文档视界 最新最全的文档下载
当前位置:文档视界 › 红外遥控资料

红外遥控资料

红外遥控资料
红外遥控资料

红外遥控的概述:

红外线的光谱位于红色光之外,波长是0.76~1.5μm,比红光的波长还长。红外遥控是利用红外线进行传递信息的一种控制方式,红外遥控具有抗干扰,电路简单,容易编码和解码,功耗小,成本低的优点。红外遥控几乎适用所有家电的控制。

一、红外遥控系统结构

红外遥控系统的主要部分为调制、发射和接收,如图

调制

红外遥控是以调制的方式发射数据,就是把数据和一定频率的载波进行“与”操作,这样既可以提高发射效率又可以降低电源功耗。

调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如这是由发射端所使用的455kHz晶振决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。

1发射系统

目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。由于发射系统一般用电池供电,这就要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常一点误差可以忽略不计。

红外线通过红外发光二极管(LED)发射出去,红外发光二极管(红外发射管)内部构造与普通的发光二极管基本相同,材料和普通发光二极管不同,在红外发射管两端施加一定电压时,它发出的是红外线而不是可见光。

图3a 简单驱动电路图3b 射击输出驱动电路

如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射波形强度越大。

图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。图3b所示的射极输出电路可以解决这个问题,两个二极管把三级管基极电压钳位在1.2V左右,因此三级管发射极电压固定在0.6V左右,发射极电流IE基本不变,根据IE≈IC,所以流过LED的电流也基本不变,这样保证了当电池电压降低时还可以保证一定的遥控距离。

1.一体化红外接收头

红外信号收发系统的典型电路如图1所示,红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的,这样的目的是为了提高接收的灵敏度。

一体化红外接收头,如图5a、5b所示:

图5a 小体积接收头IRM38B引脚图5b大体积接收头IRM38A引脚

红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输出脚。根据发射端调制载波的不同应选用相应解调频率的接收头。

红外接收头内部放大器的增益很大,很容易引起干扰,因此在接收头的供电脚上须加上滤波电容,一般在22uf以上。有的厂家建议在供电脚和电源之间接入330欧电阻,进一步降低

红外发射器可从遥控器厂家定制,也可以自己用单片机的PWM产生,家庭遥控推荐使用红外发射管(L5IR4-45)的可产生37.91KHzPWM, PWM占空比设置为1/3, 通过简单的定时中断开关PWM, 即可产生发射波形。

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

很多电器都采用红外遥控,那么红外遥控的工作原理是什么呢?

首先我们来看看什么是红外线。眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。

常用的红外遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。

目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通5发光二极管相同,只是颜色不同。

红外发光二极管一般有黑色、深蓝、透明三种颜色。判断红外发光二极管好坏的办法与判断普通二极管一样:用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。

红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉距法来粗略判定。接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。

红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率一般都较小(100mW左右),所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。前些年常用μPC1373H、CX20106A等红外接收专用放大电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。

成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。成品红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。但在使用时注意成品红外接收头的载波频率。

红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的。发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。

红外遥控的特点是不影响周边环境、不干扰其它电器设备。由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;电路调试简单,只要按给定电路连接无误,一般不需任何调试即可投入工作;编解码容易,可进行多路遥控。

由于各生产厂家生产了大量红外遥控专用集成电路,需要时按图索骥即可。因此,现在红外遥控在家用电器、室内近距离(小于10米)遥控中得到了广泛的应用。

多路控制的红外遥控系统多路控制的红外发射部分一般有许多按键,代表不同的控制功能。当发射端按下某一按键时,相应地在接收端有不同的输出状态。

接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。

“脉冲”输出是当按发射端按键时,接收端对应输出端输出一个“有效脉冲”,宽度一般在

“电平”输出是指发射端按下键时,接收端对应输出端输出“有效电平”,发射端松开键时,接收端“有效电平”消失。此处的“有效脉冲”和“有效电平”,可能是高、也可能是低,取决于相应输出脚的静态状况,如静态时为低,则“高”为有效;如静态时为高,则“低”为有效。大多数情况下“高”为有效。

“自锁”输出是指发射端每按一次某一个键,接收端对应输出端改变一次状态,即原来为高电平变为低电平,原来为低电平变为高电平。此种输出适合用作电源开关、静音控制等。有时亦称这种输出形式为“反相”。“互锁”输出是指多个输出互相清除,在同一时间内只有一个输出有效。电视机的选台就属此种情况,其它如调光、调速、音响的输入选择等。

“数据”输出是指把一些发射键编上号码,利用接收端的几个输出形成一个二进制数,来代表不同的按键输入。一般情况下,接收端除了几位数据输出外,还应有一位“数据有效”输出端,以便后级适时地来取数据。这种输出形式一般用于与单片机或微机接口。

除以上输出形式外,还有“锁存”和“暂存”两种形式。所谓“锁存”输出是指对发射端每次发的信号,接收端对应输出予以“储存”,直至收到新的信号为止;“暂存”输出与上述介绍的“电平”输出类似。

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 3、红外遥控的基本原理理。

红外线遥控就是利用红外线(又称红外光)来传递控制信号,实现对控制对象的远距离控制。具体来讲,就是由发射器发出红外线指令信号,由接收器接收下来并对信号进行处理并识别,再通过相应的控制芯片,最后根据接收到的不同信号实现对控制对象的各种功能的远距离控制。红外线发射器由指令按键、信号产生电路、频率调制电路、驱动电路及红外线发射器件组成,如图1 所示。当指令键按下时,指令信号产生电路便产生所需要的控制指令信号。这里的控制指令信号是以某些不同的特征来区分的。常用的区分指令信号的特征是频率特征和码组特征,即用不同的频率或不同的编码的电信代号代表不同的指令。这些不同的指令信号经过频率调制,最后由驱动电路驱动红外线发射器件,发出红外线遥控指令信号。

红外接收器由红外线接收器件、前置放大电路、信号解调电路、指令检测电路组成,如图2。当红外线接收器件接收到发射器的红外线指令信号时,它将红外光信号变为电信号并送入前置放大器进行放大,再经解调器解调后由指令信号检出电路将指令信号检出,实现各种操作。

要实现系统的遥控功能,就必须先选择信号指令传送的方式。根据遥控的方式和使用者场合不同,可以把这些控制信号特征进行各种组合编码。如电压极性的组合方式,电信号相位的组合方式,电信号幅值的组合方式,频率的组合方式,脉冲的宽度、相位、幅度等参数的组合方式及脉冲编码组合方式等。脉冲编码组合方式具有指令容量大,抗干扰能力强,保密性好及便于用逻辑电路来实现等优点,得到了广泛的应用。

4、控制的功能要求。

用单片机程序控制红外发射与接收,从而控制LED1的发光与熄灭。用Kill软件将程序调试好,用装载软件将调试好的程序装入单片机中,在51PROK试验箱中验证。当在红外发射与接收出放上一张白纸反射时发光二极管LED1发光,当用拿去白纸并在发射接收中间放上隔挡时放光二极管LED1熄灭。

红外遥控电路由发射电路和接收电路组成,发射部分由按键开关电路、控制芯片和红外发射电路三部分组成。当按下遥控按钮时,单片机产生相应的控制信号,经红外发射二极管发射出去。接收部分由红外接收头、控制芯片、调光电路组成,当红外接收器接收到控制脉冲后,经单片机处理,判断是否对电灯进行调光或开关,根据需要执行相应的操作,接收系统采用的是5 伏单电源电压供电。如下图所示:

在本系统中选择的是51 系列的A T89C51芯片,A T89C51是一种带4k字节闪烁可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压,

高性能CMOS 8 位微处理器,俗称单片机。该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚相兼容。由于将多功能8 位CPU 和闪烁存储器组合在单个芯片中,A TMEL 的A T89C51 是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。AT89C51 是一个低功耗高性能单片机,40 个引脚,32 个外部双向输入/输出(I/O)端口,同时内含2 个外中断口,2 个16 位可编程定时计数器,2 个全双工串行通信口,AT89C51 可以按照常规方法进行编程,也可以在线编程。

其将通用的微处理器和Flash 存储器结合在一起,特别是可反复擦写的Flash 存储器可有效地降低开发成本。

2.2 红外发射电路模块在本系统设计中,单片机发出的信号如何被红外发射管识别,发射管能否正常发射红外信号是发射电路要解决的关键问题。要发射红外信号,必须要有红外发射器件。红外发光二极管是一

种能产生红外光的发光二极管,目前大量使用的红外发光二极管发出的红外线波长为940nm 左右,外形与普通发光二极管相同,只是颜色不同。常见的红外发射二极管有黑色,透明色,它与普通发光二极管的最大区别在于所发出的光为不可见光,而普通发光二极管发出的是各种颜色的可见光[5],通常,红外发光二极管分为两种结构形式:一种是遥控发射型红外发光二极管(即最常用的手持遥控器所用的红外发射二极管);一种是近距离发射型红外发光二极管,这种二极管把红外光的发射与接收共集为一体。由于本设计实现的是家居遥控,因此采用第一种即可。

如图4 所示为系统遥控发射原理图,P1.0 口为按键输入口;P2.0 口为红外发射端口,用于输出38kHz 载波编码,脉冲经9013(NPN)放大然后由红外发射管输出;第9 脚为单片机

的复位脚,采用RC 手动复位电路;18、19 脚接晶振。图4红外发射电路图2.3红外接收电路模块。

.1、红外接收器件介绍。

一般的红外接收头主要由集成电路外加阻容元件,红外线接收管及滤波光片等组成,电路设计相对繁琐,在实际应用中不方便。而红外遥控接收头SM0038 集红外接收管,前置放大解调等于一体,无外部电路,体积小,密封性好,灵敏度高,应用简单,用小功率红外发射

管发射信号接收距离达35 米,并且价格低廉。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V 左右,接收频率为38kHz,它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。从而使电路达到最简化,灵敏度和抗干扰性都非常好,是一个接收红外信号的理想装置。如图5 所示:

史上最全的红外遥控器编码协议

目录 1)MIT-C8D8 (40k) 2) MIT-C8D8(33K) 3)SC50560-001,003P 4)M50462 5)M50119P-01 6)M50119L 7)RECS80 8)M3004 9)LC7464M 10)LC7461-C13 11)IRT1250C5D6-01 12)Gemini-C6-A 13)Gemini-C6 14) Gemini-C17(31.36K)-1 15)KONKA KK-Y261 16)PD6121G-F 17)DATA-6BIT 18)Custum-6BIT 19)M9148-1 20)SC3010 RC-5 21) M50560-1(40K) 22) SC50560-B1 23)C50560-002P 24)M50119P-01 25)M50119P-1 26)M50119P 27)IRT1250C5D6-02 28)HTS-C5D6P 29)Gemini-C17 30)Gemini-C17 -2 31)data6bit-a 32)data6bit-c 33)X-Sat 34)Philips RECS-80 35)Philips RC-MM 36)Philips RC-6 37)Philips RC-5 38)Sony SIRC 39)Sharp 40)Nokia NRC17 41)NEC 42)JVC 43)ITT

44)SAA3010 RC-5(36K)45)SAA3010 RC-5(38K)46)NEC2-E2 47) NEC-E3 48) RC-5x 49) NEC1-X2 50) _pid:$0060 51) UPD1986C 52) UPD1986C-A 53) UPD1986C-C 54) MV500-01 55) MV500-02 56) Zenith S10

单片机红外电视遥控器C51程序代码单片机程序

单片机红外电视遥控器C51程序代码单片机程序 //************************************************************** //名称:单片机红外电视遥控器C51程序代码() /*-------------------------------------------------------------- 描述: 一般红外电视遥控器的输出都是用编码后串行数据对38~40kHz的方波进行 脉冲幅度调制而产生的.当发射器按键按下后,即有遥控码发出,所按的键 不同遥控编码也不同。这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms 的组合表示二进制的“1”。上述“0”和“1”组成的32位二进制码经38kHz 的载频进行二次调制,然后再通过红外发射二极管产生红外线向空间发射。 一般电视遥控器的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。后16位 为8位的操作码和8位的操作反码,用于核对数据是否接收准确。 根据红外编码的格式,发送数据前需要先发送9ms的起始码和4.5ms的结果码。接收方一般使用TL0038一体化红外线接收器进行接收解码,当TL0038接收到38kHz红外信号时,输出端输出低电平,否则为高电平。 所以红外遥控器发送红外信号时,参考上面遥控串行数据编码波形图,在低 电平处发送38kHz红外信号,高电平处则不发送红外信号。 ----------------------------------------------------------------*/ //编辑: //日期: //**************************************************************** #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long #include //包括一个51标准内核的头文件 static bit OP; //红外发射管的亮灭 static unsigned int count; //延时计数器 static unsigned int endcount; //终止延时计数 static unsigned char flag; //红外发送标志 char iraddr1; //十六位地址的第一个字节 char iraddr2; //十六位地址的第二个字节 void SendIRdata(char p_irdata); void delay(); //************************************************************** void main(void) {

红外遥控原理及解码程序

红外遥控系统原理及单片机 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC 的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、VCD、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周

期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反)上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3示。 图3 遥控信号编码波形图 UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。

红外线遥控器解码程序

资料整理自互联网,版权归原作者! 欢迎访问 https://www.docsj.com/doc/5b7692046.html, 新势力单片机,嵌入式
专业技术论坛:https://www.docsj.com/doc/5b7692046.html,
红外线遥控器解码程序
Wang1jin 收藏. 交流论坛: https://www.docsj.com/doc/5b7692046.html,/ 推荐网站: https://www.docsj.com/doc/5b7692046.html, 个人博客: https://www.docsj.com/doc/5b7692046.html,
红外线遥控是目前使用最广泛的一种通信和遥控手段.由于红外线遥控装置具有体积小,功耗低,功能强,成本低等特点,因 而,继彩电,录像机之后,在录音机,音响设备,空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控.工业设备中, 在高压,辐射,有毒气体,粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰.
1 红外遥控系统
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图 1 所示.发射部分 包括键盘矩阵,编码调制,LED 红外发送器;接收部分包括光,电转换放大器,解调,解码电路.
2 遥控发射器及其编码
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明, 现以日本 NEC 的 uPD6121G 组成发射电路为例说明编码原理.当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码 也不同.这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为 0.565ms,间隔 0.56ms,周期为 1.125ms 的组合表示二进制的"0";以脉宽为 0.565ms, 间隔 1.685ms,周期为 2.25ms 的组合表示二进制的"1",其波形如图 2 所示.
个人博客:https://www.docsj.com/doc/5b7692046.html,
电子综合站点:https://www.docsj.com/doc/5b7692046.html,

红外遥控编码原理及C程序,51单片机红外遥控

红外遥控解解码程序 #include #include #define uchar unsigned char #define uint unsigned int sbit lcden=P1^0; sbit rs=P1^2; sbit ir=P3^2; sbit led=P1^3; sbit led2=P3^7; unsigned int LowTime,HighTime,x; unsigned char a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u; unsigned char flag;//中断进入标志位 uchar z[4]; uchar code table[]={"husidonghahahah"}; uchar code table1[]={"User Code:"}; void delay(uint x) { uint i,j; for(i=x;i>0;i--) //i=xms即延时约xms毫秒for(j=100;j>0;j--); } void write_com(uchar com) {//写液晶命令函数 rs=0; lcden=0; P2=com; delay(3); lcden=1; delay(3); lcden=0; } void write_date(uchar date) {//写液晶数据函数 rs=1; lcden=0; P2=date; delay(3); lcden=1;

delay(3); lcden=0; } void init_anjian() //初始化按键 { a=0;b=0;c=0;d=0; e=0;f=0;g=0;h=0; i=0;j=0;k=0;l=0; m=0;n=0;o=0;p=0; q=0;r=0;s=0;t=0; u=0; } void init_1602() {//初始化函数 uchar num; lcden=0; rs=0; write_com(0x38);//1602液晶初始化 write_com(0x0c); write_com(0x06); write_com(0x01); write_com(0x80); for(num=0;num<14;num++)//写入液晶固定部分显示{ write_date(table[num]); delay(3); } write_com(0x80+0x40); for(num=0;num<9;num++) { write_date(table1[num]); delay(3); } } void write_dianya(uchar add,char date) {//1602液晶刷新时分秒函数4为时,7为分,10为秒char shi,ge; shi=date%100/10; ge=date%10; write_com(0x80+0x40+add); write_date(0x30+shi); write_date(0x30+ge); }

红外遥控编解码全攻略

-DYDIY- 红外遥控编解码全攻略 作者:杜洋 2005-9-26 红外遥控器的解码并对电器进行遥控一直是广大单片机爱好者的一个心愿。自己动手实现红外遥控电器也是大家单片机学习提高的一个重要的实验。现在网上关于红外线遥控器的解码的资料和文章很多,可是我在半年前学习红外遥控的解码时可是费了不少的力气。因为网上大部分资料和源程序都是针对某一种的红外遥控进行说明,只有买了和文章中一样的遥控器才可以继续实验。而且网上很少有遥控器的编码资料(用单片机模拟红外遥控器),经过了半年的学习与实践现在终于对红外遥控信号的编解码有了一个微薄的认识,在止写成文章希望对初学红外遥控的朋友有一定的帮助,更渴望有深入了解这方面的高手批评指正,谈谈自己的理解与看法,我就算是抛砖引玉了。呵呵! 红外遥控器的解码: 大部分的红外遥控的解码资料都是采用串口或是利用一个专用的单片机解码电路取码,前者的制作麻烦而且还要有专用的软件支持。后者则必须单独做一块解码板,而且一般只对某一种或一类的红外遥控器有效。而我有一种方法,只用一条不需要电路板的接线,用声卡测出红外遥控的波型。经过了长时间的使用效果很好,而且不仅对各种红外遥控的解码,还可以对无线通信或各种低波特率的编码进行分析,相当一个高级的试波器。 红外遥控器声卡波形解码一法: 采用我的解码方法需要以下的条件: 1,一台有MIC输入的声卡的电脑。 2,一条制作好的红外转换线(自己制作,以下有介绍) 3,安装高级音频编辑软件COOL EDIT PRO 2.0(各大下载网均有破解版下载) 红外遥控协议说明: 一般的,红外遥控的编码由前导码、地址码和数据码组成。而且有比较精准的时序要求。遥控码的发射由38KHZ或40KHZ的载波信号,由信号的时间长度来表示二进制数据。遥控的协议表示方法很多,下面是几种典型的例子:1, 1 E-mail:dydiy@https://www.docsj.com/doc/5b7692046.html,

红外遥控编码格式

红外遥控编码 红外遥控编码常用的格式有两种:NEC和RC5 NEC格式的特征: 1:使用38 kHz载波频率 2:引导码间隔是9 ms + 4.5 ms 3:使用16位客户代码 4:使用8位数据代码和8位取反的数据代码 下面的波形是从红外接收头上得到的波形:(调制信号转变成高低电平了) 不过需要将波形反转一下才方便分析:

NEC 协议通过脉冲串之间的时间间隔来实现信号的调制(英文简写PPM)。逻辑“0”是由0.56ms的38KHZ载波和0.560ms的无载波间隔组成;逻辑“1”是由0.56ms的38KHZ载 波和1.68ms的无载波间隔组成;结束位是0.56ms的38K载波。 遥控器的识别码是Address=0xDD20;键值是Command=0x0E;

注意波形先是发低位地址再发高位地址。所以0000,0100,1011,1011反转过来就是1101,1101,0010,000十六进制的DD20; 键值波形如下:

也是要将0111,0000反转成0000,1110得到十六进制的0E;另外注意8位的键值代码是取反后再发一次的,如图0111,0000 取反后为1000,1111。 最后一位是一个逻辑“1”。 RC5编码相对简单一些: 下面的遥控器地址是1A,键值是0D的波形 同样由于取自红外接收头的波形需要反相一下波形以便于分析:

反相后的波形: 根据编码规则:

得到一组数字:110,11010,001101 根据编码定义 第一位是起始位S 通常是逻辑1 第二位是场位F通常为逻辑1,在RC5扩展模式下它将最后6位命令代码扩充到7位代码(高位MSB),这样可以从64个键值扩充到128个键值。 第三位是控制位C 它在每按下了一个键后翻转,这样就可以区分一个键到底是一直按着没松手还是松手后重复按。 如图所示是同一按键重复按两次所得波形,只有第三位是相反的逻辑,其它的位逻辑都一样。

道路工艺流程图

施工安排 钻孔灌注桩施工工艺流程 墩、台身施工工艺流程 施工准备 沟塘处理、清除表土、修筑便道 桥梁工程施工 钻孔桩施工 空心板预制场地 承台、系梁施工 空心板预制 墩柱、桥台施工 帽梁施工 空心板吊装 桥面铺装层、栏杆 道路工程施工 路基软基处理 灰土底基层施工 水稳基层施工 沥青混凝土面层 路缘石安装 排水管道道沟管基施工 铺设管道 井室施工 管道回填 工程竣工验收 平整场地 定位放线 埋设护筒、桩机就位 钻孔 泥浆装备与处理 钢筋笼材料准备 清孔、吊放钢筋笼、检测用钢管和导管 钢筋笼制作 拌制混凝土 灌注混凝土 拔除护筒 凿除桩头 搭设脚手架工作平台 测量定位 绑扎柱钢筋 模板下口找平 柱模板就位 用螺栓将柱模组合 模板校正 混凝土浇筑 拆除模板 混凝土养护 原材料试验 配合比试验 混合料拌和 底基层验收 无损检测

水稳基层施工工艺流程 沥青混凝土面层施工工艺流程 摊铺 整形 碾压 密实度检测 试件制作 检查下承层 人员机械准备 监理检验 机械碾压 摊铺机摊铺 接缝处理 原材料试验 混合料配合比设监理审批 拌和场拌和 汽车运输 质量验收 测量放线 铺底模 安放钢筋骨架 安装抽芯管 立侧端模 混合料运输 挂线控制 含水量、水泥剂量检测 测量放样 侧端模准备 涂隔离剂 检查钢筋 钢筋骨架制作涂隔离剂

预制空心板施工艺流程 雨水工程施工工艺流程 内胶模放气或抽拔 混凝土入模捣固 养护 拆模 吊装出槽施工准备 测量放线 沟槽开挖 混凝土基础 稳管 水泥砂浆抹带 混凝土管座 施工放样 浮渣凿除 桥面清扫润湿 标高复核 模板检查 成品检查 压混凝土试件 砂石平基 安装橡胶圈 安管 砂石管座 检查井施工 闭水试验 回填

红外遥控的发射和接收

红外遥控的发射和接收Donna 发表于2006-5-12 10:08:00 光谱位于红色光之外,波长为0.76~1.5μm,比红色光的波长还长,这样的光被称为红外线。 红外遥控是利用红外线进行传递信息的一种控制系统,红外遥控具有抗干扰,电路简单,编码 及解码容易,功耗小,成本低的优点,目前几乎所有的视频和音频设备都支持这种控制方式。 一、红外遥控系统结构 红外遥控系统主要分为调制、发射和接收三部分,如图1 所示: 图1 红外遥控系统 1.调制 红外遥控发射数据时采用调制的方式,即把数据和一定频率的载波进行“与”操作,这样可以提高发射效率和降低电源 功耗。 调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如图2所示,这是由发射端所使用的 455kHz晶振决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。 图2 载波波形 1.发射系统 目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。由于发射系统一般用电池供电,这就要求芯片 的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有 足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常 一点误差可以忽略不计。

红外线通过红外发光二极管(LED)发射出去,红外发光二极管内部材料和普通发光二极管不同,在其两端施加一定电压时, 它发出的是红外线而不是可见光。 图3a 简单驱动电路图3b 射击输出驱动电路 如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向 电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射的波形强度越大。 图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。图3b所示的 射极输出电路可以解决这个问题,两个二极管把三级管基极电压钳位在1.2V左右,因此三级管发射极电压固定在0.6V左右, 发射极电流IE基本不变,根据IE≈IC,所以流过LED的电流也基本不变,这样保证了当电池电压降低时还可以保证一定的遥 控距离。 1.一体化红外接收头 红外信号收发系统的典型电路如图1所示,红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。 内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号, 然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流 信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出 高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的,这样的目的是为了提高接收的灵敏度。 一体化红外接收头,如图5所示:

红外遥控器编码规则简要说明

红外遥控器编码规则简要说明 1、遥控器由红外遥控专用芯片PT2248作为编码及发送部分,PT2248最大可用作18路红外遥控系统的编码,其内部己集成了38kHz的红外载波振荡及相应的数字脉码调制电路,只需外接3×6的矩阵式按键、红外发光二极管及其驱动电路等少量元器件便可完成编码发送的功能。发送部分电路图如下图所示: 2、PT2248组成的十八路遥控发送器其编码规则如下: (1)设a为一个时间单位,时间长度是38kHz的16个时钟周期,即 a=1÷38kHz×16=0.421ms 编码是以串行形式发送的,在接收端(38kHz一体化红外接收解调器)接收到如下形式的1位的编码时分别表示“0”和“1”: 1个a的低电平,3个a的高电平表示编码“0” 3个a的低电平,1个a的高电平表示编码“1” 编码以串行形式发送,接收端的一体化红外接收解调器输出波形如下图所示: (2)遥控器的每个按键编码由12位按以上编码规则所代表的“0”、“1”组成,时间长度为48a,当按下遥控器的7到18号单击按键,则以12位为一组(48a)发送两次编码,如下图所示: 60a为自按下按键到发送编码的等待时间,80a是前后两次发送12位48a编码的高电平时间间隔。7到18号单击按键无论发送端按键时间持续多长只发送一次这样形式的两组相同的12位编码。 (3)当按下1到6号连续按键时,编码按如下格式连续发送: (4)具体每个12位的串行编码规则如下: C1、C2、C3为用户可通过在遥控器发射电路中是否接入IN4148二极管决定其为“0” 或“1”,这里取“111”,H、S1、S2为单击连续按键的标志位,相当于列坐标,D1至

路基工程施工工艺及流程图史上最全

路基工程施工工艺及流程图(史上最全) 1前期准备工作 <1>路基开工前,首先要进行测量定线工作,其内容包括导线、中线、水准点复测、断面检查与补测。测量精度以交通部颁布的《公路路线勘测规程》的要求为标准。测量的工具,使用精度符合要求的全站仪,红外线测距仪,经纬仪和水准仪。当导线点与水准点不能满足施工要求时, 报监理工程师批准, 对其进行加密,成果资料提交监理工程师审查后签字认可后使用。 在开工前进行施工放样,放出路基边缘、坡口、坡脚、边沟护坡道、借土场 等具体位置,标明其轮廓,报监理工程师检查批准。 对工程沿线及借土场应取有代表性的土样,按JTJ051-93 标准试验方法,进行天然液限、塑性指数、密度、含水量等的试验。用于填方的土样,测量最大干容性、最佳含水量或毛体积比重和土的加州承载比GBR fi,测试结果报监理工程师审批。 <2>清理掘除。在路线用地范围内的树木、杂草、灌木等应予清除,按照监理工程师指定的深度和范围清除并运至工程师指定地点, 路基用地范围内的结构物按要求清除,对于路基附近的危险建筑予以适当加固,对文物古迹妥善保护。路基表面清理完工后, 并根据规范的要求进行填前碾压并达到监理工程师的规定要求。挖方或填方区域内,所有的腐植土、淤泥、表层植土均应挖出干净,按环保规定弃置路基范围用地以外, 并按《公路路基施工技术规范》弃土条例要求处理,对因挖出孔穴、障碍物而留下的孔洞、树根按要求进行处理。 2路基的填筑方法 路基宜采用水平分层填筑, 即按照横断面全宽分成水平层次, 逐层向上填筑。如果原地面不够平坦, 填筑应从最低处分层填起, 每填一层经过压实达到符合规定要求后,再添一层。对于原路面纵坡大于12%的地段。可采用纵向分层填筑法施工,沿纵坡逐层、分层填压达到密实。但填之路堤的上部,仍采用水平分层填筑法。水平分层填筑是填筑路堤的基本方法,它最能保证质量,一般均采用。 在同一路段如果要用到不同性质填充材料时,要注意以下情况: <1>不同性质的填充材料要分层填筑,不得混填,以免内部形成薄弱面或水囊,影响路表的稳定性。 <2>路堤上部受车辆荷载的作用影响很大,一般宜将冻稳性、水稳性好的土质填在路堤的上层部位; 如果路堤的下部可能受水浸淹时,也应采用水稳性好的土质来填筑。 <3>透水性较大的土填在透水性小的土下面时,如果两者粒径差别较大,要在中间加铺过渡层。如果透水性较小的土填在透水性较大的土下面,其顶面应做成4%的双向向外横坡,以免积水。 <4>沿纵向同层次要改变填料种类时,应做成斜面衔接,且将透水性好的填料置于斜

通信主要施工工艺流程图

通信施工工艺流程脚本 1基本要求 1)施工现场的各项管理制度应齐全,管理机制健全,岗位职责明确到人;施工人员数量、机具仪表配备应满足“施工组织设计”的要求。 2)针对具体工程施工特点,制定安全保障措施;开工前进行必要的安全培训,并进行安全考试,考试合格后方可上岗作业。 3)对于通信线路工程,施工前要与沿线相关部门及单位取得联系,办理相关手续、签订安全配合协议等。项目部要教育施工人员遵守当地法律法规、风俗习惯、施工现场的规章制度,保证施工现场的良好秩序。 4)对于通信设备安装工程,应了解通信机房的管理制度,服从机房管理人员的安排,提前办理必要的准入手续。对于既有机房,调查机房内在用设备的使用情况,制定在用设备的安全防护措施。施工过程中严禁乱动与工程无关的在用设备、设施。 5)GSM-R及列车无线调度通信工程铁塔安装、漏泄同轴吊挂等需要在车站站台、隧道、路肩等处进行施工,应提前与有关部门联系,签订安全配合协议。6)对于铁路车站客运服务信息系统工程,应了解车站的管理制度,提前办理准入证等各种相关手续。 7)技术交底的重点根据工程实际情况确定,一般应包括主要施工工艺及施工方法;进度安排、工程质量、安全措施等。交底要交到施工操作人员。交底必须在作业前进行,要有交底记录,交底人与被交底人都要在记录上签字。8)对于通信工程,施工项目及工程特点不同,其施工工艺及施工方法也有所不同。因此,通信工程施工作业指导书要根据工程具体情况进行编写。 9)做好物资的进场和标识工作,物资应整齐码放,要注意防火、防盗。还应做好进货、领用的账目记录工作。 10)安排仪器仪表存放地点,建立管理台帐,采取防潮、防火、防盗措施,严格按照其说明书的要求进行保管和维护。 11)对于各种设备安装工程,施工现场应配备消防器材,通信机房内及其附近严禁存放易燃、易爆等危险物品。 2工艺实施主要内容 2.1总施工流程 通信工程施工总流程图:

51单片机实现红外线编码检测

51单片机实现红外编码检测 通过51 单片机及外围电路实现对接受信号的处理(通过外部中断和计数器)获得信号的01编码,设备显示。 红外传感基础知识: ?红外发光管:红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装。 产生的光波波长为940nm左右,为红外光 ?红外接收头:左图为一常用的红外接收模块。其内部含有高频的滤波电路,专门用来滤除红外线合成信号的载波信号(38KH),并送出接收到的信号。当红外线合成信号进入红外接收模块,在其输出端便可以得到原先发射器 发出的数字编码,只要经过单片机解码程序进行解码,便可以 得知按下了哪一个按键,而做出相应的控制处理,完成红外遥 控的动作。 ?红外发送协议:引导码+客户码1+客户码2+操作码 +操作反码 ***用户真正须要的只有操作码***

?调制:“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率(因红外接收头能接收的红外线为38KHz 左右),还可达到降低电源功耗的 目的。 主要内容: 通过51 单片机及外围电路实现对接受信号的处理(通过外部中断和计数器)获得信号的01编码,用设备显示,(lcd或数码管);这里管脚的对应P3.2接受红外对管信息,lcd接线:

主程序: #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #include sbit IR=P3^2; //红外接口标志 /*------------------------------------------------ 全局变量声明 ------------------------------------------------*/ unsigned char irtime;//红外用全局变量 bit irpro_ok,irok; unsigned char IRcord[4]; unsigned char irdata[33]; /*------------------------------------------------ 函数声明 ------------------------------------------------*/ void Ircordpro(void); /*------------------------------------------------ 定时器0中断处理 ------------------------------------------------*/ void tim0_isr (void) interrupt 1 using 1 { irtime++; //用于计数2个下降沿之间的时间 } /*------------------------------------------------ 外部中断0中断处理 ------------------------------------------------*/ void EX0_ISR (void) interrupt 0 //外部中断0服务函数 { static unsigned char i; //接收红外信号处理 static bit startflag; //是否开始处理标志位 if(startflag) {

红外遥控器的基本原理

红外遥控器的基本原理红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。 常用的红外发光二极管发出的红外线波长为940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。红外遥控器的协议鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。 到目前为止,笔者从外刊收集到的红外遥控协议已多达十种,如:RC5、SIRCS、SONy、RECS80、Denon、NEC、Motorola、Japanese、SAMSWNG 和Daewoo 等。我国家用电器的红外遥控器的生产厂家,其编码方式多数是按上述的各种协议进行编码的,而用得较多的有NEC协议。 红外遥控器的结构特征红外遥控发射器由键盘矩阵、遥控专用集成电路、激励器和红外发光二极管组成。遥控专用集成电路(采用A T89S52 单片机)是发射系统的核心部分,其内部由振荡电路、定时电路、扫描信号发生器、键输入编码器、指令译码器、用户码转换器、数码调制电路及缓冲放大器等组成。它能产生键位扫描脉冲信号,并能译出按键的键码,再经遥控指令编码器得到某键位的遥控指令(遥控编码脉冲),由38KHZ 的载波进行脉冲幅度调制,载有遥控指令的调制信号激励红外二极管发出红外遥控信号。 在红外接收器中,光电转换器件(一般是光电二极管或光电三极管,我们这里用的是PIN 光电二极管)将接收到的红外光指令信号转换成相应的电信号。此时的信号非常微弱而且干扰特别大,为了实现对信号准确的检测和转换,除了高性能的红外光电转换器件,还应合理地选择并设计性能良好的电路形式。最常用的光电转换器件是光电二极管,当光电二极管PN 结的光敏面受到光照射后,PN 结的半导体材料吸收光能,并将光能转换为电能。当光电二极管上加有反向电压时,二极管中的反向电流将随入射光照强度的变化而变化,光的辐照强度越大,其反向电流越大。也就是说,光电二级管的反向电流随入射的光脉冲作同频率的变化。 红外遥控器的应用红外遥控器由于受遥控距离、角度等影响,使用效果不是很好,如采用调频或调幅发射接收编码,则可提高遥控距离,并且没有角度影响。红外遥控发射和接收模块可以用在室内红外遥控中,它不影响周边环境、不干扰其它电器设备。由于其无

6122编码格式,红外遥控的编码,载波38KHz

红外、6122编码、38KHz载波一、红外遥控编码简介 一般而言,一个通用的红外遥控系统由发射和接收两大部分组成,如图1 所示: 发射部分主要包括键盘矩阵、编码调制、红外发射管; 接收部分包括光、电信号的转换以及放大、解调、解码电路。 举例来说,通常我们家电遥控器信号的发射,就是将相应按键所对应的控制指令和系统码( 由0 和1 组成的序列),调制在32~56kHz 范围内的载波上(目的为:抗干扰及低功率),然后经放大(接三极管)、驱动红外发射管(透明的头)将信号发射出去。 二、6122编码格式简介 流行的控制方法是应用编/ 解码专用集成电路芯片来实现。 不同公司的遥控芯片,采用的遥控码格式也不一样。本文是NEC(代表芯片WD6122)PWM( 脉冲宽度调制) 标准。 遥控载波的频率为38kHz( 占空比为1:3) ;当某个按键按下时,系统首先发射一个完整的全码,然后经延时再发射一系列简码,直到按键松开即停止发射。简码重复为延时108ms,即两个引导脉冲上升沿之间的间隔都是108ms。如图2所示即为完整的NTC编码。

正常发码:引导码(9ms+4.5ms)+用户编码+用户编码(或者是用户编码的反码)+键数据码+键数据反码+延时: 将正常发码标识出来,从图中可以看出“0”和“1”的表示方法。(不要问为什么是这样,规定!标准!高性能!) 重复码:9ms+2.25ms+延时

三、程序思想 ①低功耗。写程序前要想到,没有用过的,可以新建工程只用sleep命令; ②需要知道用户编码(客户码),每个键对应的编码,这些都是自己或者客户设定的; ③高电平期间:用38KHz的方波表示,低电平期间:用低电平表示。也就是说,高电平不是一直都是高,其实是38KHz的方波,这也是为什么上面②和③图中9ms高电平期间有方格。 (我用的公司自己的精简指令集,就不再上传。需要的话,私信) 四、电路 做为波形的输出端,加三极管,放大。 下图为矩形键盘组成的按键,图中黑色二极管为红外发射管。

红外遥控资料

红外遥控的概述: 红外线的光谱位于红色光之外,波长是0.76~1.5μm,比红光的波长还长。红外遥控是利用红外线进行传递信息的一种控制方式,红外遥控具有抗干扰,电路简单,容易编码和解码,功耗小,成本低的优点。红外遥控几乎适用所有家电的控制。 一、红外遥控系统结构 红外遥控系统的主要部分为调制、发射和接收,如图 调制 红外遥控是以调制的方式发射数据,就是把数据和一定频率的载波进行“与”操作,这样既可以提高发射效率又可以降低电源功耗。 调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如这是由发射端所使用的455kHz晶振决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。 1发射系统 目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。由于发射系统一般用电池供电,这就要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常一点误差可以忽略不计。 红外线通过红外发光二极管(LED)发射出去,红外发光二极管(红外发射管)内部构造与普通的发光二极管基本相同,材料和普通发光二极管不同,在红外发射管两端施加一定电压时,它发出的是红外线而不是可见光。

图3a 简单驱动电路图3b 射击输出驱动电路 如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射波形强度越大。 图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。图3b所示的射极输出电路可以解决这个问题,两个二极管把三级管基极电压钳位在1.2V左右,因此三级管发射极电压固定在0.6V左右,发射极电流IE基本不变,根据IE≈IC,所以流过LED的电流也基本不变,这样保证了当电池电压降低时还可以保证一定的遥控距离。 1.一体化红外接收头 红外信号收发系统的典型电路如图1所示,红外接收电路通常被厂家集成在一个元件中,成为一体化红外接收头。内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的,这样的目的是为了提高接收的灵敏度。 一体化红外接收头,如图5a、5b所示: 图5a 小体积接收头IRM38B引脚图5b大体积接收头IRM38A引脚 红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输出脚。根据发射端调制载波的不同应选用相应解调频率的接收头。 红外接收头内部放大器的增益很大,很容易引起干扰,因此在接收头的供电脚上须加上滤波电容,一般在22uf以上。有的厂家建议在供电脚和电源之间接入330欧电阻,进一步降低

单片机红外遥控器设计

单片机红外遥控器设计 红外线遥控是目前使用很广泛的一种通信和遥控技术。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。也可以当作传输之媒界。太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l00 0μm 之间。 真正的红外线夜视仪是光电倍增管成像,与望远镜原理全完不同,白天不能使用,价格昂贵且需电源才能工作。 【红外遥控系统】 通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1a《红外发射原理图》

图1b 《红外接受原理图》 【遥控发射器及其编码】 红外遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征: 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3所示,连发波形如图4所示。

红外线编码遥控技术.

红外线遥控编码技术 红外线编码遥控技术 一概述 红外线遥控是目前最广泛采用的一种遥控技术红外线遥控装置具有体积小功耗微功能强 成本低等特点 因而广泛地在彩电 VCD DVD 录像机 空调机 音响设备以及玩具等其他小型电器装置采用这些家电产品采用红外线遥控技术给用户带来了极大的方便随着单片机的大量应用目前的红外遥控已大部分采用编码遥控器 目前采用的红外线遥控按载波频率可分为

30K 33K 36K 37K 38K 40K 56K按调制 形式可分为 调频 PCM 格式

调幅格式按编码格式可分为NEC 格式 东芝格式三菱格 式NEC Code [repetitive pulse],NEC Code [repetitive data] ,Toshiba Micom Format, Sharp Code,RC5 Code ,RC6 Code,R-2000 Code. 本文主要介绍NEC格式的通用红外线编码遥控技术 二 红外线简介 在介绍红外线遥控之前首先了解什么是红外线我们知道人的眼睛能看到的可见光按其波长从长到短排列依次为红橙黄绿青蓝紫其中红光的波长范围为0.620.76μm 紫光的波长范围为0.380.46μm比紫光波长还短的光叫紫外线比红光波长还长的光叫红外线见图1红外线遥控就是利用波长为0.761.5μm 之间的近红外线来传送控制信号的

红外线的特点 红外遥控的特点是不影响周边环境 不干扰其它电器设备 由于其无法穿透墙壁故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰 红外线的缺点 ? 通讯距离短通讯过程中不能移动遇障碍物通讯中断 三红外编码遥控系统构成 3.1 红外编码遥控系统构成红外编码遥控系统由发射和接收两大部分组成如图所示 刘梅昌第 1 页/ 共20 03-11-6 红外线遥控编码技术

相关文档