文档视界 最新最全的文档下载
当前位置:文档视界 › 金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性
金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性

3

王 凯 杨 光 龙 华 李玉华 戴能利 陆培祥

(华中科技大学武汉光电国家实验室激光科学与技术研究部,武汉 430074)

(2007年10月26日收到;2007年11月14日收到修改稿)

采用纳米球蚀刻技术在石英衬底上制备了不同高度的金纳米颗粒阵列.通过扫描电子显微镜对其表面形貌进行了观测,表明金纳米颗粒为有序分布的三棱柱结构.通过红外—紫外吸收光谱仪在190—900nm 波长范围内对其光吸收特性进行了测量,并成功观测到了金纳米颗粒表面等离子体振荡效应引起的光吸收峰,结果表明随着金纳米颗粒高度的增加,其吸收峰的位置向短波方向移动(蓝移).同时对金纳米颗粒的光吸收特性进行了基于离散偶极子近似的理论计算,并与实验结果进行了比较.

关键词:纳米球蚀刻技术,金纳米颗粒,离散偶极子近似

PACC :7865E ,8116N

3国家自然科学基金(批准号:10604018,10574050)和高等学校博士学科点专项科研基金(批准号:20060487006)资助的课题. 通讯联系人.E 2mail :gyang @https://www.docsj.com/doc/7017838366.html, E 2mail :lupeixiang @https://www.docsj.com/doc/7017838366.html,

11引言

随着现代纳米技术的发展,贵金属纳米颗粒的制备和可控光学特性的研究,引起了人们广泛的兴趣.其在纳米光学

[1]

、非线性光学

[2]

、催化作用

[3]

、热

动力学[4]

和传感器[5]

以及医学诊断[6]

等研究领域都有着十分重要的应用前景.

贵金属纳米颗粒最具代表性的特性是在可见光范围内伴随有强烈的吸收峰,这是其颗粒里大量的自由传导电子对外界光波入射的响应.当电子振动频率和入射光波频率相等时,即发生表面等离子体

振荡(surface plasm on res onance ,SPR )效应,从而产生强烈的吸收峰.SPR 光谱峰位对颗粒的形状、大小、分布以及外部环境的变化非常敏感.

以往制备贵金属纳米颗粒主要采用溅射或离子注入等方法,但通过上述方法制备的纳米颗粒,其形状不一,而且分布不均匀,不便于定量地研究其光学特性.在1995年,Van Duyne 研究组[7]

在自然蚀刻法[8]

的基础上提出了纳米球刻蚀技术(nanosphere lithography ,NS L ),即将尺寸均匀的聚苯乙烯纳米球的悬浊液滴在衬底上,形成单层或双层纳米球的自组装密排的掩膜板.在沉积金属颗粒的过程中,掩

膜板只允许金属通过纳米球之间的间隙沉积到衬底

上.再用超声波清洗去除聚苯乙烯纳米球,得到二维纳米颗粒阵列.最近几年,科学家们通过这种方法制备出了不同尺寸和形状的Ag ,Au ,Cu ,Pt 等金属纳米颗粒.其中Au 纳米颗粒由于其优良的化学稳定性、生物吸附性[9]

和光学特性,成为金属纳米颗粒研究中的热点方向.

另一方面,科学家们尝试从理论上合理解释贵金属纳米颗粒的可控光学特性.离散偶极子近似

(discrete dipole approximation ,DDA )最初是由Purcell 和Pennypacker [10]

在计算天体尘埃的散射时提出的.

目前,DDA 法被广泛应用于小颗粒光学特性的理论

研究中

[11,12]

.随着算法的改进,基于DDA 算法的软

件包DDSC AT [13]

使得能在计算机上计算不同大小、

形状、高度、种类和外部环境的颗粒的光学特质.目前已经有一些关于Au 和Ag 纳米颗粒的理论计算的报道

[14—16]

,其结果基本与实验结果相符合.

本实验中结合NS L 和脉冲激光沉积(pulsed laser deposition ,P LD )技术在石英衬底上制备了不同高度的Au 纳米颗粒阵列,对其表面形貌、尺寸进行了观测,对其在可见光范围内的光谱吸收特性进行了测量,并通过理论模拟对Au 纳米颗粒的光学特性进行了计算.

第57卷第6期2008年6月100023290Π2008Π57(06)Π3862206

物 理 学 报

ACT A PHY SIC A SI NIC A

V ol.57,N o.6,June ,2008

ν2008Chin.Phys.S oc.

21实 验

实验中采用的聚苯乙烯纳米球(duke scientific

corp.)直径为450±5nm.石英(10mm ×10mm ×011mm )作为衬底,实验前将衬底在80℃的piranha 溶液(3∶1H 2S O 4∶30%H 2O 2)中浸泡115h ,冷却后用蒸馏水反复洗净,然后在5∶1∶1的H 2O ∶NH 4OH ∶30%H 2O 2溶液中超声清洗1h.实验中采用匀胶机

将聚苯乙烯纳米球的悬浊液甩到衬底上,匀胶前,

聚苯乙烯的悬浊液首先按照1∶1的比例用表面活性剂Triton X 2100Πmethanol (1∶400体积比)稀释,以增加其浸润性.大约在2500r Πmin 的匀胶速度下可得到大面积密排的单层纳米球掩膜板.然后将带有掩膜板的石英衬底放入脉冲激光沉积系统的真空

腔中[17]

.

图1 NS L 制备的掩膜板的SE M 扫描图 (a )在25μm ×20μm 的范围里密排的纳米球掩膜板表面形貌,但也有些线缺陷和点缺陷形成;(b )小范围6μm ×5μm 的掩膜板形貌,可以很清楚地看见纳米球的间隙

实验中采用准分子激光器(lambda physik ),其工作气体为K rF ,输出波长为248nm ,重复频率为5H z ,激光脉冲能量为400m J.沉积前真空室抽到约

3×10-4

Pa 的背底真空,然后充入8Pa 的氮气.为避免由激光烧蚀过快而造成激光束离焦,沉积过程中Au 靶材(99199%)以一定的速度旋转.同时旋转衬底以提高Au 薄膜生长的均匀性.实验中沉积时间分别为5,10和15min ,分别表示为样品A ,B 和C .沉积完毕后,在无水乙醇中超声清洗若干分钟去掉NS L 掩膜板,得到不同高度的Au 纳米颗粒.

纳米球掩膜板和Au 纳米颗粒阵列的表面形貌通过扫描电子显微镜(FEI QUANT A 200)观测,并采用紫外—红外光谱仪(U 23310UV S olutions )测量样品的吸收光谱曲线,扫描的范围为190nm 到900nm.

31结果和讨论

实验中,纳米球悬浊液的量与表面活性剂的浓

度比,以及匀胶机参数的设置是影响掩膜形成的关键因素.在恰当的条件下,可以生成上百微米尺度的自聚密排掩膜.

图1(a )是一个较大范围的纳米球掩膜板的SE M 扫描图.图中基本上是由密排的纳米球掩膜板构成,但是仍然有一些线缺陷和点缺陷,其中最主要的就是长达几个微米的线缺陷.在文献[18]中也报道有这种现象.这种长线缺陷可能是由于匀胶法自身的特点所致.但少量的缺陷并不会对生长的Au 颗粒的吸收光谱测量造成明显影响,因为缺陷大小形态各异,它们的任何吸收峰均不可能得到加强.图1(b )则是一个较小范围6μm ×5μm 的SE M 掩膜板图,纳米球之间的间隙清晰可见,沉积材料只能通过它们沉积到衬底上.

图2(a )是通过P LD 沉积后制备的Au 纳米颗粒的大范围(30μm ×25μm )的SE M 观测结果.由图中可以清晰看到有整齐的大面积Au 颗粒阵列生成,尺度大约可以达到数百微米.图2(b )是(a )的微区放大图.从中可以清晰地看到生成的三角形的Au 纳米颗粒阵列.(c )是一个完整的阵列单元,可以明显看到纳米球蚀刻后的圆形黑影(图中白圈表示).这个圆形黑影的直径即为纳米球的直径D .单个颗粒的形状特性可由两个参数表示:横截面的中垂线段a 和颗粒的高度b .通过几何上的简单计算,得到a 和纳米球直径D 的关系

a =323-1-1

3

D =0.233D .

(1)3

6836期王 凯等:金纳米颗粒的有序制备及其光学特性

图2 (

a )大范围的Au 纳米颗粒阵列的SE M 图(30μm ×25μm ),Au 颗粒为周期性阵列;(

b )为Au 纳米颗粒的微区放大的形貌图(215μm ×2μm ),三角形的Au 颗粒清晰可见;(

c )为阵列的基本单元

实验中所有聚苯乙烯纳米球直径D =450nm ,

于是得到的三角形Au 颗粒横截面的中垂线长度a =104nm.图3为沉积时间不同的三种Au 颗粒阵列,即样

品A

,B 和C 的吸收光谱结果.从图3(a )中可以看到对于样品A ,B 和C ,其对应的SPR 吸收峰的峰位分别是λmax =725,685和650nm.随着沉积时间

的增加,即随着颗粒的高度b 的增加,其吸收光谱

的峰位发生蓝移.此外,三条吸收曲线都在500nm 处有个波谷,这可能是由于金膜或是某些缺陷所造

成的[19]

.而(b )则表明在这个波段范围内,SPR 吸收峰位随沉积时间的增加而线性地蓝移.由于可近似认为沉积时间和颗粒高度呈正比,因此也可以说SPR 吸收峰位随颗粒高度的增加而线性减小.对时

间的敏感度ΔλΠ

ΔT =715.据报道[20],在Ag 三棱柱形纳米颗粒的研究中也观测到过这种现象.图3 (a )沉积时间分别是5,10和15min 的样品A ,B ,C 的吸收光谱的比较图 (其SPR 吸收峰分别位于725nm ,

685nm ,650nm ,随着沉积时间的增加,SPR 吸收峰的峰位发生蓝移);(b )SPR 吸收峰位随沉积时间的增加呈线性减

小(其线性回归方程为Y =76116-715X )

41DDA 模拟计算

在解释小颗粒光学特性的理论中,最基本的是Mie 理论,它给出了对于球形颗粒的麦克斯韦方程的准确解.但是,对于其他形状来说,无法给出其准确解,因此必须采用数值近似的方法.其中最简

单的近似就是偶极子近似模型[21]

:

E =24π2N A a 3ε3/2

m

λln (10)εi (εr +2εm )2+ε2

i

,(2)

其中,E 就是消光强度,等于吸收和散射强度之

和,N A 是颗粒密度,a 是颗粒半径,εm 是外界环境的介电常数,而εr 和εi 则是金属的介电常数的实部和虚部,它们都是入射波长λ的函数.当(εr +

4683物 理 学 报57卷

2εm )=0时,共振达到峰值.εr 可以表达为[18]

εr =1-ω2p

ω2+γ

2,(3)式中ωp 是块材的振动频率,γ是块材振动的衰减系数,由于在可见—红外波段范围内,ωp μγ,则(3)式可以简化为

εr =1-ω2p

ω2

.(4)

这样在共振时,

ω=

ωp

2εm

+1.

(5)

DDA 法就是一种基于以上偶极子模型的近似算法,理论上可以计算任意形状的小颗粒的吸收、

散射和消光等光学性质[22,23]

.它的基本思想是将小颗粒划分成若干个正方体格子,在划分足够小的情况下,每个格子可以视作一个偶极子.这样就能计算每个偶极子之间和偶极子与外界光波场的互相作用情况.最后得出每个偶极子的极化情况,进而能得到整个颗粒的光学特性.

基于这种思路,任意形状的小颗粒都可以看作由N 个偶极子构成,对于第i 个偶极子,记其极化

率为“αi ”,而该偶极子的位置则记为“r i ”.这样它们各自的极化强度则由其极化率和该局域的电场E loc 决定,即

P i =αi ?

Εloc (r i ),(6)

其中,某个偶极子的局域场E loc ,则是由入射的光

波场和其他偶极子的互相作用所共同决定的.

E loc (r i )=E loc ,i =E inc ,i +E self ,i

=E 0exp (i k ?r i )-

j ≠i

A ij

?P j ,(7)

这里E 0和k 是入射光波的强度和波矢,而表示偶极子作用的矩阵A 由下式给出:

A ij ?P j =exp (i kr ij )r 3ij

k 2

r ij ×(r ij ×P j )+(1-i kr ij )r 2

ij

×[r 2

ij P j -3r ij (r ij ?P j )].(8)

将方程(7)和(8)代入方程(6),经整理后可以得到

A ′?P =E .(9) 解这样的3N 阶复线性方程组,最终可以得到每个偶极子的极化强度矢量P ,从而能进一步得到该颗粒的各种光学特性.

利用软件包DDSC AT ,计算了实验中所得的三棱柱装Au 纳米颗粒的吸收光谱,保持横截面为正三角形,其对角线长a =104nm.按照P LD 沉积Au 薄膜的生长速率,对于样品A ,B 和C ,其高度分别为12,18和28nm.计算结果如图4所示.

由图4(a )知,理论上,对于同种形状的颗粒来说,其高度的增加会导致其吸收峰的蓝移.而这与图3(a )所示的实验结果是符合的.在500nm 处同样也发现了实验中出现的波谷.其中,高度为12nm ,18nm 和28nm 的颗粒所得的SPR 吸收峰位与实验中

沉积时间为5min ,10min 和15min 的颗粒SPR 吸收

峰位大体相合.图4(b )则是SPR 吸收峰位对于颗粒高度作的拟合,作线性回归得到Y =

806-5173X .

即敏感度ΔλΠ

Δb =5173.图4 (a )由DDA 算法计算出的3种三棱柱结构的Au 纳米颗粒的吸收光谱 (这3种Au 颗粒的横截面均保持为正三角形,其中垂线长a =104nm ,与实验参数保持一致.高度b 分别为12nm ,18nm ,28nm ,分别与样品A ,B 和C 对应.可以看到其所对应的吸收峰值分别位于738nm ,702nm 和646nm.以上三种颗粒均用了12000个左右的偶极子);(b )为SPR 共振吸收峰对颗粒高度的线性拟合(Y =806-5173X )

5

6836期王 凯等:金纳米颗粒的有序制备及其光学特性

51结 论

本实验结合NS L和P LD技术制备了不同高度的Au纳米颗粒阵列.采用SE M观测其表面形貌,表明Au纳米颗粒阵列为分布均匀,大小相同的三棱柱状颗粒.并对Au纳米颗粒的光学特性进行了研究.通过测量其吸收光谱,成功观测到了Au纳米颗粒的SPR峰,并研究了Au纳米颗粒阵列的高度变化对其SPR峰位造成的影响.同时采用了DDA法进行了理论计算,对实验中的颗粒高度变化进行了理论模拟.理论计算结果与实验结果相符合.

[1]Huang W,Qian W,E l2Sayed M A2005J.Phys.Chem.B

10918881

[2]W ang W,W ang Y,Sun Y2007Appl.Sur.Sci.2534673

[3]Y ang M X,G racias D H,Jacobs P W,S om orjai G A1998

Langmuir141458

[4]Huang W,Qian W,E l2Sayed M A2004Nano Lett.41741

[5]E lghanian R,S torhoff J J,Mucic R C et al1997Science2771087

[6]E l2Sayed H,Huang X H,E l2Sayed M A2005Nano Lett.5829

[7]Hulteen J C,Van Duyne R P1995J.Vac.Sci.Technol.A

131553

[8]Fischer U C,Z ingshem H P1981J.Vac.Sci.Technol.19881

[9]Huang X,E l2Sayed H,E l2Sayed M A2006J.Am.Chen.Soc.

1282115

[10]Purcell E M,Pennypacker C R1973Astrophys.J.186705

[11]Draine B T1988Astrophys.J.333848

[12]Draine B T,Flatau P J1994J.Opt.Soc.Am.A111491

[13]Program DDSC AT,by Draine B T and Flatau P J(University of

California,San Dieg o,Scripps Institute of Oceanography,8605La

Jolla Dr.,La Jolla,California9209320221)[14]Y ang W H,Schatz G C,Van Duyne R P1995Chem.Phys.

103869

[15]Jensen T R,Schatz G C,Van Duyne R P1999J.Phys.Chem.B

1032394

[16]K elly K L,C oronado E,Zhao L L,Schatz G C2003J.Phys.

Chem.B107668

[17]Y ang G,Chen Z H,2006Acta Phys.Sin.554342(in Chinese)

[杨 光、陈正豪2006物理学报554342]

[18]Jensen T R,Duval M L,Van Duyne R P1999J.Phys.Chem.B

1039846

[19]N orrman S,Anderss on T,Hunderi C G1978O.Phys.Rev.B

18674

[20]Jensen T R,M alinsky M D,Van Duyne R P2000J.Phys.

Chem.B10410549

[21]K reibig U,V ollmer M1995Optical Properties o f Metal Clusters25

[22]Jensen T,K elly L,Lazarides A,Schatz G C1999J.Cluster Sci.

10295

[23]M alinsky M D,K elly K L,Schatz G C,Van Duyne R P2001J.

Am.Chem.Soc.1231471

6683物 理 学 报57卷

Fabrication and optical propertie s of Au nanoparticle array 3

W ang K ai Y ang G uang Long Hua Li Y u 2Hua Dai Neng 2Li Lu Pei 2X iang

(Wuhan National Laboratory for Optoelectronics Division o f Laser Science and Technology ,

Huazhong Univer sity o f Science and Technology ,Wuhan 430074,China )

(Received 26October 2007;revised manuscript received 14N ovember 2007)

Abstract

Using nanosphere lithography and pulsed laser deposition ,Au nanoparticles with different height have been fabricated on quartz substrates.The surface images of Au particles were observed by scanning electron m icroscopy ,and the results showed that the prism 2shaped Au particles form a periodical array.In the U 2V 2visible absorption spectrum ,strong absorption peaks due to the surface plasm on resonance of Au nanoparticles were observed.Furtherm ore ,theoretical calculation based on the discrete dipole approximation was performed.The experimental and theoretical results show that the absorption peaks of the Au nanoprism shifted to the blue side as the out 2of 2plane height increases.

K eyw ords :nanosphere lithography ,Au metal nanoparticles ,discrete dipole approximation PACC :7865E ,8116N

3Project supported by the National Natural Science F oundation of China (G rant N os.10604018,10574050)and S pecialized Research Fund for the D octoral

Program of H igher Education (G rant N o.20060487006).

C orresponding author.E 2mail :gyang @https://www.docsj.com/doc/7017838366.html, E 2mail :lupeixiang @https://www.docsj.com/doc/7017838366.html,

7

6836期王 凯等:金纳米颗粒的有序制备及其光学特性

金银纳米颗粒的制备与光学性质研究

2011届毕业设计(论文) 题目: 专业:光电子材料与器件 班级:光电1101 姓名:王麒 指导老师:朱杰君 起讫日期: 2015年 6 月

金银纳米结构的制备与光学性质研究 摘要 现代技术的发展在很大程度上依赖于现有材料的改进及新材料的产生。在纳米材料的研究热潮中,贵金属(尤其是Au和Ag)纳米材料因其独特的光、电、催化等特性受到众多研究领域的广泛关注。研究表明,金属纳米材料的性能与纳米粒子的尺寸和形貌密切相关。 本文主要研究了银纳米线和金纳米片的制备和其光学特性,通过简单的多羟基法成功制备了银纳米线和金纳米片。在反应温度为170℃的条件下,改变PVP与AgNO3的摩尔比R和聚乙烯吡咯烷酮(PVP)的聚合度k,制备出了银纳米线和银纳米颗粒的混合物,研究了其光学性质以及生长机制。在反应初期阶段,Ag离子与PVP链的极性基团的化学吸附可以促进银纳米线的生长。利用多羟基方法制备尺寸可控的金纳米片(厚度为数十纳米,尺寸在微米量级),在温度为180℃的情况下,改变PVP-K30与金离子摩尔比R(R=1,10,20,40),探讨了金纳米片的最佳生长条件。 关键词:金银纳米结构多羟基过程液相合成生长机制表面等离激元共振

Study on the Synthesis and Optical Properties of Gold and Silver Nanostructures Abstract The evolution of all modern technologies strongly depends on the improvement of existing materials and the development of new materials. In the hot research topic of nanomaterials, noble metal(especially for gold and silver) nanostructures have attracted particular attention because of their unique optical, electrical, catalytic properties. Recent investigations demonstrate that their properties are strongly depended on the size and shape of metal nanoparticles. This paper mainly studies the synthesis and optical properties of silver nanowires and gold nanoplates, which were prepared by a simple poly(vinyl pyrrolidone)-directed polyol synthesis process. Under a synthesis condition of T=170℃, a mixture of Ag nanowires and nanoparticles was obtained by changing the molar ratios of PVP /AgNO3, and the chain length of PVP. The growth mechanism and optical properties of the nanowires were studied. It is proposed that the chemical adsorption of Ag+ on the PVP chains at the initial stage promotes the growth of Ag nanowires. Gold nanoplates(tens of nanometers in thickness and micrometers in size) have been synthesized through a polyol process. Under the condition of T=180℃, the suitable growth conditions for gold nanoplates was studied by changing the molar ratios of PVP/HAuCl4 (R=1,10,20,40). Key words: silver and gold nanostructures; polyol process; growth mechanism; surface plasma resonance(SPR)

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

金纳米颗粒呈黑色的原因

纳米材料与技术作业 专业:光学工程 学号:10121938 姓名:赵凡凡

1、金纳米颗粒为什么呈黑色? 金纳米颗粒之所以呈现黑色是由于金纳米颗粒对入射光波的吸收所造成的。金纳米颗粒的吸收为表面等离子体的共振吸收,它与金属表面自由电子的运动有关。在金属电子论中,金属中的自由电子可以用自由电子气模型来表示:即价电子是完全共有化的,构成金属中导电的自由电子,离子实与价电子的相互作用完全被忽略,而且自由电子被视为毫无相互作用的理想气体,为了保持金属的电中性,可以设想离子实的正电荷散布于整个体积之中,和自由电子的负电荷正好中和。正是由于这种理想自由电子气模型和常规等离子体相似,所以叫做金属中的等离子体。等离子体在热平衡时时准电中性的,若等离子体内部受到某种扰动而使其一些区域带和密度不为零,就会产生强的静电恢复力,使等离子体内的电荷分布发生振荡,这就是等离子体振荡。这种振荡主要是电场和等离子体流运动相互制约而形成的。所以当电磁波作用于等离子体时,就会使等离子体发生振荡,而当电磁波的频率和等离子体的振荡频率相同时,就会产生共振,这种共振宏观上就表现为纳米粒子对光的吸收。 如图,不同粒径的纳米粒子对光的吸收,其吸收光谱几乎覆盖了整个紫外-可见光波段,并且在520-530nm处表现出极强的吸收峰。由于金纳米颗粒对光的吸收致使观察者无法获得其反射光,因此,金纳米颗粒表观上呈黑色。 2、金溶胶为什么呈红色? 金纳米溶胶一般是通过化学方法在水溶液中还原四氯金酸(HAuCl4)获得的,如下所示。 + 柠檬酸钠Au HAuCl

金溶胶在生成的初级阶段,首先形成大的团状聚集体,随反应时间的延长,其光谱显示为紫外吸收降低,可见光吸收逐步增强,而最大吸收波长逐渐向短波方向蓝移,金溶胶的这种光谱吸收为金原子的特征吸收。在反应时间为5 min左右时形成稳定分散的金溶胶。 如图,在形成稳定的金溶胶后其光谱显示最大吸收波长在560nm左右,而长波波段吸收相对较少,因此,在可见光范围内由于短波长吸收较大从而金溶胶便表现出长波波段特性,即呈红色。 参考文献 [1]王凯,杨光等. 金纳米颗粒的有序制备及其光学特性. 物理学报,2008. 6 [2]孙秀兰,赵晓联,汤坚. 纳米金溶胶形成过程的可见光吸收光谱研究. 无锡轻工大学学报,2004,7 [3]李贵安,苗润才. 金属纳米银粒子复合膜吸收红移和展宽现象. 陕西师范大学学报(自然科学版),1999. 12 [4] 彭菊村,卢强华,吴波英. 金纳米颗粒水相合成工艺研究. 稀有金属材料与工程,2006. 6 [5] 高丽珍. 金纳米颗粒的制备、表面改性及光学特性的研究. 河南大学硕士学位论文,2004

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

纳米材料的光学特性

纳米材料的光学特性 美国著名物理学家,1965年诺贝尔物理奖获得者R.P Feynman在1959年曾经说过:“如果有一天能按人的意志安排一个个原子分子将会产生什么样的奇迹”,纳米科学技术的诞生将使这个美好的设想成为现实。 纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。 1 纳米材料的分类和结构 根据不同的结构,纳米材料可分为四类,即:纳米结构晶体或三维纳米结构;二维纳米结构或纤维状纳米结构;一维纳米结构或层状纳米结构和零维原子簇或簇组装。纳米材料的分类如图表1所示。纳米材料包括晶体、赝晶体、无定性金属、陶瓷和化合物。 2 纳米材料的光学性质 纳米材料在结构上与常规晶态和非晶态材料有很大差别,突出地表现在小尺寸颗粒和庞大的体积百分数的界面,界面原子排列和键的组态的较大无规则性。这就使纳米材料的光学性质出现了一些不同于常规材料的新现象。

纳米材料的光学性质研究之一为其线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,主要集中在纳米氧化物、氮化物和纳米半导体材料上,如纳米Al2O3、Fe2O3、SnO2中均观察到了异常红外振动吸收,纳米晶粒构成的Si膜的红外吸收中观察到了红外吸收带随沉积温度增加出现频移的现象,非晶纳米氮化硅中观察到了频移和吸收带的宽化且红外吸收强度强烈地依赖于退火温度等现象。对于以上现象的解释基于纳米材料的小尺寸效应、量子尺寸效应、晶场效应、尺寸分布效应和界面效应。目前,纳米材料拉曼光谱的研究也日益引起研究者的关注。 半导体硅是一种间接带隙半导体材料,在通常情况下,发光效率很弱,但当硅晶粒尺寸减小到5nm或更小时,其能带结构发生了变化,带边向高能态迁移,观察到了很强的可见光发射。研究纳米晶Ge的光致发光时,发现当Ge晶体的尺寸减小到4nm以下时,即可产生很强的可见光发射,并认为纳料晶的结构与金刚石结构的Ge 不同,这些Ge纳米晶可能具有直接光跃迁的性质。Y.Masumato发现掺CuCl纳米晶体的NaCl在高密度激光下能产生双激子发光,并导致激光的产生,其光学增益比CuCl 大晶体高得多。不断的研究发现另外一些材料,例如Cds、CuCl、ZnO、SnO2、Bi2O3、Al2O3、TiO2、SnO2、Fe2O3、CaS、CaSO4等,当它们的晶粒尺寸减小到纳米量级时,也同样观察到常规材料中根本没有的发光观象。纳米材料的特有发光现象的研究目前正处在开始阶段,综观研究情况,对纳米材料发光现象的解释主要基于电子跃迁的选择定则,量子限域效应,缺陷能级和杂质能级等方面。 纳米材料光学性质研究的另一个方面为非线性光学效应。纳米材料由于自身的特性,光激发引发的吸收变化一般可分为两大部分:由光激发引起的自由电子-空穴对所产生的快速非线性部分;受陷阱作用的载流子的慢非线性过程。其中研究最深入的为CdS纳米微粒。由于能带结构的变化,纳米晶体中载流子的迁移、跃迁和复合过程均呈现与常规材料不同的规律,因而其具有不同的非线性光学效应。 纳米材料非线性光学效应可分为共振光学非线性效应和非共振非线性光学效应。非共振非线性光学效应是指用高于纳米材料的光吸收边的光照射样品后导致的非线性效应。共振光学非线性效应是指用波长低于共振吸收区的光照射样品而导致的光学非线性效应,其来源于电子在不同电子能级的分布而引起电子结构的非线性,电子结构的非线性使纳米材料的非线性响应显著增大。目前,主要采用Z-扫找(Z-SCAN)和DFWM技术来测量纳米材料的光学非线性。

纳米材料论文汇总

纳米材料技术介绍 专业:机械设计制造及其自动化 学生姓名:胡宇杨 学号:1120101117 班级:D机制131

引言:纳米概念是1959年木,诺贝尔奖获得着理查德.费曼在一次讲演中提出的。他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。 其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。在这里就不一一介绍了。 1纳米材料的特性 纳米是一种度量单位,1 nm为百万分之一毫米,即l毫微米,也就是十亿分之一米,一个原子约为0 1 nm。纳米材料是一种全新的超微固体材料,它是由纳米微粒构成,其中纳米颗粒的尺寸为l~100 nm。纳米技术就是在100 nm以下的微小结构上对物质和材料进行研究处理,即用单个原子、分子制造物质的科学技术…。 纳米微粒是由数目较少的原子和分子组成的原子群或分子群,其占很大比例的表面原于是既无长程序又无短程序的非晶层:而在粒子内部,存在结晶完好的周期性排布的原子,不过其结构与晶体样品的完全长程序结构不同。正是纳米微粒的这种特殊结构,导致了纳米微粒奇异的表面效应、小尺寸效应、量子尺寸效应、量子隧道效应,并由此产生许多纳米材料与常规材料不同的物理、化学特性。 1.1表面与界面效应 纳米材料的表面效应口即纳米微粒表面原子与总原子数比随纳米微粒尺寸的减小而大幅度增加,粒子的表面能及表面张力也随之增加,从而引起纳米榻料性质的变化。例如,粒径为5 nm的SiC比表面积高达300 /12/g;而纳米氧化锡的表面积随粒径的变化更为显著,10 lltlfl时比表面积为90.3 m2/g,5 nm时比表面积增加到181 m2/g,而当粒径小于2 nm 时,比表面积猛增到450 m2/g。这样大的比表面积使处于表面的原子数大大增加.这些袭面原子所处的晶体场环境及结合能与内部原子有所不同,存在着大量的表而缺陷和许多悬挂键,具有高度的不饱和性质,因而使这些原子极易与其他原子相结合而稳定下来,具有很高的化学反应活性。

金纳米棒的制备和应用

金纳米棒的制备及其在生命科学 上的应用 第一章研究背景 金属纳米微粒的研究,尤其是对其形貌可控制备及其相关应用的性质和应用研究一直是材料科学以及相关领域的前沿热点。非球形的金纳米颗粒如棒、线、管及核壳结构相继被成功合成,其各种性质不仅仅依赖于尺寸而且还依赖于拓扑结构,其中金纳米棒(gold nanorods,GNRs)是最受关注的一类。 金纳米棒是一种尺度从几纳米到上百纳米的棒状金纳米颗粒。金是一种贵金属材料,化学性质非常稳定,金纳米颗粒沿袭了其体相材料的这个性质,因此具有相对稳定,却非常丰富的化学物理性质。金纳米棒拥有随长宽比变化,从可见到近红外连续可调的表面等离子体共振波长,极高的表面电场强度增强效应(高至107倍),极大的光学吸收、散射截面,以及从50%到100%连续可调的光热转换效率。由于它独特的光学、光电、光热、光化学、以及分子生物学性质,金纳米棒在材料科学界正受到强烈的关注,并引发众多材料学家、生物化学家、医学家、物理学家、微电子工程师等科研工作者对之进行广泛和深入的研究。 第二章 GNRs的制备及修饰 2.1 GNRs的制备 近年来,对于金纳米棒的合成已经研究出来许多有效的方法。主要分为晶种生长法,模板法,电化学法和光化学法等不同方法制备出分散性好颗粒均匀的金纳米棒。

2.1.1 晶种法 晶种法研究的时间最长,因此研究的最深入。晶种可以是球型金纳米粒子,或者是短的金纳米棒。晶种法合成金纳米棒可以分为三个步骤:晶种的制备、生长液的配置、金纳米棒的生成。 1 种子制备:将5mL 0.50 mM氯金酸(HAuCl4)溶液与5 mL 0.2M 十六烷基溴化铵(CTAB)混合,加入0.6 mL 冰冻的0.01 M 硼 氢化钠(NaBH4)溶液,搅拌 2 min 后 25℃静置2h。 2 生长溶液制备:向反应容器中依次加入5mL 0.20 M CTAB,5 mL 1 mM HAuCl4, 0.5 mL硝酸银(AgNO3), 0.07 mL 0.10 M 抗坏血酸(AA),搅拌 2 min。 3 GNRs制备:在生长溶液中加入0.012 mL种子溶液,搅拌2min后 28℃,静置3h,得到充分生长的GNRs。 在生长过程中纳米棒的纵横比可以通过改变晶种与金属盐的比例进行控制。在随后的研究中,通过调节溶液的 pH 也可改善纳米棒的合成。对于长的金纳米棒的制备,侧需使生长液中同时存在一定比例的CTAB 与 BDAC。另外通过控制 CTAB 浓度,也能进一步还原并获得高纵横比的金纳米棒。而 Danielle K. Smith等报道应用不同厂家生产的CTAB都会对金纳米棒的制备产生影响。一定范围内Ag+的加入量能控制金纳米棒的纵横比,提高金纳米棒的产率。这种方法设备要求低,制备过程简单,改变反应物浓度就可改变纵横比,使用最广泛。 2.1.2 模板法 模板法是指用孔径为纳米级到微米级的多孔材料作为模板,使前驱体进入后在模板的孔壁上反应,结合电化学沉淀法、溶胶凝胶法和气相沉淀法等技术,形成所需的纳米棒。模板法具有良好的可控制性:通过对模板尺寸的控制,可以制备出粒径分布范围窄、粒径可控、反应易于控制等贵金属纳米颗粒。 Martin等最早利用模板法制备金纳米棒,利用金纳米棒的生长空间受限的原理,来合成金纳米棒。van der Zande等发展了该方法,利用电化学沉积法将金沉积在纳米多孔聚碳酸酯或氧化铝模板内,先喷上少量的导电基底,再电沉积金,随后去除模板,加入PVP以保护和分散金纳米棒,具体的制备流程如图1所示。邵桂妮等利用HAuCl4以柠檬酸三钠为还原剂,利用在多孔氧化铝(AAO)模板中浸泡金溶胶,制备出一维金

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

优质纳米金粒子基本性质及应用介绍

优质纳米金粒子基本性质及应用介绍 2016-10-28 13:52来源:内江洛伯尔材料科技有限公司作者:研发部 【产品说明】 中文名称:纳米金粒子

英文名称:Gold nanoparticles 中文别名:金纳米、纳米金胶体、奈米金粒子 CAS号:7440-57-5 【产品特性】 外观:紫红色液体 保护剂:PVP(聚维酮) PH:7.0±0.5 粒径:5-10nm 黄金纯度:99.95% 光学密度:5/cm 包装规格:按客户要求包装 保存方法:密封,4℃冰箱避光保存 【详细介绍】 纳米金即指金的微小颗粒,其直径在1~100nm,具有高电子密度、介电特性和催化作用,能与多种生物大分子结合,且不影响其生物活性。由氯金酸通过还原法可以方便地制备各种不同粒径的纳米金,其颜色依直径大小而呈红色至紫色。一般为分散在水溶液中的水溶胶,因此也被称为胶体金。 纳米金颗粒制备方法有许多,与大多数纳米粒子一样,主要可以分为物理法和化学法。物理法制备金颗粒主要是通过各种分散技术将金直接转变为纳米粒子,主要包括真空沉积法、激光消融法等方法。化学法是以金的化合物为原料,利用还原反应生成金纳米粒子,通过控制反应条件,来制备所需尺寸的颗粒。化学法主要包括:柠檬酸钠氧化还原法、模板法、电化学合成法、光化学合成法、晶种生长法、巯基配体法、微乳液法等。随着科技的进步和发展,利用细菌、真菌、酵母菌、藻类等微生物或纯天然植物提取物等无毒无害且环境友好的绿色环境法制备纳米金粒子,逐渐成为纳米技术领域一个重要的趋势[13]。 关于纳米金粒子表面修饰的研究在国内外都很活跃,目前主要运用聚合物分子、生物分子、树枝化超大分子和环境友好型分子修饰。 纳米金材料由于其基本单元都是微小尺寸的粒子故存在很多宏观粒子所不具备的物理、化学特性,包括光学效应、小尺寸效应、表面效应、宏观量子隧道效应、介电限域效应、久保效应以及一些其他的特殊效应;具备荧光特性、电化学特性、吸附特性以及超分子和分子识别特性等,因而广泛应用于感光、催化、生物标识、光电子学、信息存储以及表面增强拉曼散射等诸多领域,涉及材料、医学检验、临床医学、食品、化工、陶瓷、染料等行业。

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

3.1 金纳米粒子性质

金纳米粒子性质 1 金纳米粒子类型 不同形状的金纳米粒子对应着不同的应用目的。目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。 根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。 2 金纳米粒子特性 块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面: 2.1 表面等离子体共振特性 有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。 金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。金纳米粒子的这种表面等离子体共振特性被广泛应用与检测,传

相关文档