文档视界 最新最全的文档下载
当前位置:文档视界 › 煤炭直接液化、间接液化等化技术的比较

煤炭直接液化、间接液化等化技术的比较

煤炭直接液化、间接液化等化技术的比较
煤炭直接液化、间接液化等化技术的比较

煤炭液化技术比较

汇编日期:2011年7月4日

一.煤间接液化介绍

煤的间接液化技术是先将煤全部气化成合成气,然后以合成气为原料,在一定温度、压力和催化剂存在下,通过F-T合成为烃类燃料油及化工原料和产品的工艺。包括煤气化制取合成气、催化合成烃类产品以及产品分离和改制加工等过程。煤炭间接液化技术主要有南非的萨索尔(Sasol)费托合成法、美国的Mobil (甲醇制汽油法)和荷兰SHELL的中质馏分合成(SMDS)间接液化工艺。

F-T合成的特点是:合成条件较温和,无论是固定床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0-3.0MPa;转化率高,如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过转化率达到60%以上,循环比为2.0时,总转化率即达90%左右。

二.煤直接液化介绍

煤的直接液化是煤在适当的温度和压力下,催化加氢裂化生成液体烃类及少量气体烃,脱除煤中氮、氧和硫等杂原子的转化过程。

目前国内外的主要工艺有:

1.美国HTI工艺

该工艺是在两段催化液化法和H-COAL工艺基础上发展起来的,采用近十年来开发的悬浮床反应器和HTI拥有专利的铁基催化剂(GelCatTM)。反应温度420~450℃,反应压力17MPa;采用特殊的液体循环沸腾床反应器,达到全返混反应器模式;催化剂是采用HTI专利技术制备的铁系胶状高活性催化剂。在高温分离器后面串联一台加氢固定床反应器,对液化油进行在线加氢精制。

2.日本NEDOL工艺

该工艺由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等4个主要单元组成。反应压力17M~19MPa,反应温度为430~465℃;催化剂采用合成硫化铁或天然硫铁矿。离线加氢方式。

3.德国煤液化新工艺(IGOR工艺)

1981年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200吨的半工业试验装置,操作压力由原来的70MPa降至30MPa,反应温度450~480℃,固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并且在固定床催化剂上使CO2和CO甲烷化,使碳的损失量降到最小。

4.俄罗斯煤加氢液化工艺(FFI工艺)

工艺特点:一是采用了自行开发的瞬间涡流仓煤粉干燥技术,使煤发生热粉碎和气孔破裂,水分在很短的时间内降到1.5%~2%,并使煤的比表面积增加了数倍,有利于改善反应活性。该技术主要适用于对含内在水分较高的褐煤进行干燥。二是采用了先进高效的钼催化剂,即钼酸铵和三氧化二钼。催化剂添加量为0.02%~0.05%,而且这种催化剂中的钼可以回收85%~95%。三是针对高活性褐煤,液化压力低,可降低建厂投资和运行费用,设备制造难度小。由于采用了钼催化剂,俄罗斯高活性褐煤的液化反应压力可降低到6~10MPa,减少投资和动力消耗,降低成本,提高可靠性和安全性。但是对烟煤液化,必须把压力提高。

5.神华煤直接液化工艺.

该工艺对美国HTI工艺进行了优化。采用两段反应,反应温度455℃,压力19MPa,采用人工合成超细铁基催化剂,催化剂用量1.0%(质量)(Fe/干煤)。采用较成熟的减压蒸馏进行固液分离,循环溶剂全部加氢。C4以上油收率为55%左右,油品重馏分较多,适宜于柴油产品的生产。

三.煤间接液化与直接液化的比较

1.间接液化工艺

优点:

(1)合成条件较温和。无论是固定床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0—3.0MPa。

(2)转化率高。如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过

转化率达到60%以上.循环比为2.0时,总转化率即达90%左右。SheⅡ公司的SMDS工艺采用钴基催化荆,转化率甚至更高。

(3)煤种适应性强。间接液化不仅适用于年轻煤种(褐煤、烟煤等),而且特别适合中国主要煤炭资源(年老煤、高灰煤等)的转化。

(4)间接液化的产品非常洁净,无硫氮等污染物,可以加工成优良的柴油(十六烷值75),航煤,汽油等多种燃料,并且可以提供优质的石油化工原料。

(5)工艺成熟,有稳定运行的产业化工厂。煤间接液化的大型工业过程在南非经过50年的生产实践。目前已经形成了年产500多万吨油品和约200万吨化学品的产业,是南非的支柱产业。

缺点:

(1)油收率低。煤消耗量大,一般情况下,约5—7t原煤产lt成品油。

(2)反应物均为气相,设备体积庞大,投资高,运行费用高。

(3)目标产品的选择性较低,合成副产物较多。正构链烃的范围可从C1至C100;随合成温度的降低,重烃类(如蜡油)产量增大。轻烃类(如CH4,C2H4,C2H6等)产量减少。

2.直接液化工艺

优点:

(1)油收率高。例如采用HTI工艺。神东煤的油收率可高达63%到68%。

(2)煤消耗量小。一般情况下.1吨无水无灰煤能转化成半吨以上的液化油,加上制氢用煤,约3—4吨原料产1吨液化油。

(3)馏份油以汽、柴油为主,目标产品的选择性相对较高。

(4)油煤浆进料,设备体积小,投资低,运行费用低。

缺点:

(1)反应条件相对较苛刻。如德国老工艺液化压力甚至高达70MPa。现代工艺如IGOR、HTI、NEDOL等液化压力也达到17-30MPa。液化温度420—470℃。

(2)煤种适应范围窄。直接液化主要适用于褐煤、长焰煤、气煤、不粘煤、弱粘煤等年轻煤。

(3)出液化反应器的产物组成较复杂。液、固两相混合物由于粘度较高,分离相对困难。

(4)氢耗量大,一般在6%-10%。工艺过程中不仅要补充大量新氢,还需要循环油作供氢溶剂,使装置的生产能力降低。

(5)工艺不够成熟。目前国内只有神华一套产业化装置在运行,而且运行不稳定。

3.工艺选择

同一煤种在既适合间接液化工艺又适合直接液化工艺的前提条件下,若间接液化与直接液化两种工艺均以生产燃料油品为主、化学品为副,则煤直接液化的经济效益将明显优于前者,以选择直接液化为好。如果以生产化学品(直链烃)为主、燃料油品为副,则间接液化的经济效益将明显优于后者,故以选择间接液化为好。

二者根本的区别点在于各有其适用范围,各有其目标定位。从历史渊源、工艺特征、煤种的选择性、产品的市场适应性及对集成多联产系统的影响等多方面分析,两种煤液化工艺没有彼此之间的排它性。

四.煤直接液化五种工艺优缺点

1.德国IGOR工艺

优点:

(1)催化剂价格低廉易得。催化剂为炼铝工业的废渣(赤泥)。

(2)循环溶剂供氢性能好。循环溶剂来自加氢油,煤液化油转化率高。

(3)液化精制油杂原子含量低。两个液化油加氢精制反应器串联在一个高压系统内。该液化油经过蒸馏就可以得到十六烷值大于45的柴油,汽油馏分再经重整即可得到高辛烷值汽油。

缺点:

(1)反应条件苛刻:温度470℃,压力30MPa。

(2)投资高。

(3)单系列处理量相对神华工艺要小。

2.美国的HTI工艺

优点:

(1)反应条件相对IGOR温和。反应温度440-450℃,反应压力17 MPa;

(2)催化剂活性高,用量少。催化剂为胶体铁基催化剂。

(3)液化油收率高。固液分离采用超临界溶剂萃取方法,从液化残渣中最大限度地回收重油,从而大幅度提高了液化油收率。

(4) 氢耗低。

缺点:

(1)用甲苯类溶剂萃取物做循环溶剂使用时,因沥青烯的存在和积累会导致煤浆粘度上升,使操作出现问题。

(2)相对俄罗斯FFI工艺,反应条件苛刻。

(3)工艺不适用于褐煤。

3.NEDOL的烟煤液化工艺

优点:

(1)反应压力相对传统工艺较低。压力为17~19MPa,反应温度455—465℃。

(2)催化剂价格低廉。采用合成硫化铁或天然硫铁矿。

(3)固液分离方法简便。采用蒸馏的方法进行固液分离。

(4)两个加氢提质反应器采用离线的方式,操作灵活,加氢催化剂寿命得到保障。

(5)溶剂供氢能力强。配煤浆用的循环剂单独加氧。

缺点:

(1)液化油含有较多的杂原子,还需加氢提质才能得到合格产品。

(2)单系列处理量相对神华工艺要小。

(3)相对俄罗斯FFI工艺,反应条件苛刻。

(4)工艺不适用于褐煤。

4.俄罗斯FFI工艺

优点:

(1)催化剂可以回收。催化剂Mo可采用离心溶剂循环和焚烧两步回收,报道称回收率95%以上。

(2)反应条件温和。褐煤加氢液化压力6.0MPa,烟煤次烟煤加氢液化压力10MPa,有利于降低总投资和运行费用。

(3)采用瞬间涡流藏煤干燥技术,在煤干燥的同时可以增加原煤的比表面积

和孔容积。同时可以减少煤颗粒粒度,有利于煤加氢液化反应的强化。

(4)采用半离线固定床催化反应器对液化粗油进行加氢精制,便于操作。 缺点:

(1)没有大规模中试装置运行检验和验证。技术不成熟。

(2)催化剂回收经济性不确定。

(3)液化条件对煤质要求高。

5.神华直接液化技术

优点:

(1)催化剂为自主研发,原料国内供给充足,价格便宜,制备工艺简单,操作稳定。活性高、添加量少。油收率高。

(2)供氢溶剂预加氢,供氢能力强。

(3)强制循环悬浮床反应器具有空塔液速高,矿物质不易沉积;反应温度控制容易,产品性质稳定;气体滞留系数低,反应器利用率高;有大的高径比,单系列处理量大等优点

(4)固液分离采用成熟可靠的减压蒸馏方式。

(5)加氢采用T-Star 工艺。T-Star 工艺溶剂加氢比日本的固定床溶剂加氢和德国的在线固定床加氢更稳定、操作周期更长

缺点:

(1)减压蒸馏,液体油品和固体分离不完全,油品损失多。

(2)相对俄罗斯FFI 工艺,反应条件苛刻。

(3)减压阀芯使用寿命短。

(4)不适用于褐煤。

6.HTI 、IGOR 、NEDOL 、FFI 和神华直接液化工艺对比结果 以上五种直接液化工艺的对比结果详见表4.1。

表4.1五种先进直接液化工艺的对比结果 工艺名称 HTI IGOR NEDOL FFI

神华 开发时间 70年代后 70年代后 80年代后 70-80年代

2004年 开发国家 美国 德国 日本

俄罗斯 中国

注:daf 煤 工业化程度 可以 可以 可以 未进行 已进行 反应器类型 悬浮床 鼓泡床 鼓泡床 平推流 强制内循环悬浮床温度/℃ 440-450 470 465 425~435 455 压力/MPa 17 30 18 6~10 19 催化剂 GelCaTM 炼铝赤泥 天然黄铁矿 乳化Mo 人工合成铁基 用量/% 0.5 3-5% 3-4% 0.02%~0.05% 1.0% 固液分离方法

临界溶剂萃取 减压蒸馏 减压蒸馏 减压蒸馏 减压蒸馏 在线加氢 有或无 有 无 有 无 循环溶剂加氢

部分 在线 离线 半离线 离线 工业性试验规模 600t/d 200t/d 150t/d 75t/d (开建,未完成) 8000t/d 试验煤 神华煤 先锋褐煤 神华煤 褐煤 烟煤次烟煤 神华煤 转化率/% 93.5 97.5 89.5 - 91.7 生成水/% 13.8 28.6 7.3 - 10.5 烯烃油/% 67.2 58.6 52.8 - 56 残渣/% 13.4 11.7 28.1 - 20 氢耗/% 8.7 11.2 6.1 -

8.8

煤的焦化、液化、气化

一、煤的焦化 一、煤的焦化 (一)煤炭焦化的定义 煤炭焦化又称煤炭高温干馏。以煤为原料,在隔绝空气条件下,加热到950℃左右,经高温干馏生产焦炭,同时获得煤气、煤焦油并回收其它化工产品的一种煤转化工艺。产品用途:煤经焦化后的产品有焦炭、煤焦油、煤气和化学产品3类。 (二)烟煤炼焦技术 煤料在焦炉过程中主要受到来自两侧炉墙的高温作用,从炉墙到炭化室中心方向,煤料逐层经过干燥、脱水、脱除吸附气体、热分解、胶质体的产生和固化、半焦形成和收缩等阶段。最终形成焦炭。实际生产过程中,各阶段之间互相交错、难以截然分开。 1、开燥脱吸阶段:120℃以前放出外在水分和内在水分,200℃以前析出吸附于煤孔隙中的气体。 2、热解开始阶段:这一阶段的起始温度随煤变质程度而异,一般在200-300℃发生,主要产生化合水和CO2、CO和CH4等气态产物,并有微量焦油析出。 3、胶质体产生和固化阶段:大部分黏结性烟煤在350-450℃大量析出焦油和气体。几乎全部焦油在这一温度下产生,释放的气体以CH4及其同系物为主,别有少量不饱和烃CnHm和H2、CO、CO2等。这些液体、气体和残余的煤粒一起形成胶质体状态。进一步加热,胶质体热解更加激烈,析出大量挥发物,黏结性烟煤煤熔融、相互黏结,固化为半焦。 4、半焦收缩和焦炭形成:500℃左右黏结性烟煤经胶质体状态,散状煤粒熔融、相互黏结而形成斗焦。温度继续升高,700℃之前,半焦内释放出的挥发物以H2和CH4为主,并使半焦收缩产生裂纹,称为半焦收缩阶段。700-950℃半焦进一步热分解,析出少量以H2为主要成分的气体,半焦进一步收缩,使其变紧变硬,裂纹增大,最终形成焦炭。 二、煤的气化 (一)煤炭气化的定义 煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。气化过程发生的反应包括煤的热解、气化和燃烧反应。煤的热解是指煤从固相变为气、固、液三相产物的过程。煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的气相反应。 (二)气化的分类: 目前煤的气化方法已达60多种,其分类方法也是多种多样的,: 1、按入炉煤粒度划分的有粉煤(100-200目)气化,小粒度煤(0-10mm)气化、块煤(6-100mm)气化。 2、按煤在炉内状况划分界线的有固定床(或称移动床)气化、流化床(或称沸腾床)气化、气流床气化、熔渣床(或称熔盐床)气化。 3、按气化介质划分的有空气、空气-蒸汽、富氧空气-蒸汽、蒸汽和氢气等。 4、按煤气用途划分的有燃料煤气、城市煤气、高热值煤气、还原气等。 5、按煤气热值划分的有低热值气(1000-1500KCAL/m3)和高热值煤气(4000KCAL/m3)以上。 6、按排灰方式划分,有固态排渣、液态排渣、灰团聚排渣气化。 7、按操作方式划分,有常压气化和加压气化。 以下主要介绍按煤炭气化工艺可按压力、气化剂、气化过程供热方式等分类,常用的是按气化炉内煤料与气化剂的接触方式区分,主要有: 1、固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。 对煤的要求:对煤种有一定要求,煤的黏结性不能太强,要求使用块煤 2、流化床气化:它是以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。 对煤的要求:对原料煤性质有一定要求,一般要求使用化学反应性好的年轻褐煤、长焰煤和不黏煤,不适用于有黏结性的煤,灰熔融性软化温度(ST)要求较高。

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR 工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/ d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。 第二部分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中型分子,这些分子中包含较多的极性官能团,它们以各种物理力为主,或相互缔合,或与第一部分大分子中的极性基团相缔合,成为三维网络结构的一部分。

煤炭直接液化技术总结

煤炭直接液化技术总结 洁净煤技术——直接液化技术 —、德国IGOR工艺 1981 年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200 吨的半工业试验装置,操作压力由原来的70 兆帕降至30兆帕,反应温度450?480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。 原理图: IGOR 直接液化法工艺流程 工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。 液化油经两步催化加氢,已完成提质加工过程。油中的氮和硫含量可降低到10-5 数量级。此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。柴油只需加少量添加剂即可得到合格产品。与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36?0. 50 t /( m3 ? h)。在反应器相同的条件下,IGOR 工艺的生产能力可比其他煤液化工艺高出50%?100%由于煤液化粗油的提质加工与 煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。 工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。投资可节约20%左右,并提高了能量效率。反应条件苛刻(温度470C,压力30MPa);催化剂使用铝工业的废渣(赤泥);液化反应和加氢精制在高压下进行,可一次得到杂原子含量极低的液化精制油;循环溶剂是加氢油,供 氢性能好,液化转化率高。 优点:(1)煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤 液化油不仅收率高,而且油品质量好。 (2)供氢性能好,液化转化率高 (3) 结构简单,投资少,克服了反应尺寸、能力、压力等诸多方面的局限 (4) 传热效果好,反应温度易控制.

间接液化概念

间接液化概念 间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。 间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。 在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。煤间接液化技术的发展 煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费托合成。依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。 自从Fischer和Tropsch发现在铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及**因素而盛衰不定。费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。在同一时期,日本、法国、中国也有多套装置建成。 二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。SASOL I厂于1955年开工生产,主要生产燃料和化学品。20世纪70年代的能源危机促使SASOL建设两座更大的煤基费托装置,设计目标是生产燃料。当工厂在1980和1982年建成投产的时候,原油的价格已经超过了30美元/桶。此时SASOL的三座工厂的综合产能已经大约为760万吨/年。由于SASOL 生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石油禁运,而且成为了世界上第一个将煤炭液化费托合成技术工业化的国家。1992和1993年,又有两座基于天然气的费托合成工厂建成,分别是南非Mossgas 100万吨/年和壳牌在马来西亚Bintulu 的50万吨/年的工厂。 除了已经运行的商业化间接液化装置外,埃克森-美孚(Exxon-Mobil),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips)和合成油公司(Syntroleum)等也正在开发自己的费托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造费托合成天然气液化工厂。 F-T合成的主要化学反应 F-T合成的主反应: 生成烷烃:nCO+(2n+1)H2 = CnH2n+2+nH2O 生成烯烃:nCO+(2n)H2 = CnH2n+nH2O 另外还有一些副反应,如: 生成甲烷:CO+3H2 = CH4+H2O 生成甲醇:CO+2H2 = CH3OH 生成乙醇:2CO+4H2 = C2H5OH+ H2O 结炭反应:2CO = C+CO2 除了以上6个反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。 F-T合成催化剂

煤炭液化论文

煤液化多联产技术概述 摘要:简单介绍了直接液化、煤间接液化、多联产等技术以及多联产技术在煤的两种液化中的应用与生产模式,并简单介绍了我国煤液化多联产技术的发展状况。关键词:煤直接液化、煤间接液化、多联产、生产模式 General introduction of co-production system for coal liquefaction Abstract:Give a simple introduction to direct coal liquefaction and indirect coal liquefaction, and multi-combinative production, and the application of the technology of multi-combinative production in coal liquefaction and its types of produce,and its development in China. Key word:direct coal liquefaction; indirect coal liquefaction; multi-combinative production; types of produce. 据有关资料统计,2010年,中国消耗煤炭总量33亿t,消耗石油4.2亿t,其 中本国生产石油1.81亿t,从国外进口2.39亿t,即54%的石油依赖进口,进口量已超过国内总需求的一半,预计到2020年,石油的对外依存度有可能接近70%,如此大规模的石油进口,增加了我国对国外资源的依赖程度,国际市场的波动和变化将直接影响到国内经济乃至政治的安全与稳定。 而煤炭是我国最丰富的能源资源。全国累计探明的储量超过1000 Gt,经济 开采储量114.5 Gt,位列美国、俄罗斯之后。煤通过液化技术可以制油,其工 艺包括直接液化技术和间接液化技术,是解决我国石油资源短缺的一条重要途径。但是我国是能源消耗大国,如果只是简单的把煤炭转化为石油,能源利用率是很低的。鉴于此,在本论文中,作者简单介绍了煤的液化及多联产技术,以及现有

煤气化技术及其工业应用

煤气化技术及其工业应用 摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。 关键词:煤化工,煤气化技术,工业应用 我国是一个以煤炭为主要能源的国家。近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。 以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。 煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。 1煤气化工艺概述 煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。 目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。气化剂为水蒸气、纯氧、空气、CO2和H2。煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。 煤气化根据供热原理大致可分为3种: (1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用; (2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;

煤直接液化和煤间接液化综述

煤直接液化和煤间接液化综述摘要:煤的直接液化和间接液化技术经过长期发展,已形成了各自的工艺特征和典型工艺。我国总的能源特征是“富煤、少油、有气”,以煤制油已成为我国能源战略的一个重要趋势。经过长期不断努力,我国初步形成了“煤制油”产业化的雏形,在未来将迎来更多机遇和挑战。 关键字:煤直接液化煤间接液化发展历程现状前景 1.煤直接液化 煤直接液化又称煤加氢液化, 是将固体煤制成煤浆, 在高温高压下, 通过催化加氢裂化, 同时包括热解、溶剂萃取、非催化液化, 将煤降解和加氢从而转化为液体烃类, 进而通过稳定加氢及加氢提质等过程, 脱除煤中氮、氧、硫等杂原子并提高油品质量的技术。煤直接液化过程包括煤浆制备、反应、分离和加氢提质等单元。煤的杂质含量越低, 氢含量越高, 越适合于直接液化。 1.1发展历程 煤直接液化技术始于二十世纪初, 1913年德国科学家Bergius首先研究了煤高压加氢, 并获得了世界上第一个煤液化专利, 在此基础上开发了著名的I G Farben工艺。该工艺反应条件较为苛刻, 反应温度为470℃, 反应压力为70MPa。1927年德国在Leuna建立了世界上第一个规模为0.1Mt/a的煤直接液化厂, 到第二次世界大战结束时,德国的18个煤直接液化工厂总油品生产能力已达约4.23Mt/a , 其汽油产量占当时德国汽油消耗量的50%。第二次世界大战前后, 英国、美国、日本、法国、意大利、苏联等国也相继进行了煤直接液化技术的研究。以后由于廉价石油的大量发现, 从煤生产燃料油变得无利可图, 煤直接液化工厂停工, 煤直接液化技术的研究处于停顿状态。20世纪70年代,石油危机发生后, 各发达国家投人大量人力物力进行煤直接液化技术的研发, 相继开发出多种煤直接液化工艺, 但由于从20世纪80年代后期起原油价格在高位维持的时间不长,从煤生产燃料油获利的可能性较低, 这些工艺都没有实现工业化。 1.2煤直接液化技术的工艺特征 典型的煤直接加氢液化工艺包括: ①氢气制备;②煤糊相(油煤浆)制备; ③加氢液化反应; ④油品加工等“先并后串”四个步骤。 氢气制备是加氢液化的重要环节,大规模制氢通常采用煤气化及天然气转化。液化过程中,将煤、催化剂和循环油制成的煤浆,与制得的氢气混合送入反应器。在液化反应器内,煤首先发生热解反应,生成自由基“碎片”,不稳定的自由基“碎片”再与氢在催化剂存在条件下结合,形成分子量比煤低得多的初级加氢产物。出反应器的产物构成十分复杂,包括气、液、固三相。气相的主要成分是氢气,分离后循环返回反应器重新参加反应;固相为未反应的煤、矿物质及催化剂;液相则为轻油(粗汽油) 、中油等馏份油及重油。 1.3典型工艺 自从1973年世界发生第一次石油危机以来,美国、德国、日本等国家相继开发了许多煤直接液化新工艺如(SRC,EDS , H-Coal,HTI , IGOR,NEDOL等), 其中比较有代表性的工艺是

煤间接液化与直接液化区别

甲醇为转化烯烃的反应 (1)酸性催化特征 甲醇转化为烯烃的反应包含甲醇转化为二甲醚和甲醇或二甲醚转化为烯烃两个反应。前一个反应在较低的温度(150-350o C)即可发生,生成烃类的反应在较高的反应温度(>300o C)下发生。两个转化反应均需要酸性催化剂。通常的无定形固体酸可以即作为甲醇转化的催化剂,容易使甲醇转化为二甲醚,但生成低碳烯烃的选择性较低。 (2)高转化率 以分子筛为催化剂时,在高于400o C的温度条件下,甲醇或二甲醚很容易完全转化(转化率100%)。 (3)低压反应 原理上,甲醇转化为低碳烯烃反应是分子数量增加的反应,因此低压有利于提高低碳烯烃尤其是乙烯的选择性。 (4)强放热 在200-300o C,甲醇转化为二甲醚和甲醇转化为低碳烯烃均为强放热反应,反应的热效应显著。 (5)快速反应 甲醇转化为烃类的反应速度非常快。根据大连化物所的实验研究,在反应接触时间短至0.04s便可以达到100%的甲醇转化率。从反应机理推测,短的反应接触时间,可以有效地避免烯烃进行二次反应,提高低碳烯烃的选择性。 (6)分子筛催化的形状选择性效应 原理上,低碳烯烃的高选择性是通过分子筛的酸性催化作用结合分子筛骨架结构中孔口的限制作用共同实现的。结焦的产生将造成催化剂活性的降低,同时又反过来对产物的选择性产生影响。 DMTO工艺的开发过程中已经充分考虑了上述MTO反应的特征。DMTO工艺的设计中,也应时刻牢记这些特征,将这些反应的原理性的特征融入其中 煤间接液化与直接液化的区别 一、煤炭液化发展状况: 1、间接液化技术发展状况 煤的间接液化技术是先将煤气化,然后合成燃料油和化工产品。目前南非萨索尔公司、荷兰壳牌公司、美国美孚公司、丹麦托普索公司都拥有成熟技术,但达到和正在商业化生产的只有南非萨索尔公司。该公司已先后建成了三个间接液化工厂,年产汽油、柴油、蜡、乙烯、丙烯、聚合物、氨、醇、醛、酮等113种化工产品,共计760万吨,其中油品占60%左右。 在我国,科技部863计划和科学院于2001年联合启动了“煤变油”重大科技项目,中科院山西煤化所承担了这一项目的研究。2002年9月,千吨级间接液化中试平台实现了第一次试运转,并合成出第一批粗油品。到2003年底,中试平台已运行4次,使用间接液化技术生产出了无色透明的高品质柴油,这是目前世界上纯度最高、最优质的清洁柴油。山东兖矿集团在煤炭间接液化技术方面也取得了较大进展。神华集团拟在陕西榆林建设煤间接液化项目,以榆神矿区储量丰富、质量优良和便于开采的煤炭资源为依托,建立坑口煤炭间接液

煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。根据不同的加工 ,使其转化成为液体燃 料路线,煤炭液化可分为直 接 、化工原料 和液化和间接液 化 两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使 煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人 于1913 年发现的,并于二战期间在德国实现了工业 化生产。德国先后有12套煤炭直接液化装置建成投产, 到1944年,德国煤炭直接 液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日 本、德国、美国等工业发达国家,在原有基础上相继研究开发出一 批煤炭直接液化新 工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有 较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成 了新工艺技术的处 理煤100t/d 级以上大型中间试 验,具备了建设大规模液化厂的技术能力。煤炭直接 液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工 艺原理 煤的分 子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以 设想由以下四个部分复合而成。 第一部 分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网 络结构,它的主要前身物来自维管植物中以 芳族结构为基础的木质素。 第二部 分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

煤炭直接液化、间接液化等化技术的比较

煤炭液化技术比较 汇编日期:2011年7月4日 一.煤间接液化介绍 煤的间接液化技术是先将煤全部气化成合成气,然后以合成气为原料,在一定温度、压力和催化剂存在下,通过F-T合成为烃类燃料油及化工原料和产品的工艺。包括煤气化制取合成气、催化合成烃类产品以及产品分离和改制加工等过程。煤炭间接液化技术主要有南非的萨索尔(Sasol)费托合成法、美国的Mobil (甲醇制汽油法)和荷兰SHELL的中质馏分合成(SMDS)间接液化工艺。 F-T合成的特点是:合成条件较温和,无论是固定床、流化床还是浆态床,反应温度均低于350℃,反应压力2.0-3.0MPa;转化率高,如SASOL公司SAS工艺采用熔铁催化剂,合成气的一次通过转化率达到60%以上,循环比为2.0时,总转化率即达90%左右。 二.煤直接液化介绍 煤的直接液化是煤在适当的温度和压力下,催化加氢裂化生成液体烃类及少量气体烃,脱除煤中氮、氧和硫等杂原子的转化过程。 目前国内外的主要工艺有: 1.美国HTI工艺 该工艺是在两段催化液化法和H-COAL工艺基础上发展起来的,采用近十年来开发的悬浮床反应器和HTI拥有专利的铁基催化剂(GelCatTM)。反应温度420~450℃,反应压力17MPa;采用特殊的液体循环沸腾床反应器,达到全返混反应器模式;催化剂是采用HTI专利技术制备的铁系胶状高活性催化剂。在高温分离器后面串联一台加氢固定床反应器,对液化油进行在线加氢精制。 2.日本NEDOL工艺 该工艺由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等4个主要单元组成。反应压力17M~19MPa,反应温度为430~465℃;催化剂采用合成硫化铁或天然硫铁矿。离线加氢方式。

煤直接液化法和煤液化的基础知识

煤直接液化 煤直接液化,煤液化方法之一。将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。因过程主要采用加氢手段,故又称煤的加氢液化法。 沿革 煤直接液化技术早在19世纪即已开始研究。1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。此外,日本、法国、加拿大及美国也建过一些实验厂。战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。 埃克森供氢溶剂法 简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体

燃料。建有日处理250t煤的半工业试验装置。其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。反应温度425~450℃,压力10~14MPa,停留时间30~100min。反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。溶剂和煤浆分别在两个反应器加氢是EDS法的特点。在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。气态烃和油品中 C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。减压残油通过加氢裂化可得到中油和轻油。图一: 溶剂精炼煤法

煤液化技术的重要性

煤液化技术的重要性 1.1 中国的能源现状 随着我国经济的快速发展,能源消费急剧增加,20世纪90年代我国已成为石油净进口国。2003年,我国已是全球仅次于美国的第二大石油进口国和消耗国,2008年我国石油净进口量超过19985万t,进口原由占国消费比重达53.1%。石油资源匮乏和国石油供应不足已成为中国能源发展的一个严峻现实, 随着国民经济的发展,石油供需矛盾将呈持续性扩大趋势。经济高速增长、石油资源缺乏的中国已经把石油安全置于能源战略的核心位置。 我国“多煤炭、少石油、缺天然气”的能源资源特点决定了我国能源在较长时期以煤为主的格局不会改变,确立我国的能源安全战略,必须从这一基本条件出发。充分利用我国丰富的煤炭资源解决石油短缺问题并保证能源安全供给,是我国能源安全战略的一条有效而又可行的途径。 1.2 煤液化技术在我国应用前景 在替代石油的化石资源中,只有煤炭可以在近中期满足与千万吨数量级的油品缺口相匹配的需要。在这样的背景下,合理利用中国丰富的煤炭资源, 开发“煤制油”技术, 作为石油资源的补充, 解决目前燃油短缺、环境污染两大难题, 对中国具有十分重要的战略意义[1]。 若以目前已查证的煤炭资源量的2 0 %作为直接液化原料,则相当于为中国增加了约4 5 0亿吨的原油资源量。有专家预计,到2 0 2 0 年中国的“煤制油”项目将形成年产5 0 0 0万吨油品的生产能力,加上届时将有年产2 0 0 0万吨的生物质油品投入使用,中国原油对外依赖程度有望从6 0 %以上下降到45%以下。到2030 年,在全球替代能源中非石油替代能源将达到日产1 0 0 0万桶,其中煤制油将占2 9%。就中国来说,煤炭储量丰富,政府有意愿发展这一产业,煤制油工业有着光明的前景。 1.3 煤液化技术在我国中战略地位 中国将长期坚持能源供应基本立足国的方针, 把煤炭作为主体能源, 这是中国能源安全的基石。长期以来, 中国政府坚持能源生产、消费与环境保护并重的方针, 把支持清洁煤技术的开发应用作为一项重要的战略任务。煤炭直接液化是中国能源战略的组成部分, 对充分利用国资源, 解决石油安全具有重要的战略和现实意义。 2 煤液化的发展状况 2.1 煤液化技术简介 煤液化工艺大致可分为两大部分,即在高温高压条件下把粉煤催化加氢生产液化粗油的液化工艺和把液化粗油加氢裂解的提质加工精制工艺。其中煤液化技术又包括直接液化技术和间接液化技术。 2.1.1 煤直接液化技术 煤的直接液化法,就是以煤为原料,在高温高压条件下,通过催化加氢直接

煤炭气化技术的进展(论文)

煤炭气化技术的进展 《摘要》:煤炭气化技术是我国煤炭高效洁净利用的关键技术,本文主要阐述了煤炭气化技术的基本原理、过程和发展概况,以及在总结我国多年来研究开发煤气化工艺技术的基础上,对该技术的发展趋势以及发展煤炭气化的必要性进行了相关介绍。 《关键词》:煤炭气化;工业应用;发展现状;发展趋势; Abstract: Coal gasification technology is the key technology of efficient and clean use of coal in our country, this paper describes the basic principle, process and development of coal gasification technology, and based on the summary of our country for many years research and development of coal gasification technology, the necessity of the development trend of the technology and development of coal gasification was introduced. Key words : Coal gasification; Industrial application; Development Status; development trend; 引言 煤炭气化是指以煤或以煤焦为原料,以氧气(空气,富氧或纯氧)、水蒸气或氢气等作气化剂,在一定温度和压力下通过化学反应将固体煤或煤焦中的可燃部分转化为气体燃料的热化学过程。本文就煤炭气化技术及发展趋势作简要介绍。 煤炭在我国能源生产与消费结构中一直占主导地位。煤炭的开发和加工利用已经成为我国环境污染物排放的主要来源。因此,发展洁净煤技术、提高煤炭利用率是我国能源发展战略的必然选择。作为洁净、高效利用煤炭的先进技术之一的煤炭气化技术是我国能源领域重点发展对象,是煤炭化工合成、煤炭直接/间接液化、IGCC技术、燃料电池等高新洁净煤利用技术的先导性技术和核心技术。煤炭气化技术分为地面气化和地下气化2种。笔者根据自己掌握的煤化工基础理论,结合多年积累的煤气化工作实践经验,着重从工程应用角度对煤气化的发展道路作初步探讨,并提出参考性意见。 1 煤的气化原理及气化工艺 1.1 煤炭气化的基本原理及过程 在气化炉内,煤炭经历了干燥、干馏、气化和燃烧等几个过程。 干燥:原料煤进人气化炉后受热,大约在200~C煤孔中吸附态或吸藏的气体及水分首先被脱除。干馏:干馏是脱除挥发分过程,当干燥煤的温度进一步提高,煤中的挥发物从煤中逸出。 气化过程的基本反应:经干馏后得到的半焦与气流中的H2O,CO:,H2:等反应,生成可燃性气体等产物,其主要反应有碳与水蒸气的反应,碳与二氧化碳的反应,甲烷生成反应,变换反应。燃烧:经气化后残留的半焦与气化剂中的氧进行燃烧。由于碳与水蒸气、二氧化碳之间的反应都是强烈的吸热反应,因此气化炉内要保持高温才能维持吸热反应的进行。 煤中硫、氮的反应:除了以上反应外,气化过程同时还有s、N等杂原子发生的反应,其反应会引起腐蚀和环境污染,因此须经净化工艺将其脱除。 1.2 煤炭气化工艺 煤炭气化工艺按照不同的分类标准有多种分类方法,本文只介绍其中两类。 按煤炭是否需要开采分类:按该标准分为地面气化和地下气化,①地面气化。煤的地面气化是指原料煤炭预先开采出来,在地面气化炉内进行气化反应生成煤气的过程,目前开发应用的绝大多数属于地面气化;②地下气化。煤炭地下气化是通过在地下煤层中直接构筑“气化炉”,通入气化剂,有控制地使煤炭在地下进行气化反应,使煤炭在原地自然状态下转化为可燃气体并输送到地面的过程。 地下气化的基本特征:①煤层不发生移动,但气化过程中各气化反应区的位置和燃空区状态时刻都在变化;②地下气化进行到一定程度后,对于较薄煤层,气化剂只能在与煤壁接触的单一表面上反应,另外三个表面为顶板,底板及反应完的灰渣和顶板塌陷物,因此没有地面气化炉金属外壳似的密闭层,气体会在空间中扩散;③由于气化反应过程和加热过程的不均匀性及加热过程范围扩大,反应过程产生的热量不仅随气流带向出口方向,同时也通过热辐射、对流、传导等过程将热量传至煤层纵向的深部,并沿煤层深度形成温度梯度,煤层温度不同,其所发生的反应也不同。因此在煤层纵深方向上可分为:燃控带,焦化带,干流带,干燥带,煤层自燃带。 与地面气化相比,地下气化最大的技术瓶颈是不可视和不可控,因受煤层赋存条件复杂、测温技

中国煤炭气化现状及发展趋势

中国煤炭气化现状及发展趋势 金离尘 1前言 我国是以煤炭为主要一次能源国家(见表一);煤炭的转化利用是国家经济发展的重要支柱。而我国目前的煤炭转化过程普遍存在效率低、污染严重等问题,要实现全面、协调、可持续发展,必须大幅度提高煤炭转化的效率,并且大幅度降低污染物排放,即洁净煤技术。除此之外,我国目前对进口石油的依存度高达40%以上,在国际局势复杂多变的形势下,依靠煤气化及煤液化技术降低对进口石油的依存度是一条有效的途径。 我国的煤炭资源丰富,油气匮乏,一次能源消费煤占62%,为世界之最。在未来几十年内,煤炭在我国能源机构中仍将占主导地位,它是我国战略上最安全和最可靠的能源。但是,作为能源生产与消费大国,我国的煤炭利用技术总体上是落后的:效率低,造成能源浪费;污染严重,导致环境质量恶化。 中国经济的发展是以资源(包括能源在内)大量消耗为代价的,而在二十一世纪中国若继续以资源大量消耗性的发展模式是行不通的。目前,中国提高可持续发展的模式是未来将要面对的巨大问题。我国社会经济发展中存在着许多问题,特别是有些长期积累的深层次矛盾后问题有待今后逐步解决。 “十一五”针对经济发展中的突出矛盾和问题,提出6个重点,

其中之一是节约资源,保护环境,推动发展。 早在“十五”规划中,各方都强调要推进煤炭气化技术的开发和应用。 洁净煤技术的范畴非常广泛,从前出处理,过程中处理到后处理都有许多核心技术。其中大规模煤气化技术、煤液化技术、煤气化多联产技术和煤气净化技术是洁净煤技术发展核心技术。 “十一五”期间,煤气化仍属于国家鼓励项目。年初公布的《“十一五”化学工业科技发展纲要》提出优先发展六大领域,第二领域是新型煤化工及天然气化工。重点开发和实施煤的焦化技术,大型煤气化技术和以煤气化为核心的“多联产”技术。 2中国煤气化技术及工业运行情况 我国煤气化技术总体水平落后,与世界先进技术相比差距甚远。国家从“六五”至“九五”投入大量人力、物力,引进、研制、开发先进的煤气化技术。我国先后从国外引进的煤气化技术多种多样。 上世纪80年代末以前,我国的煤气化完全依赖常压固定床技术,国内有常压固定床化炉数千台,配套小型合成氨生产装置,这些气化装置中一部分至今仍在运转。80年代初我国开始引进第二代煤气化技术,1家引进加压Lurgi技术,于山西潞城建厂,气化炉三开一备;共有5家引进Chevron Texaco水煤浆气化装置,分别建于矿鲁南化肥厂、上海焦化总厂、陕西渭河化肥厂、安徽淮南化工厂、黑龙江浩良河化肥厂。这五套装置均用于生产合成气,制氨或甲醇。目前正在

相关文档