文档视界 最新最全的文档下载
当前位置:文档视界 › 系统单相接地故障分析及处理

系统单相接地故障分析及处理

系统单相接地故障分析及处理
系统单相接地故障分析及处理

10kV系统单相接地故障分析及处理

摘要:随着社会经济的快速发展,其中10kV系统经常发生单相接地问题,影响电力系统正常运行。电力企业得到了很大进步,文章通过分析10kV系统发生单相接地故障原因及危害,总结出10kV系统单相接地故障时的处理方法及其注意事项。

关键词:单相接地故障;危害;处理;注意事项

1 概述

电力系统在进行分类时常分大电流接地系统和小电流

接地系统。采用小电流接地系统有一大优点就是系统某处发生单相接地时,虽会造成该接地相对地电压降低,其他两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可继续运行1~2小时。10KV系统无论是在供电系统还是配电系统中都应用的比较广泛,故10KV系统是否可靠安全运行直接影响到整个电力系统能否正常运行。然而10kV系统在恶劣天气条件下发生单相接地故障的机率却很大。10kV系统若在发生单相接地故障后未得到妥善处理让电网长时间运行的话,将会致使非故障相中的设备绝缘遭受损坏,使其寿命缩短,进一步发展为事故的可能得到提高,严重影响变电设备和配电网的安全经济运行。因此,工作人

员一定要熟知10kV系统发生接地故障的处理方法,一旦10kV 系统发生单相接地故障必须及时准确地找到故障线路予以切除,以确保电力系统稳定安全运行。

2 10kV系统发生单相接地故障的原因及危害

导致10kV系统发生单相接地故障的原因有很多,大致可以分为以下五类主要原因:

(1)设备绝缘出现问题,发生击穿接地。例如:配电变压器高压绕组单相绝缘击穿或接地、绝缘子击穿、线路上的分支熔断器绝缘击穿等。

(2)天气恶劣等自然灾害所致。例如:线路落雷、导线因风力过大,树木短接或建筑物距离过近等。

(3)输电线断线致使发生单相接地故障。例如:导线断线落地或搭在横担上、配电变压器高压引下线断线等。

(4)飞禽等外力致使发生单相接地故障。例如:鸟害、飘浮物(如塑料布、树枝等。

(5)人为操作失误致使发生单相接地故障等。

10kV系统的馈线上发生单相接地故障的危害除了使非故障两相电压升高以及可能产生的几倍于正常电压的谐振过电压引起绝缘受损危及到变电设备外,变电站10kV母线上的电压互感器也将检测到零序电流,在开口三角形上产生零序电压,电压互感器铁芯饱和,励磁电流增加,如果未能够得到及时的处理,将烧毁电压互感器,造成设备损坏、破

坏区域电网的稳定,引发大面积停电事故。

3 10kV系统单相接地故障的处理

由于采用接地变的变电站,在发生接地故障后,馈线保护可以通过零序保护跳开开关,无需进行处理。所以这里主要讲的是对于采用消弧线圈的变电站所采用的处理方法。当发生单相接地故障后,运行人员可按以下步骤进行故障处理:当10kV系统发生单相接地后,值班员应马上检查10kV

接地选线装置是否动作,10kV线路保护是否动作,在把记录做好的同时,应该报告当值调度和有关负责人员,并按当值调度员的命令寻找接地故障。在查找接地故障时,应先详细检查变电站内电气设备有无明显的故障迹象(如绝缘是否有击穿的痕迹等)。在发生接地故障的10kV系统中,若未通过查看故障痕迹来发现故障点,就需进行各线路接地故障的排查,可采用断开某条线路断路器来查看接地故障现象是否消失,从而来判断该条线路是否为故障线路的方法来确定故障线路,当确定该线路是故障线路时,要立即汇报当值调度员处理,同时要对站内的设备进行一次全面检查。若逐条线路依次进行排查后仍未找到故障线路而接地故障仍然存在时,运行值班人员可考虑是两条或多条线路同时发生了接地故

障或10kV母线设备发生了接地故障,然后进行针对性的故

障查找。另外,若10kV电压互感器高压侧熔断器熔断时,

用于更替的熔断器除必须具有良好的灭弧性能和较大的断

流能力外还需具有限制短路电流的作用,切记不得用普通熔断器来代替。

4 在10KV系统中处理单相接地故障时的注意事项

(1)10KV系统带接地故障运行时间一般在规程中规定不得超过2小时。

(2)10KV系统带接地故障运行时,为了防止因接地故障时电压升高使电压互感器发热、绝缘损坏和高压熔断器熔断等情况发生,需加强对电压互感器的监视。

(3)在10KV系统中寻找单相接地故障时,若有关人员汇报某条线路上有故障迹象时,可先拉这条线路。若未发现故障迹象,为了减少停电的范围和负面影响,应先操作有其他电源的线路,再试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要的线路,然后试拉线路短、负荷重、分支少、用电性质重要的线路,双电源用户可先倒换电源再试拉,专用线路应先行通知或转移负荷后再试拉。

(4)在10KV系统中处理接地故障时,禁止停用消弧线圈。若消弧线圈升温超过规定时,可在接地相上先做人工接地,消除接地点后再停用消弧线圈。

(5)做好详细故障记录,以便为下次出现接地故障提供参考。

参考文献

[1]董勇,李光友.10kV系统单相接地故障及处理探析[J].

中国电力教育,2011,8.

[2]田轶华.10kV系统单相接地故障的判断与处理[J].内蒙古科技与经济,2006,4S.

配电网单相接地故障的仿真分析

中国石油大学(华东)现代远程教育 毕业设计(论文) 题目:配电网单相接地故障的仿真分析学习中心:天津滨海奥鹏学习中心 年级专业:网络10春电气工程及其自动化 学生姓名:吴燕燕学号: 18 指导教师:郑淑慧职称:教授 导师单位:中国石油大学(华东) 中国石油大学(华东)远程与继续教育学院 论文完成时间: 2011 年 12 月 23日 摘要

为了提取配电网单相接地故障选线和故障测距的暂态故障特征量,基于Matlab的Simulink仿真环境,搭建了小电流接地系统的配电网络仿真模型并综合考虑不同短路时刻、不同接地电弧电阻、不同故障距离和线路长度等多个因素,对配电网小电流接地系统的单相接地故障进行了大量仿真。在配电网单相接地短路故障后的第1个工频周波(O~O.02 s)内故障线路的零序电流包络线的变化速度比非故障线路变化缓慢,包络面积大,但与非故障线路首半波极性相反。仿真分析表明此暂态特性不受短路时刻、电弧电阻、故障距离和消弧线圈被偿度的影响,为单相接地故障选线和故障测距的研究提供了理论依据。 关键词:配电网;仿真模型零序电流;单相接地故障;补偿度;故障相电压

第一章引言 我国35 kV、10 kV(6 kV)配电网中性点运行方式一般为不接地或经消弧线圈接地。当发生单相接地故障时允许继续运行1~2 h,及时查找故障线路和故障点是提高供电可靠性的保证。基于稳态分量的单相接地选线方法有5次谐波电流的幅值方向法【1,2】,注入信号源法【3】,零序电流有功分量法【4,5】等,由于稳态零序电流幅值较小,基于稳态分量的单相接地选线准确率不高;消弧线圈短时并联电阻【6,7】,可提高接地选线的可靠性,但不能很好发挥消弧线圈的作用。近年来,以小波变换为理论研究工具,分别提出了应用零序电流小波变换系数模值大小与极性【8-13】零序电流小波变换系数模值的积分【14】、零序电压流的小波变换系数之比【15】作为选线判据,但受短路时刻、网络结构、线路长度、接地点的位置、电弧电阻及被分析信号的数据长度、小波基的选取等多因素的影响较大。研究小电流接地系统单相接地暂态过程特点是单相接地故障选线和测距方法的理论基础,目前关于这方面的文献很少。

10kV系统单相接地故障分析及处理

10kV系统单相接地故障分析及处理 随着社会经济的快速发展,其中10kV系统经常发生单相接地问题,影响电力系统正常运行。电力企业得到了很大进步,文章通过分析10kV系统发生单相接地故障原因及危害,总结出10kV系统单相接地故障时的处理方法及其注意事项。 标签:单相接地故障;危害;处理;注意事项 1 概述 电力系统在进行分类时常分大电流接地系统和小电流接地系统。采用小电流接地系统有一大优点就是系统某处发生单相接地时,虽会造成该接地相对地电压降低,其他两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可继续运行1~2小时。10KV系统无论是在供电系统还是配电系统中都应用的比较广泛,故10KV系统是否可靠安全运行直接影响到整个电力系统能否正常运行。然而10kV系统在恶劣天气条件下发生单相接地故障的机率却很大。10kV系统若在发生单相接地故障后未得到妥善处理让电网长时间运行的话,将会致使非故障相中的设备绝缘遭受损坏,使其寿命缩短,进一步发展为事故的可能得到提高,严重影响变电设备和配电网的安全经济运行。因此,工作人员一定要熟知10kV系统发生接地故障的处理方法,一旦10kV系统发生单相接地故障必须及时准确地找到故障线路予以切除,以确保电力系统稳定安全运行。 2 10kV系统发生单相接地故障的原因及危害 导致10kV系统发生单相接地故障的原因有很多,大致可以分为以下五类主要原因: (1)设备绝缘出现问题,发生击穿接地。例如:配电变压器高压绕组单相绝缘击穿或接地、绝缘子击穿、线路上的分支熔断器绝缘击穿等。 (2)天气恶劣等自然灾害所致。例如:线路落雷、导线因风力过大,树木短接或建筑物距离过近等。 (3)输电线断线致使发生单相接地故障。例如:导线断线落地或搭在横担上、配电变压器高压引下线断线等。 (4)飞禽等外力致使发生单相接地故障。例如:鸟害、飘浮物(如塑料布、树枝等。 (5)人为操作失误致使发生单相接地故障等。 10kV系统的馈线上发生单相接地故障的危害除了使非故障两相电压升高以

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

单相接地故障的特征及处理

单相接地故障的特征及处理 10kV(35kV)小电流接系统单相接(以下简称单相接是配电系统最常见故障,多发生潮湿、多雨天气。树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起。单相接影响了用户正常供电,可能产生过电压,烧坏设备,引起相间短路而扩大事故。,熟悉接故障处理方法对值班人员来说十分重要。 1几种接故障特征 (1)当发生一相(如A相)不完全接时,即高电阻或电弧接,这时故障相电压降低,非故障相电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处电压达到整定值,电压继电器动作,发出接信号。 (2)发生A相完全接,则故障相电压降到零,非故障相电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相指示不为零,这是此相电压表二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小电压指示,但该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接信号。 (4)系统中存容性和感性参数元件,特别是带有铁芯铁磁电感元件,参数组合不匹配时会引起铁磁谐振,继电器动作,发出接信号。 (5)空载母线虚假接现象。母线空载运行时,也可能会出现三相电压不平衡,发出接信号。但当送上一条线路后接现象会自行消失。 2单相接故障处理 (1)处理接故障步骤: ①发生单相接故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员命令寻找接故障,但具体查找方法由现场值班员自己选择。 ②详细检查所内电气设备有无明显故障迹象,不能找出故障点,再进行线路接寻找。 ③将母线分段运行,并列运行变压器分列运行,以判定单相接区域。 ④再拉开母线无功补偿电容器断路器以及空载线路。对多电源线路,应采取转移负荷,改变供电方式来寻找接故障点。 ⑤采用一拉一合方式进行试拉寻找故障点,当拉开某条线路断路器接现象消失,便可判断它为故障线路,并马上汇报当值调度员听候处理,同时对故障线路断路器、隔离开关、穿墙套管等设备做进一步检查。 (2)处理接故障要求: ①寻找和处理单相接故障时,应作好安全措施,保证人身安全。当设备发生接时,室内不接近故障点4m以内,室外不接近故障点8m以内,进入上述范围工作人员必须穿绝缘靴,戴绝缘手套,使用专用工具。 ②减小停电范围和负面影响,寻找单相接故障时,应先试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要线路,然后试拉线路短、负荷重、分支少、用点性质重要线路。双电源用户可先倒换电源再试拉,专用线路应先行通知。若有关人员汇报某条线路上有故障迹象时,可先试拉这条线路。 ③若电压互感器高压熔断件熔断,不用普通熔断件代替。必须用额定电流为0.5A装填有石英砂瓷管熔断器,这种熔断器有良好灭弧性能和较大断流容量,具有限制短路电流作用。 3结束语 减少单相接故障给电网运行带来不良影响,要求值班人员熟悉有关运行规程,了解设备运行状况,实践中不断总结经验,提高处理问题能力,还要积极改善设备运行条件,及时消除设备缺陷,保持设备清洁,提高设备绝缘水平。同时,还要加强配电线路检修、维护管理,提高配电线路检修人员技术水平,缩短查找处理接故障时间,尽快恢复对用户供电。

最新中性点不接地系统-发生单相接地故障问答大全

多用在中压10~35kV ;(1kV以下低压,1~10kV中低压) 中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。系统正常运行时,三相电压U A、U B、U C 是对称的,三相的对地电容电流i c0也是平衡的。所以三相的电容电流相量和等于0,没有电流在地中流动。每个相对地电压就等于相电压。 当系统出现单相接地故障时(假设C相接地) 。则C相对地电压为0,而A相对地电压U’A=U A+(-U C)=U AC,而B相相对地电压U′B=U B+(-U C)=U BC。由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3 倍,即1.732倍)。 C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。由于一般习惯将从电源到负荷方向取为各相电流的正方向,所以:IC=-(ICA+ ICB)。IC在相 位上超前U C 90o(流过故障线路始端的零序电流是电容电流,所以零序电流超前零序电压 90°;由于在不接地系统中,单相接地是不会产生电流(对地分布电容的容性电流不算,所以小电流接地),即不会产生额外负载,所以不会影响各相电压包括相对中性点的电压关系);而在量值上由于IC=I CA又因I CA=U’A/X C= UA/XC= I C0,因此I C=3I C0,即一相接地的电容电流为正常运行时每相电容电流的三倍。 由于线路对地电容C很难确定,因此I C0和I C也不能根据电容C来精确计算。一般采用下列经验公式来计算中性点不接地系统的单相接地电容电流:I C=Ue(Ik+35IL)/350 Ue(为线路额定电压KV) Ik(为同一电压的具有电的联系的架空线路总长度) IL(为同一电压的具有电的联系的电缆线路总长度) 在不完全接地(即经过一些接触电阻接地,中性点经消弧线圈接地)时,故障相对地的电压将大于0而小于相电压,而未接地相对地电压小于线电压,接地电容电流也比较小。 必须指出,当中性点不接地的系统中发生单相接地时,三相用电设备的正常工作并未受到影响,因为线路的线电压无论是相位还是量值均未发生变化,因此三相用电设备仍照常运行。但是这种线路允许在一相接地的情况下长期运行,因为如果另一相又发生接地故障时就会发展成为相间短路,两相接地短路,这是很危险的,会产生很大的短路电流,可能损坏线路设备。所以在中性点不接地的系统中,应该装置专门的接地保护或绝缘监察系统,在发生单相接地时,给予报警信号,以提醒值班人员注意及时处理。按我国规程规定:中性点不接地电力系统发生单相接地故障时,允许暂时运行2小时。运行维修人员应争取在两小时以内查出接地故障,予以排除。 绝缘监察装置由测量和发信两部分组

高压线路单相接地故障分析

高压线路单相接地故障分析 一、高压线路接地故障的确定 1、接到值班调度员关于高压线路接地通知时,要询问清楚是哪条线路哪相接地,各相接地电压数值是多少,变化情况如何(数值是不断变化还是比较稳定),以便于对接地情况进一步分析。 2、排除变电所(发电厂)绝缘监视装置本身故障。 如果是一相对地电压为零值,另两相对地电压正常,这可能是绝缘监视装置本身故障引起。如果是一相对地电压为零或很低,另两相电压升高,或一相对地电压升高,另两相对地电压降低,这都表明是高压线路接地或一相断相。 3、排除高压用户内部高压接地故障。 ⑴向高压用户说明接地线路名称,接地相名称,责成高压用户对高压设备进行详细巡察,以查明是否有接地故障。 ⑵电缆进户的高压用户可用钳型电流表测全电缆电流。如等于零值或接近零值,则此高压用户无接地可能,如测电缆三相电流之和接近高压系统接地电流,则说明接地故障点在该用户内部。 ⑶对负荷性质不甚重要又极为可疑用户,可要求其暂停电1分钟(核准时间),用验电器检验开关电源三相电压,就可以确定该用户内部是否有接地故障。 ⑷要将高压线路缺相与接地故障很好区别。 高压线路上的跌落式熔断器熔断一相或高压发生断线,被断开的线路又较长,绝缘监视装置中的三相对地电压表也会发生指示数值不平衡,且类似接地情况。 如果三相对地电压表指示数值虽然不平衡,但又无明显的接地特征时,应当设法与该线路末端用户联系,如果用户三相电压正常,说明没发生高压断相而是接地所引起。 二、高压线路接地状态分析 1、一相对地电压接近零值,另两相对地电压升高3倍,这是金属性直接接地。 ⑴如果在雷雨时发生,可能是绝缘子被击穿,避雷器因受潮绝缘被击穿,或导线被击断电源侧落在比较潮湿的地面上引起的。 ⑵如果在有风天发生此类接地,可能是金属物被刮到高压带电体上;也可能是仍在高压设备上的金属物被风刮成接地;也有可能是避雷器、变压器,跌落式熔断器引线被刮断形成稳定性接地。 ⑶如果是在良好的天气里发生,可能是外力破坏扔金属物或吊车等撞断一相高压线落在接地较良好的物件上,也有可能是高压电缆击穿接地。 2、一相对地电压降低,但不是零值,另两相对地电压升高,但没升高到3倍。这是属于非金 属性接地特征。有以下几种可能: ⑴如果在雷雨天发生,可能是一相导线被击断电源侧落在不太潮湿的地面上;如伴有大风,也有可能是比较潮湿的树枝搭在导线与横担之间形成接地。 ⑵配变变压器高压绕组烧断后碰到外壳上或内层严重烧损主绝缘击穿而接地。 3、一相对地电压升高,另两相对地电压降低,这是非金属性接地和高压断相特征。 ⑴高压断一相但电源侧没落地,负荷侧导线落在潮湿的地面上,没断线的两相通过负载与已接地导线相连,构成非金属性直接接地。没断相对地电压降低,断线相对地电压反而升高。 ⑵高压断线没落地或落在导电性能不好的物体上,或者装在线路上的高压熔断器熔断一相。假如被断开线路较长,造成三相对地电容电流不平衡,促使三相对地电压也不平衡,断线相对地电容电流变小,对地电压相对升高,其它两相相对较低。

配电网接地故障原因分析及处理对策实用版

YF-ED-J1584 可按资料类型定义编号 配电网接地故障原因分析及处理对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

配电网接地故障原因分析及处理 对策实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 引言 在10~35kV电网中,各类接地故障相对较 多,使电网供电的可*性降低,对工农业生产及 人民生活造成很大影响,所以必须认真分析故 障原因,采取有效的防护措施。 2 故障原因 (1) 雷害事故。10~35kV系统网络覆盖面 较大,遭受雷击的概率相对增多,不仅直击雷 造成危害,而且由于防雷设施不够完善,绝缘 水平和耐雷水平较低,地闪、云闪形成的感应

过电压也能造成相当大的危害,导致设备损坏,危及电网安全。 (2) 污闪故障。10~35kV配电网络中因绝缘子污秽闪络,使线路多点接地的故障也经常发生。据对10kV配电线路的检查发现,因表面积污而放电烧伤的绝缘子不少。绝缘子污秽放电,是造成线路单相接地和引起跳闸的主要原因。 (3) 铁磁谐振过电压。10~35kV系统属于中性点不接地系统,随着其规模的扩大,网络对地电容越来越大,在该网络中电磁式电压互感器和空载变压器的非线性电感相对较大,感抗比容抗大得多,而且电磁式电压互感器一次线圈中性点直接接地,受雷击、单相地和倒闸操作等的激发,往往能形成铁磁谐振,谐振产

单相接地故障的特征及处理通用版

安全管理编号:YTO-FS-PD548 单相接地故障的特征及处理通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

单相接地故障的特征及处理通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 10kV(35kV)小电流接地系统单相接地(以下简称单相接地)是配电系统最常见的故障,多发生在潮湿、多雨天气。由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。因此,熟悉接地故障的处理方法对值班人员来说十分重要。 1 几种接地故障的特征 (1)当发生一相(如A相)不完全接地时,即通过高电阻或电弧接地,这时故障相的电压降低,非故障相的电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。 (2)如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔

10KV线路单相接地故障处理方法初探

10KV线路单相接地故障处理方法初探 10KV配网线路故障的多发期,所有故障中最突出的故障是线路接地故障,且查找和处理起来也比较困难。如果线路长时间接地运行,可能烧毁变电站TV一次侧保险丝,引起值班人员拉闸停电,导致整条10KV馈路停电,更严重的是在接地运行可能引发人身事故。 传统处理方法 线路接地时,变电站运行人员在听到告警铃响后,会推拉确定具体的10KV接地馈路,然后电话通知供电站查线。供电站传统的接地查线处理方法可分为2种:经验判断法和推拉法。 1.经验判断法 一般情况下,供电站在接到变电站查线通知后,有经验的运行人员会首先分析故障线路的基本情况:线路环境(有无存在未及时处理的树害),历史运行情况(原先经常接地)等,判断可能引起的接地点,然后去现场进行确认。但不在掌握线路情况或线路分段较少的情况下,一般直接将运行人员分组对线路进行逐杆设备全面巡视,直至发现接地点。 经验判断法的缺点:①对供电站的要求较高。要求供电站线路日常巡视维护扎实到位,管理基础资料详实准确,并且人员对情况非常熟悉,否则经验判断就无从谈起。②在白天,由于接地现象表现不明显,带电

巡视接地故障存在人身安全隐患;在夜晚,接地现象表现为弧光放电,有放电声音,较为明显,但由于需要照明灯具及交通车辆进行配合,增大了另一种安全隐患。③对意外情况,故障经验法不适用。 2. 推拉法 由线路运行人员对线路分断点的形状或断路器进行开断操作,并同时用电话与变电站进行联系,根据操作前后线路接地是否消失来确定接地点的所在范围。 下面以某村变电站179某桥线为例来说明,图为179某桥线接线图。假设179某桥线接地,首先由供电站操作人员拉开96号杆分路丝具,再用电话询问某村变电站值班人员接地是否消失。若接地消失,可判定接地点在96号杆以后;否则,可判定96号杆前段肯定有接地点(不能排除96号杆后段没有接地点)。再拉开川道支线,扶托支线杆分路丝具,再询问接地是否消失。然后再依次拉开干线41号杆、19号杆分路丝具,直至判定接地点的某一支线或干线某一段为止。 推拉法也存在明显的不足:线路单相接地时,规程规定允许继续运行时间不超过2小时。受此限制,经常会出现接地原因尚未查清,查找工作仍在进行,但变电站就已经拉闸停电的情况。此时会使接地查找工作变得复杂,停电时间延长。 绝缘摇测判断法

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

配电网发生单相接地故障解决方法

配电网发生单相接地故障解决方法 发表时间:2017-07-04T16:01:00.710Z 来源:《电力设备》2017年第7期作者:王海燕 [导读] 由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。 (云南电网公司楚雄鹿城区供电局云南省楚雄市 675000) 单相接地是10kV通常是指小电流接地系统单相接地,单相接地故障是配电系统最常见的故障,多发生在潮湿、多雨天气。由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。熟悉接地故障的处理方法对值班人员十分重要。 随着优质服务要求的不断提高,减少停电时间,提高供电可靠性显得愈加重要。变电站发生单相接地故障时,《调规》中允许继续运行不超过120分钟,但这对于用户的用电质量有很大影响,甚至拉路时会扩大停电范围,不满足优质服务的需要 一、分析接地故障处理情况 (1)公司整合近三年来接地故障排除和处理记录,统计发生接地故障的原因,主要有:线路单相故障、瓷瓶炸裂、引线烧断、断线故障、绝缘损坏、保险遭雷击等。 (2)分析总结接地故障处理情况,主要流程如下: 通过对上表统计得出结论,在本次故障中查找故障点所用时最长,这也是配网线路接地故障处理时间长的主要原因。 综上,影响配电网接地线路查找时间的原因,主要为以下四点: (1)不能缩小故障查找范围; (2)未实现配网自动化; (3)未与用户建立良好的沟通机制; (4)接地选线信号可靠性差。 二、针对措施,变电站安装KC-XDL综合判据小电流接地选线装置 (1)分析以往母线接地故障的原因,往往是因为断线故障,或是引线烧断、瓷瓶炸裂、绝缘损坏等。因此可以在EMS系统中,通过查看接地时负荷的变化情况来分析判断; (2)若是接地线路绝缘损坏,故障处会产生放电,此时反映到负荷曲线上就是该线路负荷突然增高,如图5所示,与正常运行时负荷相比,接地时负荷突然升高;

10kV单相接地故障的分析

10kV单相接地故障的分析 贺红星贵州省榕江县电力局调度所(557200) 榕江县电力局调度所在调度运行日志记录中出现10kV单相接地信号62次,每次均发信号,但所测10kV每相电压却各不相同,这是为什么呢 1 故障分析 目前各县级电力企业,都是以110kV变电所为电源点,以35kV输电线为骨架,以10kV配电线为网络,以小水电站为补充的一个网架结构。由于电压等级较低,输配电线路不长,对地电容较小,因此,属于小接地电流系统。当小接地电流系统发生单相接地时,由于没有直接构成回路,接地电容电流比负载电流小得多,而且系统线电压仍然保持对称,不影响对用户的供电。因此,规程规定允许带一个接地点继续运行不超过2h。但是由于非故障相对地电压的升高,对绝缘造成威胁。因此,对已发生接地的线路,应尽快发现并处理。这就要借助系统中设置的绝缘监察装置,来对故障作出准确的判断和处理。 对于绝缘监察装置,我们通常采用三相五柱式电压互感器加上电压继电器、信号继电器及监视仪表构成。它由五个铁芯柱组成,有一组原绕组和二组副绕组,均绕在三个中间柱上,其接线方式是:ynynd。这种接线的优点是第一副绕组不仅能测量线电压,而且还能测相电压;第二副绕组接成开口三角形,能反映零序电压。当网络在正常情况下,第一副绕组的三相电压是对称的,开口三角形开口端理论上无电压,当网络中发生单相金属性接地时(假设A相),网络中就出现了零序电压。网络中发生非金属性单相接地时,开口两端点间同样感应出电压,因此,当开口端达到电压继电器的动作电压时,电压继电器和信号继电器均动作,发出音响及灯光信号。值班人员根据信号和电压表指示,便可以知道发生了接地并判定接地相别,然后向调度值班员汇报。但必须指出,绝缘监察装置是一段母线共用的,它必竟不是人脑,不可能选择鉴别故障类型,由于实际情况要比书本上的理论复杂得多,恶劣天气、网络中高压熔丝熔断、电网中的高次谐波及电压互感器本身的误差等一系列问题,都可能使电压互感器二次侧开口三角形绕组感应出不平衡电压,使电压继电器、信号继电器动作,发出虚假接地信号。 2 故障现象类型 根据运行经验及现场处理人员反馈的情况分析,把62例接地故障现象分为以下几种类型:

电力系统接地故障与处理分析

电力系统接地故障与处理分析 发表时间:2018-08-17T10:15:26.937Z 来源:《电力设备》2018年第15期作者:李晓宏[导读] 摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。 (内蒙古霍煤鸿骏铝电有限责任公司电力分公司内蒙古通辽 029200)摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。电力系统与人们的日常生活息息相关,一旦出现故障,不但会影响系统的正常运转,还会进一步干扰正常的生产生活,甚至埋下巨大的安全隐患。因此,如何查明并处理电力系统接地故障,是目前需要解决的一个问题。本文就主要介绍 了电力系统接地故障的原因与处理措施,希望可以提供一些参考,进一步推动我国电力行业的发展。 关键词:电力系统;接地故障;处理分析 1 电力系统接地故障的原因判断 1.1 常见故障问题 在电阻性单点接地的情况下,导致接地电阻值逐步降低甚至低于直流系统预定值。此时电力系统绝缘监测装置发出报警信号,为保证接地故障诊断的准确性,可运用绝缘检测仪对支路接地进行检查,并结合故障范围排除接地故障。在多点经高阻接地条件卜,电力系统总接地电阻会逐渐下降甚至低于电力系统预定值,此时电力系统绝缘检测装置发出报警信号,应对不同支路接地电阻进行详细检测,对比分析电阻值情况,以确保接地故障排查的可靠性。电力系统运行中多分支接地故障往往与多个电源点存在密切联系,导致正负电源出现接地故障,且断开一条支路后其他支路仍存在接地故障。为保证接地故障排查的整体效果,检查人员应从整个电力系统入手解列直流系统,循序渐进排查故障点,以确保电力系统接地故障得到妥善解决。 1.2 气候原因 发电厂直流系统中造成接地故障的主要原因与影响因素进行分析,其中最常见的就是气候的原因。通常情况下,恶劣的天气很容易造成直流系统接地故障的产生。在发电厂厂工程的施工过程中如果出现了发电厂内部的设备密封出现问题,就会在工作中出现渗水的现象,如果发生了霜雪更或者渗透的现象就会导致直流系统的节抵扣与导线的文职出现严重的腐蚀。时间一长,腐蚀的部位就会影响发电厂系统的正常运行。 1.3 野生动物原因 在电力系统的运行中的发电厂直流系统中的接线盒需要长期的暴露在外面。所以长时间就会受到多种动物的伤害,这一装置有没有专门的人员看守,因此在野外的环境中会被老鼠不断的啃食。被破坏的接线盒就会将电缆暴露在外面,还会影响发电厂直流接地系统的正常运行。根据相关统计,我国目前很多的很多的发电厂中直流系统的接地故障都是受到动物的伤害。所以,相关部门的管理人员需要制定相关的预防方案,减少这一系统中接地故障的发生概率。 1.4 开关使用发生变形 火力发电厂电力系统接地中,由于全封闭开关的小木柜体在系统运行中开关频率较高,导致其出现严重的变形情况,使得开关柜体产生接地电流,导致接地故障。部分开关把手的设置不规范,固定部位与开关部位之问并未进行绝缘保护,开关变形促使电流与金属导体相互接触,导致电力系统接地故障。 2 电力系统接地故障防护措施 2.1 严格做好日常检查 为有效防范火力发电厂电力系统接地故障,电力工作者应严格做好日常检查工作,确保三相变电的电流与电压保持正常状态,定期做好电源电流值输出的检查工作,确认满足相关标准值范围,并密切监测电力系统运行状态,确认运行中无噪音。不同模块输出电流应保持正常流向,尤其是正负极对接电流绝缘处理应规范,以免埋卜故障隐患。电力检查人员应随时检查通讯设备的功能,发现问题及行处理。定期检查充电模块的供电监控系统运行状态,准确记录检测结果,并以充电模块相关检查为充电电流与电压工况检查提供可靠数据支持,从而保证火力发电厂电力系统日常检查的规范性和有效性,降低电力系统接地故障的发生几率。 2.2 及时查找故障原因 2.2.1 利用绝缘监测装置判断 在安装设备时通常会直接将绝缘监测装置安装在直流母线上。当其处于止常运行状态下时,绝缘监测装置会以数字的形式显示出母线电压,并对直流系统正极和负极母线绝缘情况、母线的运行情况实时监测,并对接地故障进行报告。当前微机选线型直流绝缘监测装置在变电站中应用较为广泛,其不仅能够实时监测直流系统,而且能够对直流系统止负极和支路的对地绝缘状况等信息进行直接测量。应用绝缘监测装置时,在不切断直流同路负荷的情况下即能够寻找故障点。但当平衡桥电阻和切换电阻参数等设计中存在不合理情况时,直流系统止负极对地电压波动会较大,部分时候一点接地还会有误动作发生。 2.2.2 拉回路法进行判断 在电力系统的运行中对于发电厂的直流系统接地故障的查找方法有很多中,这些问题中最常见的就是拉回路法。这种方法的优势就是操作比较的简单,在实际的工作中应用比较的普遍。使用这一方法需要注意的是:第一,需要将照明的回路电源与操作回路的电源进行切断。这样可以保证工作人员的安全,然后在对发电厂中的直流系统进行注意的检查。在这一过程中需要工作人员具备专业的知识与技能。只有具有丰富知识的技术人员才可以在较短的时间内找到故障的主要问题,并及早的解决问题。 2.2.3 便携式定位装置检测法判断 与上述的两种方法相比较,便携式定位装置检测的方法具有的优势就是,使用效率更高,具有更多的优势。因为这种方法的使用可以利用先进的技术方法,便于更快的找到故障的问题,还不用将回路电源进行切断。这是便携式定位装置检测方法的优势,这在发电厂系统的故障检测中具有重要的作用。有利于可持续发展目标的实现,该可以从根本上解决故障问题。对发电厂直流系统的正常运行起到保障的作用。 2.3 有效维护监控系统设备

基于PSCAD_EMTDC的小电流单相接地故障模型仿真_毕业设计

编号 毕业设计(论文) 题目基于PSCAD/EMTDC的小电流 单相接地故障模型仿真 二级学院电子信息与自动化学院 专业电气工程及其自动化

摘要 第一小段,应该介绍一下你论文的意义。然后下面再开始介绍你的工作 建立了小电流接地系统的仿真模型,利用电磁暂态程序PSCAD/EMTDC全面仿真了不同故障情况对故障稳态和暂态电压、电流幅值特征和相位特征产生的影响,(这句话太拗口)并得到了相应的零序电压及零序电流的幅值、相位及波形。通过对仿真数据及波形的进一步分析,得出了小电流接地系统发生单相接地故障时的运行特点,验证了小电流接地故障稳态和暂态分析理论的科学性、合理性。 为了提取配电网单相接地故障选线和故障测距的暂态故障特征量,基于PSCAD/EMTDC的仿真环境,搭建了小电流接地系统的配电网络仿真模型并综合考虑不同短路时刻、不同接地电弧电阻、不同故障距离和线路长度等多个因素,对配电网小电流接地系统的单相接地故障进行了大量仿真。在配电网单相接地短路故障后的第1个工频周波(0~0.02 s)内故障线路的零序电流包络线的变化速度比非故障线路变化缓慢,包络面积大,但与非故障线路首半波极性相反。仿真分析表明此暂态特性不受短路时刻、电弧电阻、故障距离和消弧线圈被偿度的影响,为单相接地故障选线和故障测距的研究提供了理论依据。 居然没有目录和参考文献,参考文献至少要30篇,最好超过40篇,要标注在论文里面,你的论文的整体结构还可以,也比较认真,再继续修改一下再拿来我看,要修改好的正式文档 关键词:小电流接地系统;单相接地故障;故障选线;PSCAD/EMTDC仿真;选线原理;补偿度;故障相电压

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

6kV配电线路单相接地故障的处理

6kV系统单相接地故障分析及查找电力系统可分为大电流接地系统(包括直接接地、经电抗接地和低阻接地)、小电流接地系统(包括高阻接地,消弧线圈接地和不接地)。我国3~66kV电力系统大多数采用中性点不接地或经消弧线圈接地的运行方式,即为小电流接地系统。在小电流接地系统中,单相接地是一种常见故障。6kV配电线路在实际运行中,经常发生单相接地故障,特别是在雨季、大风和雪等恶劣天气条件下,单相接地故障更是频繁发生。发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2 h,这也是小电流接地系统的最大优点;但是,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。 1 单相接地故障的特征及检测装置 1.1 单相接地故障的特征 中央信号后台报警,绝缘监察电压表指示:故障相电压降低(不完全接地)或为零(完全接地),另两相电压升高,大于相电压(不完全接地)或等于线电压(完全接地),稳定性接地时电压表指针无摆动,若电压表不停地摆动,则为间歇性接地;中性点经消弧线圈接地系统,装有中性点位移电压表时,可看到有一定指示(不完全接地)或指示为相电压值(完全接地时)消弧线圈的接地报警灯亮;发生弧光接地时,产生过电压,非故障相电压很高,电压互感器高压保险可能熔断,甚至可能烧坏电压互感器。 1.2 真假接地的判断 电压互感器一相高压熔断器熔断,发出接地信号。发生接地故障时,故障相对地电压降低,另两相升高,线电压不变。而高压熔断器一相熔断时,对地电压一相降低(不为零),另两相不会升高,线电压则会降低。用变压器对空载母线充电时,断路器三相合闸不同期,三相对地电容不平衡,使中性点位移,三相电压不对称,发出接地信

相关文档
相关文档 最新文档