文档视界 最新最全的文档下载
当前位置:文档视界 › 金纳米粒子的制备方法

金纳米粒子的制备方法

金纳米粒子的制备方法
金纳米粒子的制备方法

金纳米粒子的制备方法

由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。

1梓檬酸盐还原法

目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。

2 Brust-Schiffrin法:两相合成并通过硫醇稳定

人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1):

图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖

其反应机理如下:

3其它含硫配体

其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。

4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类

在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装

得到了。

5种子生长法

种子生长法是另一种比较常用的方法。目前,较成功的研究表明,这种方法可以合成可控大小纳米粒子分散(10-15%)在5-40nm范围内,而且,纳米粒子的大小可以通过变化晶种和金属盐的比例来进行调控。此方法主要分成二步:第一步是用强还原剂还原Au3+为小的金纳米粒子;第二步是采用弱还原剂将Au3+还原为Au+,再与晶种混合,从而使Au+进一步变为金纳米粒子。此方法最大的优点是可以避免二次成核。

6物理方法:光化学(UV、Near-IR)、声化学、辖射和热解

紫外照射是能够证明金纳米粒子质量的另一种参数。近红外光照射能够证明用硫醇稳定的金纳米粒子的粒径生长。在少量2-丙醇中,超声波(200kHz)能控制AuCl4-水溶液中的还原速率,同时,通过调结溶液温度和反应器的配置等参数,可以调控纳米粒子的大小。声化学可以利用娃孔进行金纳米粒子的合成,也可以进行Au/Pd双金属粒子的合成。福射已经用于控制金纳米粒子的大小,或是在特殊自由基存在下合成。根据t福射可以检测金纳米粒子的形成机制。在气/液界面处,通过[AuCl(PPh3)]分解,可以得到金纳米粒子。在180℃,N2存在情况下,[C14H29-Me3N][Au(SC12H25)2]热解5小时,制备26nm的焼基组纯化的金纳米粒子。

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

3.4 金纳米颗粒自组装

金纳米颗粒自组装 1 引言 纳米技术(nanotechnology)是研究结构尺寸在0.1纳米至100纳米范围内材料的性质和应用的一种技术。目前纳米技术涉及领域主要包括:化工、能源、材料、生物医学等。尺寸为纳米级别的物质其性质也会发生变化,出现既不同于原来组成的原子、分子,也不同于宏观的物质特殊性能,把这种具有特殊性能材料称为纳米材料。纳米材料的制备和研究是整个纳米科技的基础,可以以很多形状存在,例如球状、棒状、片状、星状、线状、枝杈状等。由于纳米材料的较小尺寸,使它产生出小尺寸效应、表面效应、量子尺寸效应等,从而具有传统材料不具备的特异的光、电、磁、热、声、力、化学和生物学性能。因此,纳米材料也被科学家们广泛应用于各个研究领域,如催化、生物医学、化工、环境能源等。 在众多纳米材料中,金纳米颗粒自从16世纪欧洲现代化学的奠基人、杰出的医师、化学家Paracelsus制备出“饮用金”用来治疗精神类疾病以来,开始登上了科学的舞台。随着纳米技术的不断发展,人们发现金纳米颗粒具有独特的光、电、热、催化等物理与化学性质,生物相容性好等特点,是构筑新型复合功能材料的重要组元,在生物传感、细胞及活体成像、癌细胞的光热治疗、肿瘤放射治疗、靶向载药等生物医学领域展现出了广阔的应用前景。 金纳米颗粒的光学性能方面,由于入射光源的波长与金纳米颗粒的原子表面自由电子的振动频率可以发生共振耦合,使金纳米颗粒具有突出的局部表面等离子共振吸收(Localized surface plasmonresonance, LSPR)。金纳米颗粒的LSPR性质与其尺寸、周围介质性质以及纳米微粒间作用等因素都有关。因此,不同尺寸的金纳米颗粒会有不同的共振吸收峰,并且改变纳米微粒间距离、介质等都会造成共振吸收峰位置的左移或右移。小尺寸范围(<50 nm)的金纳米颗粒的等离子共振吸收通常在可见光范围520-530 nm左右有一个很明显的吸收峰,尺寸越大,吸收峰波长越大,并且其溶液会呈现出橙红、酒红、浅紫等不同颜色。大尺寸的金纳米颗粒自组装聚集体的等离子共振吸收除了在可见光范围520-530 nm左右有一个很明显的吸收峰,并且其溶液颜色会呈现深紫、蓝黑色等。这一近红外波长范围正是生物组织所具有的光的窗口。近红外线能够穿透进入深部组织达10cm,克服了可见光不能很好穿透组织的缺点,为利用金纳米材料进行光热治疗,破坏肿瘤细胞提供了理论依据。 此外,也有很多研究报道,金纳米颗粒的其他一些生物性能也与其尺寸有关,例如2016年Chang等研究了3-50 nm不同尺寸的金纳米颗粒增强CT成像与放射治疗的效果比较,发

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

5-第四章 自组装纳米制造技术_讲稿

[1]崔铮. 微纳米加工技术及其应用(第二版). 北京:高等教育出版,2009.5 [2]王国彪. 纳米制造前沿综述. 北京:科学出版社,2009.3 31引言 “自上而下”与“自下而上”纳米制造技术 当前的纳米制造技术广义上可分为“自上而下”和“自下而上”两类。 自上而下的方法是指从宏观对象出发,对宏观材料或原料进行加工,完成纳米尺度结构特征的制造。主要涉及的技术包括切割、刻蚀以及光刻等。“自上而下”的加工方式,其最小可加工结构尺寸最终受限于加工工具的能力:光刻工具或刻蚀设备的分辨能力等。 自下而上的方法是指从微观世界出发,通过控制原子、分子和其它纳米对象,制造期望的纳米结构、器件和系统。主要包括自组装和通过工具辅助对不同的纳米尺度对象进行纳米操作。上一讲介绍的原子、分子操纵即属于纳米操作。这一讲主要介绍自组装纳米制造技术。 自组装(self-assembly) 自组装是一个非常广义的概念,任何一种由独立个体自发地形成一个组织、结构或系统的过程都可以称之为自组装。它是通过各种类型的相互作用力将各种结构单元组织在一起的,是自然界中广泛存在的现象。 不同尺度的自组装系统 自组装系统的尺度范围广,可以是微观的、介观的或宏观的,小到原子核,大到宇宙天体,均存在广义上的自组装现象,如图。 静态自组装和动态自组装 自组装可分为两大类: 静态自组装(S)是指那种在全部或者局部范围内平衡的体系,它不需要消耗能量。在静态自组装中,形成有序的结构是需要能量的,但是组装结果处在能量极小或最小状态,一旦形成,它就非常稳定,目前大多数关于自组装的研究都是这一类型。如原子、离子和分子晶体,相分离和离子层状聚合物,自组装单层膜,胶质晶体,流体自组装等。 动态自组装(D)发生机制必须在系统消耗外界能量的情况下才能发生,一旦有能量的散失,形成的结构或系统中的各个单元之间就会有相互作用产生而被破坏。如生物细胞,细菌菌落,蚁群和鱼群,气象图,太阳系,星系等。动态自

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

纳米粒子的自组装

纳米粒子的自组装 摘要:本文主要介绍了自组装的相关基础知识,并具体对纳米粒子的自组装进行了介绍,通过组装单元的类型对纳米粒子的自组装进行分类。组装单元有柔性的也有刚性的,有各向异性的也有各向同性的。分为各向同性刚性粒子的自组装、各向异性刚性粒子的自组装、各向异性柔性粒子的自组装以及各向同性柔性粒子的自组装这四类进行了详细介绍。 关键词:纳米粒子,自组装,刚性,柔性,各向同性,各向异性 1引言 组装在汉语释义中,是指把零散的部件组合在一起,使成为整体,组装的过程中,用到的是人力或者机械力。与日常生活中的“组装”不同,自组装(self-assembly)是指在非共价力的作用下,小分子、大分子或纳米粒子组合成规则有序的物体。这里的非共价力包括范德华力、氢键、静电作用、疏水作用、偶极相互作用等,称为自组装的驱动力,非共价力不是人手或者机械可以操控的,非共价力的操控需要人们对于物理化学的原理的理解和运用。自组装形成的规则有序的物体称为自组装体或者组装体(assembly),形成组装体的原料成为组装单元(building block),根据组装单元的不同,相应的就有小分子自组装、大分子自组装和纳米粒子的自组装。 图1.1是不同尺度物体生产的空间坐标轴,在坐标轴的右侧,常规加工可以制造各种尺寸大于0.1mm的物体,制造的技术已经非常成熟。微加工(microfabrication)则可以制造各种复杂形貌的微米物体(1-100μm),比如用双光线技术。在坐标轴的左侧,在零点几纳米到几纳米的尺度内,有机化学已经可以根据需要设计合成各种目标分子,技术已经非常成熟;在几个纳米到几百纳米范围内,高分子化学家则可以合成各种构造的高分子入梳形高分子,胶体化学家可以合成各种纳米晶体如八角状的纳米晶体,该尺度范围内,虽然还不能按照需要任意地制备物体,但是已经可以制造很多种不同结构不同形貌的物体,然而对于位于坐标轴中间的几十纳米到几个微米的尺度范围来说,该尺度大于化学合成所能制备的物体的上限,小于常规加工和微加工所能达到的下限,该尺度范围内的制造需要人们通过物理化学的原理的理解和使用来完成,这就是大分子自组装以及纳米粒子的自组装的任务所在。 图1.1 Fabrication of objects at all scales 大分子自组装经过三十年的发展,通过嵌段共聚物溶液自组装的方法可以制备二三十种

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 8四川化工第14卷 2019年第3期 金纳米粒子的制备及表征研究 王静 易中周 李自静 (红河学院理学院,云南蒙自,661100) 摘要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分 散分布。 关键词:纳米金 制备 表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的 化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例,Frens获得了不同尺寸的单分散 金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更 小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳 定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变, 方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子 聚合物保护剂PVA(聚乙烯醇)、PVP(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液UV Vis吸收 光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报 道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 [5] 2 1 试剂与仪器

HAuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂); 水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900UV/VIS/NIR光谱仪(Per kinElmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/mlHAuCl4加入水中,保持温度并定容,30分钟后冷却。2 3 纳米粒子的表征 Au纳米粒子用UV Vis吸收光谱表征和TEM表征,TEM的样品制备是将胶体溶液滴在碳 膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取TEM图像。 3 结果与机理探讨 3 1 UV Vis吸收光谱表征 当将HAuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长, 又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 12 实验部分 第3期金纳米粒子的制备及表征研究粒子的UV Vis吸收光谱图[5,6]。3 2 TEM表征图2为柠檬酸钠水溶液体系所制备的Au纳米粒子的TEM 图。 9 柠檬酸钠还原为Au单质;然后,Au单质在柠檬酸钠保护下进行团聚和不断长大,最后成为Au纳米粒子,但是柠檬酸钠阻止了Au纳米粒子的进一步团聚,控制了较小粒径,并使其 颗粒均匀并呈球形分布。 图3 柠檬酸钠水溶液体系金纳米粒子的热化学合成机理 3 结论 通过较为严格温度控制的柠檬酸钠水溶液体系制备得到的Au纳米粒子: (1)尺寸均匀; (2)呈球形单分散分布;(3)平均粒径只有7-8nm。 参考文献 [1]Marie ChristineDaniel,DidierAstruc.GoldNanoparticles:As sembly,SupramolecularChemistry,Quantum Size RelatedProper

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性 3 王 凯 杨 光 龙 华 李玉华 戴能利 陆培祥 (华中科技大学武汉光电国家实验室激光科学与技术研究部,武汉 430074) (2007年10月26日收到;2007年11月14日收到修改稿) 采用纳米球蚀刻技术在石英衬底上制备了不同高度的金纳米颗粒阵列.通过扫描电子显微镜对其表面形貌进行了观测,表明金纳米颗粒为有序分布的三棱柱结构.通过红外—紫外吸收光谱仪在190—900nm 波长范围内对其光吸收特性进行了测量,并成功观测到了金纳米颗粒表面等离子体振荡效应引起的光吸收峰,结果表明随着金纳米颗粒高度的增加,其吸收峰的位置向短波方向移动(蓝移).同时对金纳米颗粒的光吸收特性进行了基于离散偶极子近似的理论计算,并与实验结果进行了比较. 关键词:纳米球蚀刻技术,金纳米颗粒,离散偶极子近似 PACC :7865E ,8116N 3国家自然科学基金(批准号:10604018,10574050)和高等学校博士学科点专项科研基金(批准号:20060487006)资助的课题. 通讯联系人.E 2mail :gyang @https://www.docsj.com/doc/746324598.html, E 2mail :lupeixiang @https://www.docsj.com/doc/746324598.html, 11引言 随着现代纳米技术的发展,贵金属纳米颗粒的制备和可控光学特性的研究,引起了人们广泛的兴趣.其在纳米光学 [1] 、非线性光学 [2] 、催化作用 [3] 、热 动力学[4] 和传感器[5] 以及医学诊断[6] 等研究领域都有着十分重要的应用前景. 贵金属纳米颗粒最具代表性的特性是在可见光范围内伴随有强烈的吸收峰,这是其颗粒里大量的自由传导电子对外界光波入射的响应.当电子振动频率和入射光波频率相等时,即发生表面等离子体 振荡(surface plasm on res onance ,SPR )效应,从而产生强烈的吸收峰.SPR 光谱峰位对颗粒的形状、大小、分布以及外部环境的变化非常敏感. 以往制备贵金属纳米颗粒主要采用溅射或离子注入等方法,但通过上述方法制备的纳米颗粒,其形状不一,而且分布不均匀,不便于定量地研究其光学特性.在1995年,Van Duyne 研究组[7] 在自然蚀刻法[8] 的基础上提出了纳米球刻蚀技术(nanosphere lithography ,NS L ),即将尺寸均匀的聚苯乙烯纳米球的悬浊液滴在衬底上,形成单层或双层纳米球的自组装密排的掩膜板.在沉积金属颗粒的过程中,掩 膜板只允许金属通过纳米球之间的间隙沉积到衬底 上.再用超声波清洗去除聚苯乙烯纳米球,得到二维纳米颗粒阵列.最近几年,科学家们通过这种方法制备出了不同尺寸和形状的Ag ,Au ,Cu ,Pt 等金属纳米颗粒.其中Au 纳米颗粒由于其优良的化学稳定性、生物吸附性[9] 和光学特性,成为金属纳米颗粒研究中的热点方向. 另一方面,科学家们尝试从理论上合理解释贵金属纳米颗粒的可控光学特性.离散偶极子近似 (discrete dipole approximation ,DDA )最初是由Purcell 和Pennypacker [10] 在计算天体尘埃的散射时提出的. 目前,DDA 法被广泛应用于小颗粒光学特性的理论 研究中 [11,12] .随着算法的改进,基于DDA 算法的软 件包DDSC AT [13] 使得能在计算机上计算不同大小、 形状、高度、种类和外部环境的颗粒的光学特质.目前已经有一些关于Au 和Ag 纳米颗粒的理论计算的报道 [14—16] ,其结果基本与实验结果相符合. 本实验中结合NS L 和脉冲激光沉积(pulsed laser deposition ,P LD )技术在石英衬底上制备了不同高度的Au 纳米颗粒阵列,对其表面形貌、尺寸进行了观测,对其在可见光范围内的光谱吸收特性进行了测量,并通过理论模拟对Au 纳米颗粒的光学特性进行了计算. 第57卷第6期2008年6月100023290Π2008Π57(06)Π3862206 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.57,N o.6,June ,2008 ν2008Chin.Phys.S oc.

金纳米颗粒的合成方法

金纳米颗粒的盐酸羟胺种子合成法 摘要:本文描述了粒径在30nm到100nm的金纳米颗粒合成方法。通过种子生长法盐酸羟胺作为还原剂合成不同大小的金纳米颗粒。其大小由种子和氯金酸的浓度决定。此方法合成的金纳米颗粒单分散性优于柠檬酸钠作还原剂的一步合成法。重要的是,表面被修饰过的金纳米颗粒也可通过上述方法长大。 许多科学家和工程师都在关注金纳米颗粒的特殊的物理性质。在颗粒组装和膜的形成方面,单分散的金纳米颗粒有着很重要的地位。厚度为45-60nm的金膜表现出角度相关的等离子体共振。柠檬酸钠合成的10-20nm金纳米颗粒单分散性很好。但是此方法合成的更大的金纳米颗粒(粒径在40nm到120nm)单分散性变差,其颗粒浓度小,而且颗粒的真实粒径与预测的粒径相差比较大。 我们所提供的方法是通过种子生长发盐酸羟胺还原氯金酸合成金纳米颗粒。在热力学上,盐酸羟胺是能够还原氯金酸为金单质,金纳米颗粒表面可以加速这个反应的发生。这样,实现了成核和生长两个阶段分离,如图1。此方法的优势在于:ⅰ此方法合成的金纳米颗粒单分散性优于Frens的柠檬酸钠合成法合成的;ⅱ能很好的预测金纳米颗粒的粒径;ⅲ能很好的应用到表面修饰的金纳米颗粒。 图1 金纳米颗粒的生长过程 紫外吸收光谱可以很好监测金纳米颗粒合成的整个过程。图2表明加入 17nM,12nm的种子后,盐酸羟胺与氯金酸反应的过程。上面的吸收光谱是以10s 的间隔记录的,金纳米颗粒的等离子体共振峰的强度增长很明显。这些改变可能是颗粒增长或者新的金纳米颗粒的形成引起的。下面的吸收光谱是氯金酸和盐酸羟胺混合物30min前后的紫外吸收光谱。没有出现金纳米颗粒的紫外吸收峰,说明没有新的金纳米颗粒核生成。因此,在520nm金纳米颗粒的吸收峰增强是由于

毕设翻译 -纳米自组装-

多分散纳米粒子体系中自限性单分散超粒子的自组装 摘要: 众所周知,纳米颗粒通过自组装不断增长形成较大结构依赖纳米粒子的均匀性。在这里,我们展示了即使不均匀的无机纳米粒子也可以自发的自组装形成均匀大小的核壳形态的超 粒子。这种自我限制的增长过程是有静电斥力和范德瓦尔斯引力之间的平衡来控制的,而且由宽广的多分散纳米粒子以辅助。由于纳米粒子的组成、大小、形状等这些本身的属性,使得反应产物具有复杂性,形成了自组装结构的大家庭,包括分层次组织的胶状晶体。 单分散的二元混合物纳米粒子或各向同性的高度分散纳米粒子都可以在不同反 应的控制下生成更大的、微观尺度的结构。尤其,片状的纳米结晶颗粒更容易沿着特定的轴吸引在一起,使结构变得更复杂。对于大多数自发地形成块体的纳米微粒来说,反应是不间断进行的,直到组分耗尽或纳米颗粒形成干燥的结晶、复杂固体、沉淀物。在许多情况下,整个产生过程是由强烈的非平衡过程调节,所以产品取决于动力学因素,尤其是单个纳米粒子的一致性上。 一个涉及非均匀的无机纳米颗粒而且导致最终结构高度有序的自限性自组 装过程,将从概念上不同于目前已知的自组织反应。如果发生这样的反应很容易而且廉价,它就可以从应用上改变光转换、太阳能光伏和药物传递等领域。类似于基于单分子层的自限性增长的分层生长组装技术,自限性超结构纳米粒子在产品装配上将会提供极大的适用性,而且对形成块体的成分需求放宽,几率增大。因为自我限制结构在生物系统中士普遍存在的,通过无机纳米晶实现的那些结构有可能产生一些意料之外的,而且介于无机胶体和生物大分子之间的物质,组装成的无机结构复杂性比得上类似的生物结构。在这里,我们用CdSe、CdS、ZnSe 和PbS纳米粒子展示了这样的组装是可能的,而且只需要竞争和各向同性的条件。这种简单但是通用的装配机制可以用来产生复杂的半导体和金属-半导体超结构,这都显示了几何一致性、几何形状、有无各向异性的重要。 CdSe纳米粒子组装成超粒子 通过微量带有较多电荷的柠檬酸盐阴离子来实现稳定的CdSe纳米粒子作为 开始的一个模型系统,这是由于他们都有良好的光学性能,二者结合后有较强的静电作用和范德瓦尔斯力。纳米粒子多为多晶,外形多为不含明显晶面的不规则球形。CdSe纳米粒子生长和组装同时发生在80℃的溶液环境中。必要时,可以用冷的反应媒介使反应减慢或者暂时停止。在反应的20分钟以内的时候,可以看到平均直径是22±2.4nm、尺寸分布δSP=11%的超粒子,这些用TEM可以观察到。在参照着TEM照片,这些超粒子可以命名为CdSe-20.这种成分的纳米粒子的平均直径是2.9±0.7nm,在电镜下属于这种直径分布的概率是25%。令人诧异的是这些

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 王 静易中周李自静 (红河学院理学院,云南蒙自,661100) 摘 要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分散分布。 关键词:纳米金制备表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例, Frens[5]获得了不同尺寸的单分散金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变,方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子聚合物保护剂PVA(聚乙烯醇)、PV P(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液U V Vis吸收光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 2 实验部分2 1 试剂与仪器 H AuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂);水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900U V/VIS/NIR光谱仪(Per kin Elmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/ml H AuCl4加入水中,保持温度并定容,30分钟后冷却。 2 3 纳米粒子的表征 Au纳米粒子用U V Vis吸收光谱表征和TEM 表征,T EM的样品制备是将胶体溶液滴在碳膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取T EM图像。 3 结果与机理探讨 3 1 U V Vis吸收光谱表征 当将H AuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长,又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 图1为柠檬酸钠水溶液体系所制备的Au纳米 8四川化工 第14卷 2011年第3期

纳米金的制备方法

胶体金溶液的制备有许多种方法,其中最常用的是化学还原法,基本的原理是向一定浓度的金溶液内加入一定量的还原剂使金离子变成金原子。目前常用的还原剂有:白磷、乙醇、过氧化氢、硼氢化钠、抗坏血酸、枸橼酸钠、鞣酸等,下面分别介绍制备不同大小颗粒的胶体金溶液。 一、制备胶体金的准备 (一)玻璃器皿的清洁 制备胶体金的成功与失败除试剂因素以外玻璃器皿清洁是非常关键的一步。如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的生成,形成的颗粒大小不一,颜色微红、无色或混浊不透明。我们的经验是制备胶体金的所有玻璃器皿先用自来水把玻璃器皿上的灰尘流水冲洗干净,加入清洁液(重铬酸钾1000g,加入浓硫酸2500ml,加蒸馏水至10000ml)浸泡24h,自来水洗净清洁液,然后每个玻璃器皿用洗洁剂洗3~4次,自来水冲洗掉洗洁剂,用蒸馏水洗3~4次,再用双蒸水把每个器皿洗3~4次,烤箱干燥后备用。通过此方法的处理玻璃器皿不需要硅化处理,而直接制备胶体金。也可用已经制备的胶体金溶液,用同等大不颗粒的金溶液去包被所用的玻璃器皿的表面,然后弃去,再用双蒸水洗净,即可使用,这样效果更好,因为减少了金颗粒的吸附作用。 (二)试剂的配制要求 (1)所有配制试剂的容器均按以上要求酸处理洗净,配制试剂用双蒸馏水或三蒸馏水。 (2)氯化金(HauCl4水溶液的配制:将lg的氯化金一次溶解于双蒸水中配成1%的水溶液。放在4”c冰箱内保存长达几个月至1年左右,仍保持稳定。 (3)白磷或黄磷乙醚溶液的配制:白磷在空气中易燃烧,要格外小心操作。把白磷在双蒸水中切成小块,放在滤纸上吸于水份后,迅速放入已准备好的乙醚中去,轻轻摇动,等完全溶解后即得饱和溶液。储藏于棕色密闭瓶内,放在阴凉处保存。 二、制备胶体金的方法和步骤 (一)白磷还原法 1.白磷还原法(z Sigmondy 1905年) (1)取1%的HAuCl4水溶液1ml,加双蒸水99ml配成0.01%的HAuCl4水溶液。 (2)用0.2mol/l K2CO3调pH至7.2。 (3)加热煮沸腾,迅速加入0.5ml 20%白磷的饱和乙醚溶液,振荡数分钟至溶液呈现橙红色时即成。胶体金的颗粒直径为3nm左右,大小较均匀。

金纳米颗粒的合成

目录 摘要 (2) Abstract (4) 1.引言 (5) 1.1. 传统实验方法 (5) 1.2. 基于纳米颗粒的实验方法 (5) 1.3. FRET和NSET (5) 1.4. 捕光材料—共轭聚合物 (6) 1.5. 实验机理 (7) 1.5.1嵌入染料TO (7) 1.5.2阳离子共轭聚合物PFP (7) 1.5.3 实验过程 (9) 2.实验部分 (9) 2.1. 实验材料 (9) 2.2. 表征 (10) 2.3. 金纳米颗粒的合成 (10) 2.4. 金纳米颗粒的表面功能化 (111) 2.5. 金纳米颗粒表面DNA的固定 (12) 2.6. 表面固定DNA的GNPs的杂化 (12)

2.7. TO和PFP的NSET实验 (12) 2.8. 一个碱基不匹配的双链DNA S1核酸酶切反应的分析 (13) 3.实验结果及分析 (13) 3.1. 以CPPs/GNPs/dsDNA复合物进行的核酸酶探测 (13) 3.1.1. PFP量的优化 (13) 3.1.2. GNPs-DNA量的优化 (14) 3.1.3. S1核酸酶探测 (16) 3.2. 以CPPs/TO/GNPs-dsDNA复合物进行的核酸酶探测 (16) 3.2.1. PFP量的优化 (17) 3.2.2.S1核酸酶探测 (18) 3.3. 用PG作为荧光探针 (19) 结论 (21) 参考文献 (22) 致谢 (24) 摘要

我们使用共轭高分子/金纳米颗粒/染料标记的DNA复合物发展了S1核酸酶的一种新型检测方法,此方法利用了金良好的荧光淬灭性质和共轭高分子的信号放大特性。这种方法是由于纳米材料表面能量转移(NSET)中,能量从供体分子到纳米颗粒表面的转移遵循可预测的约为70-100nm的距离。在此过程中,由于从共轭高分子到嵌入染料进而到金纳米颗粒表面的NSET,不存在S1核酸酶的情况下将观察不到嵌入染料的荧光信号。而存在S1核酸酶的情况下,双链DNA被切离金纳米颗粒的表面,NSET过程中断,从共轭高分子到嵌入染料高效的荧光共振能量转移所得的嵌入染料的荧光得以恢复。 关键词 S1核酸酶分析,共轭高分子(CP),金纳米颗粒(GNPs),DNA,信号放大,纳米材料表面能量转移(NSET),荧光共振能量转移(FRET)

相关文档
相关文档 最新文档