255);

subplot(121),imshow(I)

subplot(122),imshow(newI)

图2-3 迭代法分割前后的图像

迭代后的阈值:131

迭代所得的阈值分割的图像效果良好。基于迭代的阈值能区分出图像的前景的主要区域所

基于Matlab的彩色图像分割

用Matlab来分割彩色图像的过程如下: 1)获取图像的RGB颜色信息。通过与用户的交互操作来提示用户输入待处理的彩色图像文件路径; 2)RGB彩色空间到lab彩色空间的转换。通过函数makecform()和applycform()来实现; 3)对ab分量进行Kmean聚类。调用函数kmeans()来实现; 4)显示分割后的各个区域。用三副图像分别来显示各个分割目标,背景用黑色表示。Matlab程序源码 %文件读取 clear; clc; file_name = input('请输入图像文件路径:','s'); I_rgb = imread(file_name); %读取文件数据 figure(); imshow(I_rgb); %显示原图 title('原始图像'); %将彩色图像从RGB转化到lab彩色空间 C = makecform('srgb2lab'); %设置转换格式 I_lab = applycform(I_rgb, C); %进行K-mean聚类将图像分割成3个区域 ab = double(I_lab(:,:,2:3)); %取出lab空间的a分量和b分量 nrows = size(ab,1); ncols = size(ab,2); ab = reshape(ab,nrows*ncols,2); nColors = 3; %分割的区域个数为3 [cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); %重复聚类3次 pixel_labels = reshape(cluster_idx,nrows,ncols); figure(); imshow(pixel_labels,[]), title('聚类结果'); %显示分割后的各个区域 segmented_images = cell(1,3); rgb_label = repmat(pixel_labels,[1 1 3]); for k = 1:nColors color = I_rgb; color(rgb_label ~= k) = 0; segmented_images{k} = color;

部分图像分割的方法(matlab)

大津法: function y1=OTSU(image,th_set) image=imread('color1.bmp'); gray=rgb2gray(image);%原图像的灰度图 low_high=stretchlim(gray);%增强图像,似乎也不是一定需要gray=imadjust(gray,low_high,[]); % subplot(224);imshow(gray);title('after adjust'); count=imhist(gray); [r,t]=size(gray); n=r*t; l=256; count=count/n;%各级灰度出现的概率 for i=2:l if count(i)~=0 st=i-1; break end end %以上循环语句实现寻找出现概率不为0的最小灰度值 for i=l:-1:1 if count(i)~=0; nd=i-1; break end end %实现找出出现概率不为0的最大灰度值 f=count(st+1:nd+1); p=st;q=nd-st;%p和分别是灰度的起始和结束值 u=0; for i=1:q; u=u+f(i)*(p+i-1); ua(i)=u; end

%计算图像的平均灰度值 for i=1:q; w(i)=sum(f(1:i)); end %计算出选择不同k的时候,A区域的概率 d=(u*w-ua).^2./(w.*(1-w));%求出不同k值时类间方差[y,tp]=max(d);%求出最大方差对应的灰度级 th=tp+p; if thth) y1(i,j)=x1(i,j); else y1(i,j)=0; end end end %上面一段代码实现分割 % figure,imshow(y1); % title('灰度门限分割的图像');

基于MATLAB的图像分割方法及应用

安徽财经大学 (《图像处理》课程论文) 题目:图像分割算法研究——基于分水岭分割法的彩色图像分割学院:管理科学与工程学院 专业:电子信息工程 姓名:万多荃 学号:20123712 电话: 任课教师:许晓丽 论文成绩: 2015年10月

目录 摘要 图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。

本文根据图像分割原理及人眼视觉的基本理论,研究图像的彩色模型及图像分割的常用方法,比较各方法的特点,并选择合适的方法对图像进行分割。本文采用MATLAB软件对图像进行彩色坐标变换及阈值分割,计算简单,具有较高的运行效率,分割的结果是使图像更符合人眼的视觉特性,获得比较好的效果。 关键字:图像处理;图像分割;人类视觉;MATLAB 1.前言 1.1图像分割技术 图像分割技术是非常重要的图像处理技术之一,无语是在理论研究还是在实际应用中人们都非常的重视。图像分割有许多的种类和方式,一些分割运算能够直接应用于任何图像,而另外一些却只适用于特别种类的图像。图像分割技术是从图像处理技术,再到后期的图像分析的关键步骤,图像分割结果的好坏,可以说对图像的理解有直接影响。 图像数据的模糊和噪声的干扰是分割问题的两大难题。到目前为止,还没有一个完美的图像分割方法,可以根据人的意愿精确地分割任何一种图像。现实图像中景物情况各种不同,具体问题需具体分析,按照实际情况选择得当的方法。分割成果的好坏或正确与否,到现在为止,尚无一个统一的评价和判断标准,分割的好坏务必从分割的效果和现实应用的场合来判断。然而,在人类研究图像的历史长河中,仍然积累了许多经典的图像分割方法。固然这些分割方法不可以适应全部种类的图像分割,可是这些方法却是图像分割方法进一步发展的根基。实际上,当代一些分割算法恰巧是从经典的图像分割方法中产生出来的。图像分割法大致可以分为三个种:边缘检测法,阈值分割法和基于区域的图像分割法。 2研究目的 视觉是人类最高级的感知器官,所以图像在人类感知中承担着非常重要的角色,这是毋庸置疑的。 本文的主要研究目的是对图像的分割方法进行研究,选择适合本论文的设计方法,然后通过对图像的分割,以达到人眼的最佳视觉效果。 本课题主要是通过对人眼的视觉系统研究,然后选择与人眼视觉系统密切相关的颜色模型进行颜色空间模型之间的相互转换,再对图像分割方法进行比较选择合适的分割方法,通过MATLAB平台实现彩色图像分割,最后对分割后的图像进行比较来获得到最佳的视觉效果。

基于MATLAB的图像分割算法研究

摘要 本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。 关键词:图像处理图像分割 Abstract This article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time. Key words: image processing image segmentation operator

基于MATLAB的图像阈值分割技术

基于MATLAB 的图像阈值分割技术 摘要:本文主要针对图像阈值分割做一个基于MATLAB 的分析。通过双峰法,迭代法以及OUTS 法三种算法来实现图像阈值分割,并且就这三种算法做了一定的分析和比较,在加椒盐的图片上同时进行三种实验,做出比较,最终得出实践结论。 关键词:图像分割 MATLAB 阈值分割 算法 引言:图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准,图像阈值分割即是其中的一种方法。 阈值分割技术因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,已被应用于很多的领域,在很多图像处理系统中都是必不可少的一个环节。 1、阈值分割思想和原理 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T 进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的 设图像为f(x,y),其灰度集范围是[0,L],在0和L 之间选择一个合适的灰度阈值T ,则图像分割方法可由下式描述: 这样得到的g(x,y)是一幅二值图像。 (一)原理研究 图像阈值分割的方法有很多,在这里就其中三种方法进行研究,双峰法,迭代法,以及OUTS 法。 方法一:双峰法 T y x f T y x f y x g ≥<),(),(10){,(

数字图像灰度阈值的图像分割技术matlab

1.课程设计的目的 (1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各 种因素对分割效果的影响 (2)使用Matlab软件进行图像的分割 (3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割 性能 (4)能够掌握分割条件(阈值等)的选择 (5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合 理的解释 2.课程设计的要求 (1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作 (2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3)封闭轮廓边界 (4)区域分割算法:阈值分割,区域生长等

3.前言 3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的

基于Matlab的彩色图像分割

3 Matlab编程实现 3.1 Matlab编程过程 用Matlab来分割彩色图像的过程如下: 1)获取图像的RGB颜色信息。通过与用户的交互操作来提示用户输入待处理的彩色图像文件路径; 2)RGB彩色空间到lab彩色空间的转换。通过函数makecform()和applycform()来实现; 3)对ab分量进行Kmean聚类。调用函数kmeans()来实现; 4)显示分割后的各个区域。用三副图像分别来显示各个分割目标,背景用黑色表示。3.2 Matlab程序源码 %文件读取 clear; clc; file_name = input('请输入图像文件路径:','s'); I_rgb = imread(file_name); %读取文件数据 figure(); imshow(I_rgb); %显示原图 title('原始图像'); %将彩色图像从RGB转化到lab彩色空间 C = makecform('srgb2lab'); %设置转换格式 I_lab = applycform(I_rgb, C); %进行K-mean聚类将图像分割成3个区域 ab = double(I_lab(:,:,2:3)); %取出lab空间的a分量和b分量 nrows = size(ab,1); ncols = size(ab,2); ab = reshape(ab,nrows*ncols,2); nColors = 3; %分割的区域个数为3 [cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); %重复聚类3次 pixel_labels = reshape(cluster_idx,nrows,ncols); figure(); imshow(pixel_labels,[]), title('聚类结果'); %显示分割后的各个区域 segmented_images = cell(1,3); rgb_label = repmat(pixel_labels,[1 1 3]); for k = 1:nColors

部分图像分割的方法(matlab)

部分图像分割的方法(matlab)

大津法: function y1=OTSU(image,th_set) image=imread('color1.bmp'); gray=rgb2gray(image);%原图像的灰度图 low_high=stretchlim(gray);%增强图像,似乎也不是一定需要gray=imadjust(gray,low_high,[]); % subplot(224);imshow(gray);title('after adjust'); count=imhist(gray); [r,t]=size(gray); n=r*t; l=256; count=count/n;%各级灰度出现的概率 for i=2:l if count(i)~=0 st=i-1; break end end %以上循环语句实现寻找出现概率不为0的最小灰度值 for i=l:-1:1 if count(i)~=0; nd=i-1; break end end %实现找出出现概率不为0的最大灰度值 f=count(st+1:nd+1); p=st;q=nd-st;%p和分别是灰度的起始和结束值 u=0; for i=1:q; u=u+f(i)*(p+i-1); ua(i)=u; end

程序二: clc; clear; cd 'D:\My Documents\MATLAB' time = now; I = imread('qr4.bmp'); figure(1),imshow(I),title('p1_1.bmp'); % show the picture I2 = rgb2gray(I); figure(2),imshow(I2),title('I2.bmp'); %?D?μ??2¨ J = medfilt2(I2); figure(3),imshow(J); imwrite(J,'J.bmp'); [M N] = size(J); J1 = J(1:M/2,1:fix(N/2)); J2 = J(1:M/2,fix(N/2)+1:N); J3 = J(M/2+1:M, 1:fix( N/2)); J4 = J(M/2+1:M, fix(N/2)+1:N); % figure(4), img = J1; T1 = test_gray2bw( img ); % figure(5), img = J2; T2 = test_gray2bw( img ); % figure(6), img = J3; T3 = test_gray2bw( img ); % figure(7), img = J4; T4 = test_gray2bw( img ); T = [T1,T2;T3,T4]; figure,imshow(T) % T1 = edge(T,'sobel'); % figure,imshow(T1); % BW = edge(T,'sobel'); % f igure,imshow(BW); function [bw_img] = test_gray2bw( img ) %大津法 [row_img col_img ] = size( img ) all_pix = row_img * col_img % get probability of each pixel(????). count_pix = zeros(1,256) % pro_pix = [] for i = 1 : 1 : row_img for j = 1 : 1 : col_img count_pix(1,img(i,j)+1) = count_pix(1,img(i,j)+1) + 1 %í3??′?êy end en d pro_pix = count_pix / all_pix % choose k value; max_kesi = -1 T = 0 for k = 1 : 1 : while( i <= k ) wa = wa + pro_pix(1,i+1) %?°k??i£?????????μ??ò?è???ê£????êoí ua = ua + i * pro_pix(1,i+1) i = i + 1 end

基于MATLAB的图像分割算法研究毕业设计

基于MA TLAB的图像分割算法研究 基于MATLAB的图像分割算法研究 摘要 本文从原理和应用效果上对经典的图像分割方法如边缘检测、阈值分割技术和区域增长等进行了分析。对梯度算法中的Roberts算子、Sobel算子、Prewitt算子、拉普拉斯(Laplacian)算子、LoG(Laplacian-Gauss)算子、坎尼(Canny)算子的分割步骤、分割方式、分割准则相互比较可以看出根据坎尼(Canny)边缘算子的3个准则得出的边缘检测结果最满意。而阈值分割技术的关键在于阈值的确定,只有阈值确定好了才能有效的划分物体与背景,但这种方法只对于那些灰度分布明显,背景与物体差别大的图像的分割效果才明显。区域增长的基本思想是将具有相似性质的像素集合起来构成新区域。与此同时本文还分析了图像分割技术研究的方向。 关键词:图像处理图像分割 Abstract This article analyses the application effect to the classics image segmentation method like the edge examination, territory value division technology, and the region growth and so on.For comparing the Roberts operator, Sobel operator, Prewitt operator, the operator of Laplacian and the operator of LoG(Laplacian-Gauss),Canny operator in gradient algorithm,the step, the way and the standard of the image segmentation,we can find out the three standard of Canny edge operator the edge detection result of reaching most satisfy. And the key point of threshold segmentation lie in fixing the threshold value, it is good to have only threshold value to determine it then can be effective to divide object and background,but this kind of method is good to those gray scales,the big difference image effect between the background and obiect. The basic idea of area is to form the new region from similar nature.And also, this paper analyses the research direction of image segmentation technology at the same time. Key words: image processing image segmentation operator

图像分割技术与MATLAB仿真知识讲解

图像分割技术与M A T L A B仿真

中南民族大学 毕业论文(设计) 学院: 计算机科学学院 专业: 自动化年级:2012 题目: 图像分割技术与MATLAB仿真 学生姓名: 高宇成学号:2012213353 指导教师姓名: 王黎职称: 讲师 2012年5月10日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日

目录 摘要 0 Abstract 0 引言 (2) 1 图像分割技术 (3) 1.1 图像工程与图像分割 (3) 1.2 图像分割的方法分类 (4) 2 图像分割技术算法综述 (5) 2.1 基于阈值的图像分割技术 (5) 2.2边缘检测法 (6) 2.3 区域分割法 (8) 2.4 基于水平集的分割方法 (9) 2.5 分割算法对比表格 (9) 3基于水平集的图像分割 (11) 3.1 水平集方法简介 (11) 3.2 水平集方法在图像分割上的应用 (12) 3.3 仿真算法介绍 (13) 3.4 实验仿真及其结果 (14) 结论 (22) 致谢 (23) 参考文献 (23)

图像分割技术研究及MATLAB仿真 摘要:作为一项热门的计算机科学技术,图像分割技术已经在我们生活中越来越普及。顾名思义这项技术的目的就是,将目标图像从背景图像中分离出去。由于这些被分割的图像区域在某些属性上很相近,因此图像分割与模式识别以及图像压缩编码有着密不可分的关系。完成图像分割所采用的方法各式各样,所应用的原理也不同。但他们的最终目的都是把图像中性质相似的某些区域归为一类,把性质差异明显的不同区域分割开来。通常在分割完成之后,我们就要对某些特定区域进行分析、计算、评估等操作,因而分割质量的好坏直接影响到了下一步的图像处理[1],因此图像分割是图像处理的一个关键步奏。图像分割技术在各个领域都有着及其重要的意义;在工业上有卫星遥感,工业过程控制监测等等;在医学方面,水平集的分割方法还可以通过医学成像帮助医生识别模糊的病变区域;在模式识别领域还可应用到指纹扫描、手写识别、车牌号识别等等。 本课题的研究内容是对图像分割技术的几种常用的方法进行综述和比较,并基于其中一种方法进行MATLAB仿真测试,给出性能分析比较结果。 关键字:图像分割,MATLAB仿真,模式识别 Image Segmentation and Matlab Simulation Abstract:Image segmentation is to image representation for the physically meaningful regional connectivity set, namely according to the prior knowledge of target and background, we on the image of target and background of labeling and localization, then separate the object from the

基于MATLAB的图像分割处理

学号:2011 —2012学年第 1 学期 专业综合课程设计报告 课题:基于MATLAB的图像分割处理 专业:通信工程 班级: 姓名: 指导教师: 成绩: 电气工程系 2011年11月16日

课程设计任务书 学生班级学生姓名:学号: 设计课题:基于MATLAB的图像分割处理 起止日期:2011.11.06—2011.11.16 指导教师: 设计要求: 本设计对图像分割中的小波变换进行了较为详细的综述。简要介绍医学图像分割的研究目的和意义,给出医学图像分割的基本方法及步骤。在对医学图像分割问题的起源、发展和研究现状进行简要综述的基础上,介绍该领域当前的研究热点及论文的主要研究内容。

图像分割是一种重要的图像分析技术。对图像分割的研究一直是图像技术 研究中的热点和焦点。图像分割是一个很关键的图像分析技术,是由图像处理 进到图像分析的关键步骤.它的目的就是把图像中感兴趣的那部分分割出来供 大家研究、处理和分析,一直都是图像技术研究中的热点。但是由于地域的差别,图像分割一直都没有一个比较通用的算法。 而对图像进行分割的方法有多种,阈值法是其中的一种简单实用的方法。本文主要对阈值法和matlab进行研究,并将它们结合起来以提高图像分割的准确性。本文的主要研究内容如下: 1) 分析了阈值分割方法近年来的新进展,并分析了图像阈值分割中的某些经典方法,如全局阈值方法、局部阈值方法、动态阈值方法等。2)讨论了matlab的主要应用及其特点。3) 将matlab应用于阈值分割,并做实验将其实现。 本次的设计报告首先介绍了双峰法以及最大类方差自动阈值法,然后重点介绍一种基于小波变换的图像分割方法,该方法先对图像的灰度直方图进行小波多尺度变换,然后从较大的尺度系数到较小的尺度系数逐步定位出灰度阈值。最后,对这几种算法的分割效果进行了比较。实验结果表明, 本设计能够实时稳定的对目标分割提取,分割效果良好。医学图像分割是医学图像处理中的一个经典难题。图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。 关键词:小波变换;图像分割;阈值

两个matlab实现最大熵法图像分割程序

%两个程序,亲测可用 clear all a=imread('moon.tif'); figure,imshow(a) count=imhist(a); [m,n]=size(a); N=m*n; L=256; count=count/N;%%每一个像素的分布概率 count for i=1:L if count(i)~=0 st=i-1; break; end end st for i=L:-1:1 if count(i)~=0 nd=i-1; break; end end nd f=count(st+1:nd+1); %f是每个灰度出现的概率 size(f) E=[]; for Th=st:nd-1 %%%设定初始分割阈值为Th av1=0; av2=0; Pth=sum(count(1:Th+1)); %%%第一类的平均相对熵为 for i=0:Th av1=av1-count(i+1)/Pth*log(count(i+1)/Pth+0.00001); end %%%第二类的平均相对熵为 for i=Th+1:L-1 av2=av2-count(i+1)/(1-Pth)*log(count(i+1)/(1-Pth)+0.00001); end E(Th-st+1)=av1+av2; end position=find(E==(max(E))); th=st+position-1

for i=1:m for j=1:n if a(i,j)>th a(i,j)=255; else a(i,j)=0; end end end figure,imshow(a); %%%%%%%%%%%%%%%%%%%%%2-d 最大熵法(递推方法) %%%%%%%%%%% clear all; clc; tic a=imread('trial2_2.tiff'); figure,imshow(a); a0=double(a); [m,n]=size(a); h=1; a1=zeros(m,n); % 计算平均领域灰度的一维灰度直方图 for i=1:m for j=1:n for k=-h:h for w=-h:h; p=i+k; q=j+w; if (p<=0)|( p>m) p=i; end if (q<=0)|(q>n) q=j; end a1(i,j)=a0(p,q)+a1(i,j); end end a2(i,j)=uint8(1/9*a1(i,j)); end

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

车牌图像分割matlab代码

图像分割matlab代码 作者:佚名发布时间:2010-1-1 阅读次数:498 字体大小: 【小】【中】【大】 % This is a program for extracting objects from an image. Written for vehicle number plate segmentation and extraction % Authors : Jeny Rajan, Chandrashekar P S % U can use attached test image for testing % input - give the image file name as input. eg :- car3.jpg clc; clear all; k=input('Enter the file name','s'); % input image; color image im=imread(k); im1=rgb2gray(im); im1=medfilt2(im1,[3 3]); %Median filtering the image to remove noise% BW = edge(im1,'sobel'); %finding edges [imx,imy]=size(BW); msk=[0 0 0 0 0; 0 1 1 1 0; 0 1 1 1 0; 0 1 1 1 0; 0 0 0 0 0;]; B=conv2(double(BW),double(msk)); %Smoothing image to reduce the number of connected components L = bwlabel(B,8);% Calculating connected components mx=max(max(L)) % There will be mx connected components.Here U can give a value between 1 and mx for L or in a loop you can extract all connected components % If you are using the attached car image, by giving 17,18,19,22,27,28 to L you can extract the number plate completely. [r,c] = find(L==17); rc = [r c]; [sx sy]=size(rc);

基于MATLAB的数字图像分割的研究与实现

本科毕业论文(设计) 题目:基于MATLAB的数字图像分割的研究与实现 学院:计算机与信息工程学院 学生: 学号: 专业: 年级: 完成日期: 2012年04月 指导教师:

基于MATLAB的数字图像分割的研究与实现 摘要:视觉和听觉是我们认识和感知外部世界的主要途径,而视觉又是其中最重要的,因此要想更细致、全面地把握这些图像信息就需要对其进行必要的处理。在数字图像处理的研究和应用中很多时候我们只对图像的某些部分和特征感兴趣,此时就需要利用图像分割技术将所需的目标与图片的其他部分区分开,以供我们对图像进一步研究和分析。图像分割即通过一些必要的算法把图像中有意义的部分或特征提取出来,将图像分为若干有意义的区域,使得这些区域对应图像中的不同目标,进而能够对所感兴趣的区域进行研究。基于图像分割技术在图像处理之中的重要性,本研究在此对图像分割的一些经典算法进行了学习和对比,并通过MATLAB对其进行了实验,通过不同的算法对不同的图片进行处理,分析其优缺点,以便在进行图像分割时可以根据图片的特征选择合适的算法。 关键字:数字图像;分割;MATLAB

The Research and Implementation of Digital Image Segmentation Based on the MATLAB Abstract :Vision and auditory are the main ways which we use to understand and perceive the world outside, while vision is the most important. Therefore, it's require to process the image data to grasp them more painstaking and completely. In digital image processing of research and application we are only interested to some parts of the image and characteristic in many times, then you need to use the image segmentation technology to separate the goal and the picture for other parts for our further research and analysis of the image.Image segmentation is dividing the image into some significant areas through some necessary algorithms, then make these areas corresponding to different goals and we can do some research about the areas we are interested to. Based on the importance of image segmentation technology in image processing, I compared several classical algorithms of image segmentation. In the meanwhile, I used the MATLAB to do some research and to process the various images with different algorithms so that it's convinent to find the advantages of these algorithms. Then, I can base on the characteristics of the images to choose the suitable algorithms when to make some digital image segmentation. Key words : D igital Image; Segmentation; MATLAB

MATLAB的图像分割算法研究

清华大学本科生毕业设计 题目:基于MATLAB的图像分割算法研究 作者姓名XXX 学号 指导教师XX教授 学科专业计算机科学与技术 所在学院计算机学院 提交日期 目录: 1 引言 2 图像目标分割与提取技术综述 3 最优割集准则的设计 4 基于等周图割的图像分割 5 编程语言的选择 6 程序运行结果

1.引言 数字图像处理技术是一个跨学科的领域。随着计算机科学技术的不断发展,图像处理和分析逐渐形成了自己的科学体系,新的处理方法层出不穷,尽管其发展历史不长,但却引起各方面人士的广泛关注。首先,视觉是人类最重要的感知手段,图像又是视觉的基础,因此,数字图像成为心理学、生理学、计算机科学等诸多领域内的学者们研究视觉感知的有效工具。其次,图像处理在军事、遥感、气象等大型应用中有不断增长的需求。 基于图论的图像分割技术是近年来国际上图像分割领域的一个新的研究热点。该方法将图像映射为带权无向图,把像素视作节点。利用最小剪切准则得到图像的最佳分割该方法本质上将图像分割问题转化为最优化问题。是一种点对聚类方法。对数据聚类也具有很好的应用前景。但由于其涉及的理论知识较多,应用也还处在初级阶段。因此国内这方面的研究报道并不多见,本文将对图论方法用于图像分割的基本理论进行简要介绍,并对当前图论方法用于图像分割的最新研究进展进行综述,并着重介绍基于等周图割的图像分割的方法。 2.图像目标分割与提取技术综述 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。例如,可以对图像的灰度级设置门限的方法分割。值得提出的是,没有唯一的标准的分割方法。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 2.1图像分割方法的发展和现状 分割问题的困难在于图像数据的模糊和噪声的干扰。前面已经提到,到目前为止,还没有一种或者几种完善的分割方法,可以按照人们的意愿准确的分割任

相关文档
相关文档 最新文档