文档视界 最新最全的文档下载
当前位置:文档视界 › Poisson分布的检验

Poisson分布的检验

Poisson分布的检验
Poisson分布的检验

P o i s s o n分布的检验文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

目录

承诺保证书……………………………………………………………………I

1 引言 (1)

研究背

景 (1)

研究方法及目

的 (1)

2 Poisson分布检验的步骤和基本理论 (2)

检验步骤 (2)

检验的基本原理 (3)

3 关于Poisson分布检验的三个案例及实际研究 (7)

案例分析 (7)

对单位时间到来顾客数的实际研究 (13)

参考文献 (18)

英文摘要 (19)

关于Poisson分布的检验

肖秋光

摘要:Poisson分布是概率论中的一种重要离散分布,在许多实际问题中都有着广泛应用.本文概括了检验样本数据是否服从泊松分布的一般方法,主要是对随机数据进行图像模拟估计和利用假设检验原理对给定的临界值进行估计.其中2χ检验是众所周知的拟合优度检验,它能适用于任意的备择假设.另外,通过三个例子进行说明,最后用该方法对实测数据进行了分析和检验,并得出了结论.

关键词:Poisson分布假设检验独立变量2χ统计量

1 引言

研究背景

改革开放三十年来随着社会的发展、经济的增长,科学技术日新月异、人民拥有的物质日益丰富、感受到的文化也更加多元、社会的各种法规制度日臻成熟,无论是住房、保险、交通、旅游、高质量产品还是教育、饮食等.其结果是构成了大量的随机数据,而这些数据有没有什么规律可循呢就需要我们对它进行研究.在现实生活中的许多数据经过人们大量的研究是服从泊松分布的.若通过观察记录得到了一组数据,它是否服从泊松分布,则需要我们对其进行检验.

泊松分布是1837年由法国数学家泊松(Poisson )首次提出的.它是概率论中的一种重要的离散型随机变量的概率分布,在理论上和实践中都有广泛的应用.如110报警台24小时接到的报警次数、一定时间内发生的意外事件次数或灾害次数、布匹上的疵点数目、放射性物质放射出的粒子数目等.

研究方法及目的

由于向110报警台的报警是一次次到来的;自然灾害是一次次发生的;放射性粒子是一个个射出的;进入商场的人是一个个到来的……它们都可以看成是一种于随机时刻到来的“质点流”.要对其进行研究,首先,必须收集到有效的数据.其次,由于得到的样本数据通常是实验或统计而来,因此它不能完全的反映事物的本质.我们主要对部分数据进行抽取分析,根据部分数据对全体数据做出推断及判断.

因此,研究单位时间内产生的诸多随机变量有助于当事者们对各种新措施、新技术作出更为科学合理的决策.例如,商场每个时段到达的人数不一,通过调查可以确定哪个时段是人流的高峰期,可以在这个时段做一些宣传或促销产生的效益就会比其他时段高,并有效控制成本,使其用最小的投入换来最大的收益.

2Poisson分布检验的步骤及基本理论

检验步骤

2.1.1 数据整理

进行Poisson 分布的检验时,首先要对收集到的数据进行整理.假设收集到单位时间的量为n x x x x 321,,,然后把这些量按从小到大顺序排列起来,并查出其频数稍加整理制成表格如下: 表 1

其中满足:i i n p x p p x x x ?++?+?=+++ 102110 2.1.2 用图像对样本数据进行模拟

由于图形比较直观,而且样本数据在一定程度上能有效反映总体的分布规律,故可以用样本数据的图像模拟通过对比,对该分布进行初步判断.

泊松分布的图形一般为左偏,但随λ数值的增大,图形趋于对称.

图1

2.1.3 检验得出结论 检验的基本理论 2.2.1 假设检验

假设检验是对总体的分布函数形式或分布的某些参数作出某些可能的假设,然后根据所得的样本数据,对假设的正确性作出判断.

假设检验的步骤:

①根据问题建立原假设和备择假设

原假设是设总体参数等于某一数值,而备则假设是根据研究的目的来确定:可采用双侧检验,也可采用单侧检验.确定单、双侧检验的同时,也就确定了接受域和拒绝域的位置.

②选择适当的样本统计量,并确定以

H为真时的抽样分布

这一步是假设检验的关键,需要根据已知条件找到一个包含待检验总体参数和样本数据的已知分布,并计算出统计量的数值.

③选定显着性水平α,确定临界值

α应在抽样之前就确定下来,根据单、双侧检验的情况,将α放置一侧或双侧.然后根据第二步骤中所选择统计量服从的分布,查相应分布表,确定临界值.

④进行判别,得出结论

将第二步计算的数值与第三步得到的临界值进行比较,根据判别原则,作出结论.

2.2.2最大似然估计及拟合优度2χ检验

最大似然估计中采样需满足一个很重要的假设,就是所有的采样都

2.2.3 P值检验

所谓P值,是指在一个假设检验问题中,利用观测值能够做出拒绝原假设选择的最小显着性水平,如果p值小于显着性水平α,则相应的

检验统计量的值落入拒绝域中.其检验规则为:若p ≥α值,则拒绝原假设0H ;

若p <α值,则接受原假设0H .

2.2.4 Poisson 分布检验

设总体X 服从具有参数为0>λ的泊松分布,n X X X X ,,,,321 为其

样本.考虑检验问题:0H λ:010:;λλλ≠=H ,现有

其中()λλln )(,,,,1

21==∑=b x x x x T n

i i n

因此??

?

??<<==><=212121,02,1,,&,1),,,(c

T c j c T b c c T x x x j i n ?

则[]??

???==??????=??????∑∑==),,,(),(),,,(21001211000n n

i i n n i i x x x E M x x x x E X E ?λα?αλλλ 当0H 为真时,统计量∑==n

i i X T 1

服从参数为0λn 的泊松分布,0)(λn T E =,

在一般情况下上述方程不易求解,但当0λ不接近于零而n 又不很小时,统

计量

1

λλn n X

U n

i i

∑=-=

的渐进分布为正态分布)1,0(N ,则

对一切实数u 都渐近地成立(这是因为正态分布具有对称性).因此,

2121,,,c c b b 由下式确定:

3 关于Poisson 分布检验的三个案例及实际研究

案例分析

3.1.1 论反腐败与泊松分布

腐败现象作为当今社会的一种非常态,它的发生、出现引起了广大群众的关注.调查显示最近几年科级腐败正在加剧,小官受贿成隐患.据悉,某检察院工作人员对某经济较落后省的320个底层官员在一年时间内的受贿金额调查纪录如下表所示.根据这些数据(金额0表示未受贿,金额1表示受贿金额大于0小于等于1,其余类同)检验受贿金额是否服从泊送分布.

表 2 1年内320个官员受贿金额(万元)统计表

来源于参考文献[6]

用折线图像模拟数据如下:

图2

从图形走势看,为左偏凸值分布,与泊松分布较为相似,可初步判定为泊松分布.

在理论上,这里我们需要检验的是在一年的时间段内受贿官员的受贿金额是否服从泊送分布,所以可以假设

0H :一年的时间内受贿官员的受贿金额服从泊送分布; 1H : 一年的时间内受贿官员的受贿金额不服从泊送分布;

我们知道泊送分布的概率密度函数为 !

)(x e x X f x λ

λ-?==,式中:λ是未

知参数.如果假设为真时,可以根据本数据估计λ.由上表的数据可以的到在320个底层官员中,平均每一官员受贿的金额(万元),即

因此,可以用λ?作为λ的估计值,即得到为真时的概率密度函数

根据该密度函数,就可以计算出在每一个官员的受贿金额为各个类别出现的概率,这些概率值可通过泊送分布表查得.例如,在一年内受贿金额为0万元的官员人数的概率是498

f,受贿金额为1万元的概率

X

=

.0

)0

(=

是1494

320

(=

n,就f等.然后用查出的概率分别乘以样本容量)

n X

.0

)1

(=

=

可以得到各类别期望的频数.例如,在320个官员中受贿金额为0万元的期望频数是936

.0=

0498

?.下表列出了2χ统计量的计算过程.

.

320

15

表 3 2χ统计量的计算过程

我们注意到表中,受贿金额为8,9和10万元次及以上金额的期望频数都小于5,所以将这三类归于受贿金额为7万元的合并为一类,所以合并之后的类别数8=k .这时2χ统计量为

需要注意的是:根据Pearson 定理,上式的2χ统计量服从自由度为

1--r k 的2χ分布,其中k 时类别的个数,r 是估计的总体参数的个数.在

这里1,8==r k (只估计了一个参数λ),所以自由度为

61181=--=--r k .于是,当05.0=α时,查表可得592.12)6(205.0=χ.对于样

本的2χ值,因为)6(205.02χχ<落在接受域中.所以接受0H ,拒绝1H ,即在一年的时间中该地区官员的受贿金额是服从泊松分布的.

大家熟知当n 很大,p 很小时的二项分布趋于泊松分布.按照泊松分布的规律,一项非正常态现象的出现除了在总体中的概率很小外,其最明显的特征则是常常集中分布.通过上面检验和大量案例表明,腐败现象作为社会现象中的一种非正常态,其发生和发展呈泊松分布规律,特点是总体上的稀有性和局部的密集性加偶然性,具体表现有“前腐后继案”、“串案”、“窝案”等形式.因此治理腐败:一是要尽早发现,尽快惩前毖后;二是不能搞扩大化;三是要综合治理.

其次表明,泊松分布密集出现的概率跟社会体制有关,尤其是在经济转型、社会发生变革的时期容易出现。比如我国正处于向社会主义市场经济的过渡时期,法制不健全,各项改革和管理措施还跟不上形势发展的需要,所以腐败现象就表现得比较明显和集中。若从历史长河中看,这种过程还是短暂的,从全局来看它也只集中在某些特定的行业和领域,而大部分时间和大部分领域都是正常的,都是非腐败的。

3.1.2 卢瑟福散射实验

卢瑟福散射是近代物理科学发展史中最具影响力的重要实验之一。1909年卢瑟福(. Rutherford)和其合作者盖革(H. Geiger)与马斯(E. Marsden)进行的粒子散射实验,为原子的核式模型奠定了实验基础。

他们在云雾实验室观察镭所发射出的α粒子数目.记录了2608个相等时间间隔(他们以秒为一个时间段)内观测了一放射性物质镭放射的α粒子数x,

表 4

来源于参考文献[7]

在上表中的

n是观测到i个粒子的时间间隔数(最后一项已经合

i

并).若要检验观测的数据服从泊松分布这一假设(05

α),则:

=

.0

因为对参数为λ的泊松分布是: 2,1,0,!

)(==

=-k e k k X P k

λλ

根据上表原始数据可以算得λ最大似然估计870.3?==x λ

而870.3?=λ

的泊松分布通过计算机计算及查表(泊松分布函数表)可得下表:

表 5

因此,8967.122=χ其自由度为12-1-1=10,对05.0=α查(2χ分布分位

数)(2

n p χ表)得307.18)10(205.0=χ,所以我们接受0H ,认为观测数据服从泊

松分布.

另外,根据数据模拟图像如下:

图3

卢瑟福等人经过两年时间综合多方面因素的分析,在1911年提出原子的核式模型,原子中的正电荷集中在原子中心很小的区域内,而且原子的全部质量也集中在这个区域内.原子核的半径近似为10

,约为原子半

径的千万分之一.卢瑟福散射实验确立了原子的核式结构,为现代物理的发展奠定了基石.这充分表明研究泊松分布具有重大意义. 3.1.3 对印刷错误个数的检验

一个检验员检查了一本书的100页,并仔细记录各页中印刷错误的个数,其结果为:

表 6

其频数模拟如下图:

图 4

若要检验一页的印刷错误个数是否服从泊松分布.(取05.0=α)则:

假设 0H :总体X 服从泊松分布; 1H :总体X 不服从泊松分布

从表中数据可得:1100

7

061524032219140036=?+?+?+?+?+?+?+?=

x

当0H 成立时,λ的最大似然估计为1?==x λ

,检验的拒绝域为: 由给出的条件可知 100=n

3679.0!0)0(?10====-e X p p , 3679.0!

11)1(?1

11====-e X p p

18397.0!21)2(?122====-e X p p , 0613.0!

31)3(?1

33====-e X p p

01533.0!41)4(?144====-e X p p

, 003066.0!

51)5(?1

55====-e X p p 000511.0!61)6(?1

66====-e X p p , 000023.0?1)7(?60

7=-=≥=∑=i i p X p p

而对于5?,3<>j p

n j 有,将其合并得 023.8?7

3

=∑=j j p n ,合并后 4=k ,查2χ分布分位数)(2

n p χ表可得:991.5114205

.0=--)(χ 而 444.1100023

.85397.181979.364079.36362

2222

=-+++=

χ 由 991.5444.1<,故在05.0=α下,我们接受0H ,即可认为一页的印刷错误个数服从泊松分布.

通过对印刷错误的研究,我们可知每页印刷错误在一个左右时是正常的,所以在使用书刊时发现错误不用大惊小怪. 对单位时间到来顾客数的实际研究

在2011-3-11日星期五,通过实际采样,记录了上午10:55——12:05的70分钟内每分钟到达联合书城的人数,记录如下:

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

Poisson分布的检验

P o i s s o n分布的检验文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

目录 承诺保证书……………………………………………………………………I 1 引言 (1) 研究背 景 (1) 研究方法及目 的 (1) 2 Poisson分布检验的步骤和基本理论 (2) 检验步骤 (2) 检验的基本原理 (3) 3 关于Poisson分布检验的三个案例及实际研究 (7) 案例分析 (7)

对单位时间到来顾客数的实际研究 (13) 参考文献 (18) 英文摘要 (19)

关于Poisson分布的检验 肖秋光 摘要:Poisson分布是概率论中的一种重要离散分布,在许多实际问题中都有着广泛应用.本文概括了检验样本数据是否服从泊松分布的一般方法,主要是对随机数据进行图像模拟估计和利用假设检验原理对给定的临界值进行估计.其中2χ检验是众所周知的拟合优度检验,它能适用于任意的备择假设.另外,通过三个例子进行说明,最后用该方法对实测数据进行了分析和检验,并得出了结论. 关键词:Poisson分布假设检验独立变量2χ统计量 1 引言 研究背景 改革开放三十年来随着社会的发展、经济的增长,科学技术日新月异、人民拥有的物质日益丰富、感受到的文化也更加多元、社会的各种法规制度日臻成熟,无论是住房、保险、交通、旅游、高质量产品还是教育、饮食等.其结果是构成了大量的随机数据,而这些数据有没有什么规律可循呢就需要我们对它进行研究.在现实生活中的许多数据经过人们大量的研究是服从泊松分布的.若通过观察记录得到了一组数据,它是否服从泊松分布,则需要我们对其进行检验.

Poisson分布的参数估计

Poisson 分布的参数估计 作者:高晨 指导老师:戴林送 摘要 泊松分布是概率统计学科中一种重要的离散分布,在参数估计这块,对点估计,矩估计,最大似然 估计以及近似的区间估计等,该文中对泊松分布的相关知识,包括其性质,参数的相关估计,研究了泊松分布的一些性质,参数的估计,以及一些在生活中的简单应用。 关键词 P o i s s o 分布 参数估计 性质 简单应用 1 引言 Poisson 分布是离散型随机变量X 作为大量试验中稀有事件出现的频数的概率分布的数学模型,其中X 可能取值为0,1,2,……而取各个值的概率为: {},0,1,2! k e P x k k k λ λ-== = 其中0λ>是常数,称X 服从参数为λ的泊松~(;)X P k x . 1.1相关定义 1. 离散型随机变量X 的函数分布律{},0,1,2k k P X x P k === ,若级数1k k k x p ∞ =∑绝 对收敛,称级数 1 k k k x p ∞ =∑为随机变量X 的数学期望[]E x , []E x =1k k k x p ∞ =∑. 2. 定理:Y 是随机变量X 的函数,(),(Y g x g =是连续函数),X 是离散型随机变量, 若 1 ()k k k g x p ∞ =∑绝对收敛,则 [][()]E Y E g x ==1 ()k k k g x p ∞ =∑. 3. 随机变量X ,若2{[()]}E X E X -存在,则称2{[()]}E X E X -为X 的方差,记 为()D x 或()Var x ,即 ()D x =()Var x =2{[()]}E X E X -.

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

泊松分布及其应用研究

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级:13级3班 姓名:黄夏妮 学号:1304040322

一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 0 , , ,2 ,1 0 k ,! k} X P{>===-λλλ e k k 则()()λλλλλλλλ λ =?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。

相关文档